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Introduction 

1. In single-agent decision theory the key notion is that of an optimal strategy. 

2. In noncooperative game theory, the basic modeling unit is the individual (including its 
beliefs, preferences, and possible actions) while in coalitional game theory, it is the group. 

3. Agents are self-interested.  It means that each agent has its own description of which states of 
the world it likes—and that it acts in an attempt to bring about these states of the world.   

4. The dominant approach to modeling an agent’s interests is utility theory.  The theory also 
aims to understand how these preferences change when an agent faces uncertainty about 
which alternative it will receive.  

5. The idea of (expected) utility can be grounded in a more basic concept of preferences (and 
rationality): von Neumann and Morgenstern. And the utility functions are aka von Neumann-
Morgenstern utility functions.   

Utility Theory 

Let 𝑂 denote a finite set of outcomes. For any pair 𝑜#, 𝑜$ 	∈ 	𝑂, let 𝑜# ≽ 	 𝑜$	denote the proposition that 
the agent weakly prefers 𝑜#	to 𝑜$.  Let 𝑜# ∼ 𝑜$	denote the proposition that the agent is indifferent between 
𝑜#	and 𝑜$. Finally, by 𝑜# ≻ 𝑜$, denote the proposition that the agent strictly prefers 𝑜#	to 𝑜$.  
 
Now, a lottery is the random selection of one of a set of outcomes according to specified probabilities. 
Formally, a lottery is a probability distribution over outcomes written [𝑝#: 𝑜#, . . . , 𝑝/: 𝑜/], where each 𝑜1 ∈
𝑂, each 𝑝1 ≥ 0 and 𝑝1 = 	1/

16# 	. Let 𝐿 denote the set of all lotteries. We will extend the ≽	relation to 
apply to the elements of 𝐿 as well as to the elements of 𝑂, effectively considering lotteries over 
outcomes to be outcomes themselves. 
 
Axiom 3.1.1 (Completeness).  ∀𝑜#, 𝑜$		𝑜# ≻ 𝑜$	𝑜𝑟	𝑜$ ≻ 𝑜#	𝑜𝑟	𝑜# ∼ 𝑜$. 
 
Axiom 3.1.2 (Transitivity).  𝐼𝑓	𝑜# ≽ 𝑜$	𝑎𝑛𝑑	𝑜$ ≽ 𝑜?, 𝑡ℎ𝑒𝑛	𝑜# ≽ 𝑜?.	
 
Axiom 3.1.3 (Substitutability).   If 𝑜# ∼ 𝑜$, then for all sequences of one or more outcomes 
𝑜?, . . . , 𝑜/	and sets of probabilities 𝑝, 𝑝?, . . . , 𝑝/	for which 𝑝 +	 𝑝1 = 1/

16? , 
	

[𝑝 ∶ 𝑜#, 𝑝? ∶ 𝑜?, . . . , 𝑝/: 𝑜/	] 	∼ 	 [𝑝 ∶ 𝑜$, 𝑝?: 𝑜?, . . . , 𝑝/: 𝑜/	]. 
	

Substitutability states that if an agent is indifferent between two outcomes, it is also 
indifferent between two lotteries that differ only in which of these outcomes is offered.  

 
Let 𝑃ℓ(𝑜1) denote the probability that outcome 𝑜1 is selected by lottery ℓ.   
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Axiom 3.1.4 (Decomposability) If ∀𝑜1 ∈ 𝑂, 𝑃ℓI(𝑜1) = 𝑃ℓJ(𝑜1), then ℓ# ∼ ℓ$. 
 

Decomposability states that an agent is always indifferent between lotteries that induce the 
same probabilities over outcomes, no matter whether these probabilities are expressed through a 
single lottery or nested in a lottery over lotteries.   

 
Axiom 3.1.5 (Monotonicity).   If 𝑜# ≻ 𝑜$	𝑎𝑛𝑑	𝑝 > 𝑞, 𝑡ℎ𝑒𝑛	[𝑝: 𝑜#, 1 − 𝑝: 𝑜$] 	≻ 	 [𝑞: 𝑜#, 1 − 𝑞:	𝑜$].	
 
Lemma 3.1.6 If a preference relation ≽ satisfies the axioms completeness, transitivity, decomposability, and 
monotonicity, and if 𝑜# ≻ 𝑜$  and 𝑜$ ≻ 𝑜? , then there exists some probability 𝑝 such that for all 𝑝′	 < 	𝑝, 
𝑜$ ≻ [𝑝′: 𝑜#, (1 − 𝑝′) ∶ 𝑜?], and for all 𝑝′′	 > 	𝑝, [𝑝′′: 𝑜#, (1	 − 	𝑝′′): 𝑜?] ≻ 𝑜$. 
 
Axiom 3.1.7 (Continuity) If	𝑜# ≻ 𝑜$ and 𝑜$ ≻ 𝑜?, then ∃𝑝 ∈ [0, 1] such that 𝑜$ ∼ [𝑝: 𝑜#, 1 − 𝑝: 𝑜?]. 
 

If we accept Axioms 3.1.1, 3.1.2, 3.1.4, 3.1.5, and 3.1.7, it turns out that we have no choice but to 
accept the existence of single-dimensional utility functions whose expected values agents want to 
maximize. (And if we do not want to reach this conclusion, we must therefore give up at least one of 
the axioms.)  

 
Theorem 3.1.8 (von Neumann and Morgenstern, 1944) If a preference relation ≽	satisfies the axioms 
completeness, transitivity, substitutability, decomposability, monotonicity, and continuity, then there exists a 
function 𝑢: 𝑂 → [0, 1] with the properties that 

1. 𝑢(𝑜#) ≥ 𝑢(𝑜$) iff 𝑜# ≽ 𝑜$, and 

2. 𝑢 𝑝#: 𝑜#, . . . , 𝑝/: 𝑜/ = 𝑝1𝑢 𝑜1/
16#   

Normal Form Games 

We have seen that under reasonable assumptions about preferences, agents will always have utility 
function whose expected values they want to maximize.  This suggests that acting optimally in an 
uncertain environment is conceptually straightforward—at least as long as the outcomes and their 
probabilities are known to the agent and can be succinctly represented.  

Agents simply need to choose the course of action that maximizes expected utility! 

But in real life, that’s often too good to be true. 

Prisoner’s Dilemma! 

 Player 2 No Betray Player 2 Betray 
Player 1 No Betray 1,1 -4,3 
Player 1 Betray 3,-4 -3,-3 

 
Game theory gives answers to many of these questions. It tells us that any rational user, when presented 
with this scenario once, will adopt Betray—regardless of what the other user does. It tells us that allowing 
the users to communicate beforehand will not change the outcome. It tells us that for perfectly rational 
agents, the decision will remain the same even if they play multiple times; however, if the number of 
times that the agents will play is infinite, or even uncertain, we may see them adopt No Betray. 
 

 Player 2 No Betray Player 2 Betray 
Player 1 No Betray a,a b,c 
Player 1 Betray c,b d,d 

*It works as long as c > a > d > b. 
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Definition of Normal Form (AKA Strategic Form) Games  

A game written in this way amounts to a representation of every player’s utility for every state of the 
world, in the special case where states of the world depend only on the players’ combined actions. 

Definition 3.2.1 (Normal-form game) A (finite, n-person) normal-form game is a tuple (𝑁, 𝐴, 𝑢), where: 

• 𝑁	is a finite set of 𝑛 players, indexed by 𝑖; 
• 𝐴	 = 	𝐴#	×	·	·	·	×	𝐴X, where 𝐴1 is a finite set of actions available to player 𝑖.  Each vector 𝑎	 =

	(𝑎#, . . . , 𝑎X) ∈ 𝐴 is called an action profile; 
• u = (𝑢#, . . . , 𝑢X) where 𝑢1: 𝐴1 → ℝ is a real-valued utility (or payoff) function for player 𝑖. 

Note that we previously argued that utility functions should map from the set of outcomes, not the set of 
actions. Here we make the implicit assumption that 𝑂 = 𝐴.  A natural way to represent games is via an n-
dimensional matrix.  

Example 1.  Prisoner’s dilemma 

Example 2.  Common-payoff games 

Definition 3.2.2 (Common-payoff game) A common-payoff game is a game in which for all action 
profiles 𝑎 ∈ 	𝐴#	×	·	·	·	×	𝐴X	and any pair of agents 𝑖, 𝑗, it is the case that 𝑢1(𝑎) 	= 	 𝑢[(𝑎). 

Common-payoff games are also called pure coordination games or team games.  In such games the 
agents have no conflicting interests; their sole challenge is to coordinate on an action that is maximally 
beneficial to all.   

As an example, imagine two drivers driving towards each other in a country having no traffic rules, and 
who must independently decide whether to drive on the left or on the right. If the drivers choose the same 
side (left or right) they have some high utility, and otherwise they have a low utility.  

 Driver 2 Left Driver 2 Right 
Driver 1 Left 1,1 0,0 
Driver 1 Right 0,0 1,1 

 
Example 3.  Zero-sum games 

At the other end of the spectrum from pure coordination games lie zero-sum games (constant-sum games).  
Unlike common-payoff games, constant-sum games are meaningful primarily in the context of two-player 
games. 

Definition 3.2.3 (Constant-sum game) A two-player normal-form game is constant sum if there exists a 
constant 𝑐 such that for each strategy profile 𝑎 ∈ 𝐴#	×	𝐴$,	it is the case that 𝑢#(𝑎) + 𝑢$(𝑎) = 𝑐. 

A classical example of a zero-sum game is the game of Matching Pennies. In this game, each of the two 
players has a penny and independently chooses to display either heads or tails. The two players then 
compare their pennies. If they are the same then player 1 pockets both; otherwise player 2 pockets them.  

 Player 2 Heads Player 2 Tails 
Player 1 Heads 1,-1 -1,1 
Player 1Tails -1,1 1,-1 

 
 Player 2 Paper Player 2 Scissors Player 2 Rock 
Player 1 Paper 0,0 -1,1 1,-1 
Player 1 Scissors 1,-1 0,0 -1,1 
Player 1 Rock -1,1 1,-1 0,0 
 


