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CSCE475/875 Multiagent Systems 

Handout 4:  Notes on Distributed Optimization 

August 29, 2017 

Based on Shoham and Leyton-Brown (2008). Multiagent Systems: Algorithmic, Game-Theoretic, and 

Logical Foundations, Cambridge. 

1. Introduction 

How can agents optimize a global objective function? Specifically, we consider four families of 

techniques and associated sample problems: 

• Distributed dynamic programming (as applied to path-planning problems); 

• Distributed solutions to Markov Decision Problems (MDPs); 

• Optimization algorithms with an economic flavor (as applied to matching and scheduling problems) 

(auctions and contract nets); 

• Coordination via social laws and conventions, including voting. 

2.1. Distributed Dynamic Programming for Path Planning 

2.1.1. Asynchronous Dynamic Programming 

Underlying our solutions is the principle of optimality: if node x lies on a shortest path from s to t, then 

the portion of the path from s to x (or, respectively, from r to t) must also be the shortest paths between s 

and x (resp., x and t).  This allows an incremental divide-and-conquer procedure, also known as dynamic 

programming.  Notes: It is complete, optimal, but not scalable. 

 The shortest distance from any node i to the goal g as ℎ∗(𝑖).   

 The cost for the link between nodes i and j is 𝑤(𝑖, 𝑗). 

 The shortest distance from i to the goal g via a node j neighboring i is: 

     𝑓∗(𝑖, 𝑗) = 𝑤(𝑖, 𝑗) + ℎ∗(𝑗) 

 ℎ∗(𝑖) = min
𝑗

𝑓∗(𝑖, 𝑗) (by the principle of optimality) 

 

Procedure ASYNCHDP(node i ) 

if i is a goal node then 

    ℎ(𝑖) 0 

else 

    initialize ℎ(𝑖) arbitrarily (e.g., to infinity or 0) 

endif 

repeat 

     forall neighbors j do 

         𝑓(𝑖, 𝑗) = 𝑤(𝑖, 𝑗) + ℎ(𝑗) 

    end for 

    ℎ(𝑖)min
𝑗

𝑓(𝑖, 𝑗) 

end repeat 

End Procedure 

 

2.1.2. Learning Real-Time A* (LTRA*) 

Here, the agent starts at a given node, performs an operation similar to that of asynchronous dynamic 

programming, and then moves to the neighboring node with the shortest estimated distance to the goal, 



2 
 

and repeats.  This is particular useful when there is one agent, and also there is advantage to interleave 

planning and execution. 

Procedure LRTA* 

i s  // the start node 

while i is not a goal node do 

     foreach neighbor j do 

         𝑓(𝑗) = 𝑤(𝑖, 𝑗) + ℎ(𝑗) 

     end for 

     𝑖′𝑎𝑟𝑔 min
𝑗

𝑓(𝑗)  // breaking ties at random 

     ℎ(𝑖)𝑚𝑎𝑥(ℎ(𝑖), 𝑓(𝑖′))   // admissibility 

     𝑖𝑖′  // move to the neighbor 

end while 

End Procedure 

 

Notes: 

 h must be admissible: h never overestimates the distance to the goal, i.e.,. ℎ(𝑖) ≤ ℎ∗(𝑖). (WHY?) 

 Complete.  Optimal given enough trials. 

 Multiple agents?  (1) agents have different ways of breaking ties, and (2) all have access to a shared 

h-value table. 

2.2. Action Selection in Multiagent MDPs 

Background.  A Markov Decision Process (MDP) is a discrete time stochastic (non-deterministic!) 

control process. At each time step, the process is in some state s, and the decision maker may choose any 

action a that is available in state s. The process responds at the next time step by probabilistically 

transitioning into a new state 𝑠′ as a result of performing a.  This transition or step gives the decision 

maker a reward for that state-action decision: 𝑟(𝑠, 𝑎, 𝑠′).    

To help a decision maker make better decisions, one will need to know the probability that the process 

moves into its new state 𝑠′ as influenced by the chosen action. Specifically, it is given by the state 

transition function 𝑝(𝑠, 𝑎, 𝑠′).    

So what?  The genius is: given s and a, it is conditionally independent of all previous states and 

actions—i.e., the state transitions of an MDP meet the Markov property. 

We want to maximize the total reward by assigning the best possible action to each state!  Value iteration 

is the most popular algorithm to do so, to find control policies.  It recursively calculates the utility of each 

action (value) relative to a reward function.   

𝑄𝜋∗
(𝑠, 𝑎) = 𝑟(𝑠, 𝑎, 𝑠′) + 𝛽 ∑ 𝑝(𝑠, 𝑎, 𝑠′)

𝑠′

𝑉𝜋∗
(𝑠′) 

where: 𝑟(𝑠, 𝑎, 𝑠′) is reward, 𝛽 is a discount factor, 𝑉𝜋∗
(𝑠) is the value of the best policy 𝜋∗ for state 𝑠, 

𝑄𝜋∗
(𝑠, 𝑎) is the Q-value (utility) of the best policy for the state-action pair of (𝑠, 𝑎), and finally: 

𝑉𝜋∗
(𝑠) =  max

𝑎
𝑄𝜋∗

(𝑠, 𝑎)  (Note: value function!) 

Now, here is the value iteration algorithm: 

𝑄𝑡+1(𝑠, 𝑎) ← 𝑟(𝑠, 𝑎, 𝑠′) + 𝛽 ∑ 𝑝(𝑠, 𝑎, 𝑠′)

�̂�

𝑉𝑡(𝑠′) 

𝑉𝑡(𝑠) ← max
𝑎

𝑄𝑡(𝑠, 𝑎) 

http://en.wikipedia.org/wiki/Markov_property
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Notes:  The future term is the expected cumulative reward of state s.  (Think about asynchronous dynamic 

programming in path-finding!)  In a multiagent MDP, any (global) action a is really a vector of local 

actions (𝑎1, … , 𝑎𝑛), one by each of n agents.  In a way, it is variable elimination in the particular context 

of multiagent MDPs.   

2.3. Negotiation, auctions, and optimization 

A global problem is decomposed into subtasks, and distributed among a set of agents.  Each agent has 

different capabilities.  For each agent i, there is a function 𝑐𝑖 such that for any set of tasks T, 𝑐𝑖(𝑇) is the 

cost for the agent to achieve all the tasks in T.  The agents then enter into a negotiation process which 

improves on the assignment, and hopefully, culminates in an optimal assignment, that is, one with 

minimal cost.  Furthermore, the process can have a so-called anytime property; even if it is interrupted 

prior to achieving optimality, it can achieve significant improvements over the initial allocation. 

 Contract net protocol: contract host and bidders, auctions (Chapter 11) 

 Direct 1-to-N, or multiple 1-to-1 negotiations (Advanced topics, if time permits) 

At this point several questions may naturally occur to the reader. 

 We start with some global problem to be solved, but then speak about minimizing the total cost to the 

agents. What is the connection between the two? (Think about autonomy and emergent behavior!) 

 When exactly do agents make offers, and what is the precise method by which the contracts are 

decided on? (Think about utility, future and current rewards, reinforcement learning!) 

 Since we are in a cooperative setting, why does it matter whether agents “lose money" or not on a 

given contract?  (Think about incomplete and dynamic environmental properties and optimality!) 

Now, consider the assignment problem.  A (symmetric) assignment problem consists of: 

 A set N of n agents; 

 A set X of n objects; 

 A set 𝑀 ⊆ 𝑁 × 𝑋 of possible assignment pairs; and 

 A function 𝑣 ∶ 𝑀 →  ℝ giving the value of each assignment pair. 

Now consider that an assignment is a set of pairs 𝑆 ⊆ 𝑀 such that each agent 𝑖 ∈ 𝑁 and each object 𝑗 ∈ 𝑋 

is in at most one pair in S.  A feasible assignment S is optimal if it maximizes ∑ 𝑣(𝑖, 𝑗)
(𝑖,𝑗)∈𝑆

. 

Imagine that each of the objects in X has an associated price; the price vector is 𝑝 = (𝑝1, … , 𝑝𝑛), where 𝑝𝑗 

is the price of object j.   Given an assignment 𝑆 ⊆ 𝑀 and a price vector p, define the “utility” for an 

assignment j to agent i as 𝑢(𝑖, 𝑗) = 𝑣(𝑖, 𝑗) − 𝑝𝑗.  An assignment and a set of prices are in competitive 

equilibrium when each agent is assigned the object that maximizes his or her utility given the 

current prices. 

Definition 2.3.4. (Competitive Equilibrium).  A feasible assignment S and a price vector p are in 

competitive equilibrium when for every pairing (𝑖, 𝑗) ∈ 𝑆 it is the case that ∀𝑘 𝑢(𝑖, 𝑗) ≥ 𝑢(𝑖, 𝑘). 
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Naive Auction Algorithm 

𝑆 ← ∅   // Initialization 

forall  𝑗 ∈ 𝑋 do 

      𝑝𝑗 ← 0  // initialization 

end for 

repeat 

      // Bidding Step: 

      let 𝑖 ∈ 𝑁 be an unassigned agent 

      // Find an object 𝑗 ∈ 𝑋 that offers i maximal value at current prices: 

      𝑗 ∈ arg max
𝑘|(𝑖,𝑘)∈𝑀

(𝑣(𝑖, 𝑘) − 𝑝𝑘) 

      // Compute i’s bid increment for j: 

      𝑏𝑖 ← (𝑣(𝑖, 𝑗) − 𝑝𝑗) − max
𝑘|(𝑖,𝑘)∈𝑀;𝑘≠𝑗

(𝑣(𝑖, 𝑘) − 𝑝𝑘) 

     // which is the difference between the value to i of the best and second-best objects at 

     // current prices (note that i’s bid will be the current price plus this bid increment). 

     // Assignment Step: 

     add the pair (𝑖, 𝑗) to the assignment S 

     if there is another pair (𝑖′, 𝑗) then 

         remove it from the assignment S 

     end if 

     increase the price 𝑝𝑗 by the increment 𝑏𝑖 

until S is feasible         // that is, it contains an assignment for all  𝑖 ∈ 𝑁 

End Algorithm 

 

The problem, though, is that the above algorithm may not terminate. This can occur when more than one 

object offers maximal value for a given agent; in this case the agent’s bid increment will be zero. If these 

two items also happen to be the best items for another agent, they will enter into an infinite bidding war 

in which the price never rises.  

A terminating auction algorithm.  To remedy the flaw exposed previously, we must ensure that prices 

continue to increase when objects are contested by a group of agents. The extension is quite 

straightforward: we add a small amount to the bidding increment.  

𝑏𝑖 ← 𝑢(𝑖, 𝑗) − max
𝑘|(𝑖,𝑘)∈𝑀;𝑘≠𝑗

𝑢(𝑖, 𝑘) + 𝜖 

Because the prices must increase y at least 𝜖 at every round, the competitive equilibrium property is no 

longer preserved over the iteration. Agents may “overbid” on some objects! Thus:   

Definition 2.3.7 (𝜖 -Competitive Equilibrium).  A feasible assignment S and a price vector p are in 

competitive equilibrium when for every pairing (𝑖, 𝑗) ∈ 𝑆 it is the case that ∀𝑘 𝑢(𝑖, 𝑗) + 𝜖 ≥ 𝑢(𝑖, 𝑘). 

In other words, no agent can profit more than 𝜖 by bidding for an object other than his assigned one, given 

current prices. 

2.4.  Social Laws and Conventions 

Consider the task of a city transportation official who wishes to optimize traffic flow in the city. While he 

or she cannot redesign cars or create new roads, he or she can impose traffic rules. A traffic rule is a form 

of a social law: a restriction on the given strategies of the agents. A typical traffic rule prohibits people 

from driving on the left side of the road or through red lights. For a given agent, a social law presents a 

tradeoff; it suffers from loss of freedom, but can benefit from the fact that others lose some freedom. A 

good social law is designed to benefit all agents. 
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In general, agents are free to choose their own strategies, which they will do based on their guesses 

about the strategies of other agents. Sometimes the interests of the agents are at odds with each other, 

but sometimes they are not. In the extreme case the interests are perfectly aligned, and the only problem is 

that of coordination among the agents. Again, traffic presents the perfect example; agents are equally 

happy driving on the left or on the right, provided everyone does the same. 

A social law simply eliminates from a given game certain strategies for each of the agents, and thus 

induces a subgame. When the subgame consists of a single strategy for each agent, we call it a social 

convention.  

This leaves the question of how one might find such a good social law or social convention:  

 Democratic perspective: how conventions can emerge dynamically as a result of a learning process 

within the population (Note: Learning and Teaching and Voting!) 

 Autocratic perspective: imagine a social planner imposing a good social law (or even a single 

convention). The question is how such a benign dictator arrives at such a good social law.  (Note: 

Mechanism design!)  

In general the problem is hard; specifically, when formally defined, the general problem of finding a good 

social law (under an appropriate notion of “good”) can be shown to be NP-hard. 

 


