
 

1 
 

CSCE475/875 Multiagent Systems 

Handout 2.  Distributed Constraint Satisfaction 

August 22, 2017 

(Based on Russell, S. and P. Norvig (2010) (3rd. Edition) Artificial Intelligence: A Modern 

Approach, Upper Saddle River, NJ: Pearson Education.) 

1.         Introduction 

A Constraint Satisfaction Problem (CSP) is defined by a set of variables, domains for each of the 

variables, and the constraints on the values that the variables might take on simultaneously. 

The role of the CS algorithms is to assign values to the variables in a way that is consistent 

with all the constraints, or to determine that no such assignment exists. 

Formally speaking, a CSP consists of a finite set of variables 𝑋 = {𝑥1, … , 𝑥𝑛}, a domain 𝐷𝑖 for 

each variable 𝑥𝑖, and a set of constraints {𝐶1, … , 𝐶𝑚}.  Each constraint is a predicate on some 

subset of the variables and the predicate defines a relation that is a subset of the Cartesian 

product 𝐷𝑖,1 × … × 𝐷𝑖,𝑛. 

 

Example:  In the US state four-coloring problem, there are fifty variables, each variable 

representing a state.  Each variable has four possible values in its domain: 

{𝑟𝑒𝑑, 𝑔𝑟𝑒𝑒𝑛, 𝑏𝑙𝑢𝑒, 𝑦𝑒𝑙𝑙𝑜𝑤} .  A constraint could be Nogood{Nebraska = red, Kansas = red} or 

Nogood{Nebraska = blue, Kansas = blue}. Or, Not-equal(Nebraska, Kansas).  The CSP then 

finds a solution such that all variables are assigned each a value and all constraints are satisfied. 

 

In distributed CSP, each variable is owned by a different agent.  There are 2 types of algorithms: 

 Filtering:  Embody a least-commitment approach and attempt to rule out impossible variable 

values without losing any possible solutions 

 Heuristic Search: Embody a more adventurous spirit and select tentative variable values, 

backtracking when those choices prove unsuccessful 

 

2.   Domain-pruning algorithms 

 

Each node—or each agent—communicates with its neighbors—i.e., message passing—in order 

to eliminate values from their domains. 

 

Filtering Algorithms.     Each node communicates its domain to its neighbors, eliminates from 

its domain the values that are not consistent with the values received from the neighbors, and the 

process repeats.  Specifically, each node 𝑥𝑖   with domain  𝐷𝑖 repeatedly executes the procedure 

Revise(𝑥𝑖 . 𝑥𝑗) for each neighbor  𝑥𝑗.  For example, first write the constraints as forbidden value 

combinations, called nogoods.  Nogood{𝑥1, 𝑥2}  means that 𝑥1, 𝑥2 cannot take the same value.  

So, if agent 𝑋1 announces that 𝑥1 = 𝑟𝑒𝑑 then, agent 𝑋2 updates its domain based on that and 

Nogood{𝑥1 = 𝑟𝑒𝑑, 𝑥2 = 𝑟𝑒𝑑} and have to conclude that ~(𝑥2 = 𝑟𝑒𝑑) and thus removes it from 

its domain accordingly. 

 

 



 

2 
 

Procedure Revise(𝑥𝑖 . 𝑥𝑗) 

Forall 𝑣𝑖 ∈ 𝐷𝑖 do 

  If there is no value 𝑣𝑗 ∈ 𝐷𝑗  such that 𝑣𝑖 is consistent with 𝑣𝑗  then 

      Delete 𝑣𝑖 from 𝐷𝑖 

 

 Known also “arc consistency”, terminates when no further elimination takes place, or 

when one of the domains becomes EMPTY (in which case the problem has no solution) 

 May not terminate in some problems (e.g., 3-state 2-coloring problem) 

 If the process terminates with one value in each domain, that set of values constitutes a 

solution 

 In general, filtering is a very weak method, and at best, is used as a preprocessing step for 

more sophisticated methods 

 

A More Powerful Algorithm.  Hyper-resolution is both sound and complete.  Each agent 

repeatedly generates new constraints for its neighbors, notifies them of these new constraints, 

and prunes its own domain based on new constraints passed to it by its neighbors.  𝑁𝐺𝑖 = the set 

of all Nogoods of which agent i is aware and 𝑁𝐺𝑗
∗ = set of new Nogoods communicated from 

agent j to agent i.  The number of Nogoods can grow unmanageably large. 

 

Procedure ReviseHR(𝑁𝐺𝑖 , 𝑁𝐺𝑗
∗) 

Repeat 

     𝑁𝐺𝑖 ← 𝑁𝐺𝑖 ∪ 𝑁𝐺𝑗
∗ 

     Let 𝑁𝐺𝑖
∗ denote the set of new Nogoods that i can derive from 𝑁𝐺𝑖 and its domain using      

         hyper resolution 

     if 𝑁𝐺𝑖
∗ is nonempty then 

          𝑁𝐺𝑖 ← 𝑁𝐺𝑖 ∪ 𝑁𝐺𝑖
∗ 

          Send 𝑁𝐺𝑖
∗ to all neighbors of i 

          If ∅ ∈ 𝑁𝐺𝑖
∗  then 

               stop 

Until there is no change in agent i’s set of Nogoods 𝑁𝐺𝑖 

 

3. The Basic Backtracking Search for CSP 

The term backtracking search (A*!) is used for a DFS that chooses values for one variable at a 

time and backtracks when a variable has no legal values left to assign. 

 

 

 

 

 

 



 

3 
 

Function BACKTRACKING-SEARCH(csp) returns a solution, or failure 

   Return RECURSIVE-BACKTRACKING({},csp) 

End function 
 

Function RECURSIVE-BACKTRACKING(assignment,csp) returns a solution, or failure 

If assignment is complete then return assignment 

var  SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp) 

For each value in ORDER-DOMAIN-VALUES(var,assignment,csp) do 

    add {var = value} to assignment 

    result  RECURSIVE-BACKTRACKING(assignment,csp) 

    if result <> failure then return result 

    remove {var = value} from assignment 

End for loop 

Return failure 

End Function 

4.         But, Here Are the Questions … 

We need to find general-purpose methods that address the following questions: 

1.      Which variable should be assigned next, and in what order should its values be tried? 

(ORDER-DOMAIN-VALUES and SELECT-UNASSIGNED-VARIABLES) 

2.      What are the implications of the current variable assignments for the other unassigned 

variables? 

3.      When a path fails—that is, a state is reached in which a variable has no legal values—can the 

search avoid repeating this failure in subsequent paths? 

4.1.      Variable and Value Ordering 

By default, SELECT-UNASSIGNED-VARIABLE simply selects the next unassigned variable in 

the order given by the list VARIABLES[csp].  However, this static variable ordering seldom 

results in the most efficient search. 

The intuitive idea—choosing the variable with the fewest “legal” values—is called the 

minimum remaining values (MRV) heuristic, aka “most constrained variable” or “fail-first” 

heuristic.  If there is a variable X with zero legal values remaining, the MRV heuristic will select 

X and failure will be detected immediately—avoiding pointless searches through other variables 

which always will fail when X is finally selected. 

The MRV heuristic doesn’t help if every variable has the same number of values.  In this case 

the degree heuristic comes in handy.  It attempts to reduce the branching factor on future choices 

by selecting the variable that is involved in the largest number of constraints on other unassigned 

variables.  MRV is powerful, degree as a tie-breaker. 

Once a variable has been selected, choose the value—least-constraining-value heuristic.  It 

prefers the value that rules out the fewest choices for the neighboring variables in the constraint 

graph. 



 

4 
 

4.2.      Propagating Information through Constraints 

So far, our search algorithm considers the constraints on a variable only at the time that the 

variable is chosen by SELECT-UNASSIGNED-VARIABLE.  But by looking at some of the 

constraints earlier in the search, or even before the search has started, we can drastically reduce 

the search space. 

        Forward Checking.  Whenever a variable X is assigned, the forward checking process looks 

at each unassigned variable Y that is connected to X by a constraint and deletes from Y’s 

domain any value that is inconsistent with the value chosen for X.  The MRV is a natural 

partner for forward checking.  Forward checking can detect partial assignments that are 

inconsistent with the constraints of the problem, and the algorithm will therefore backtrack 

immediately. 

        Constraint Propagation.  Although forward checking detects many inconsistencies, it does 

not detect all of them because it does not look far enough. One option is to utilize arc-

consistency.  An arc is a directed arc in the constraint graph.  The arc between X and Y is 

consistent if, for every value x of X, there is some value y of Y that is consistent with x. 

Function AC-3(csp) returns the CSP, possibly with reduced domains 

    Inputs: csp, a binary CSP with variables {𝑋1, 𝑋2,…, 𝑋𝑛} 

    Local variables: queue, a queue of arcs, initially all the arcs in csp 

    While queue is not empty do 

         {𝑋𝑖, 𝑋𝑗}REMOVE-FIRST(queue) 

         If REMOVE-INCONSISTENT-VALUES(𝑋𝑖, 𝑋𝑗) then 

  For each 𝑋𝑘 in NEIGHBORS[𝑋𝑖] - {𝑋𝑗}do 

         Add (𝑋𝑘, 𝑋𝑖) to queue 

  End for 

     End while 

End function 
 

Function REMOVE-INCONSISTENT-VALUES(𝑋𝑖, 𝑋𝑗) returns true iff remove a value 

      removed  false 

      For each x in DOMAIN[𝑋𝑖] do 

            If no value y in DOMAIN[𝑋𝑗] allows (x,y) to satisfy the constraint btw. 𝑋𝑖 & 𝑋𝑗 

                  Then delete x from DOMAIN[𝑋𝑗]; removed  true 

            End for 

      Return removed 

End function 

After applying AC-3, either every arc is arc-consistent, or some variable has an empty domain, 

indicating that the CSP cannot be made arc-consistent (and thus the CSP cannot be solved). 

 



 

5 
 

5.         Local Search for Constraint Satisfaction Problems 

The min conflicts algorithm is a search algorithm to solve constraint satisfaction problems 

(CSP problems). 

It assigns random values to all the variables of a CSP. Then it selects randomly a variable, whose 

value conflicts with any constraint of the CSP. Then it assigns to this variable the value with the 

minimum conflicts. If there are more than one minimum, it chooses one among them randomly. 

After that, a new iteration starts again until a solution is found or a pre-selected maximum 

number of iterations is reached. 

Because a CSP can be interpreted as a local search problem when all the variables have assigned 

a value (complete states), the min conflicts algorithm can be seen as a heuristic that chooses the 

state with the minimum number of conflicts. 

Function MIN-CONFLICTS(csp,max_steps) returns a solution or failure 

    inputs: csp, a constraint satisfaction problem 

                max_steps, the number of steps allowed before giving up 

    current  an initial assignment for csp 

    For i = 1 to max_steps do 

        If current is a solution of csp then return current 

        var  a randomly chosen, conflicted variable from VARIABLES[csp] 

        value  the value v for var that minimizes CONFLICTS(var,v,current,csp) 

        set var = value in current 

    Return failure 

End Function 


