
Learning:	Reinforcement	
Learning

(Based	on	Shoham and	Leyton-Brown	(2008).	Multiagent Systems:	
Algorithmic,	Game-Theoretic,	and	Logical	Foundations,	Cambridge.)

Leen-Kiat Soh



How	do	we	learn?
When	goal	is	too	far	away	or	path	is	
unclear,	how	do	we	learn	to	stay	on	
target	or	learn	to	stay	on	the	correct	
path?

Think	about	us.	Think	about	equipping	a	robot/rover	with	
the	reasoning	that	will	decide	to	do	the	right	things	
towards	its	“goal”.

Especially	in	a	complex	environment	with	incomplete	
information,	uncertainty,	dynamic	properties,	etc.



How	do	we	learn?
When	goal	is	too	far	away	or	path	is	
unclear,	how	do	we	learn	to	identify	
and	stay	on	the	best	target	or	learn	
to	identify	and	stay	on	the	best	path?

Think	about	us.	Think	about	equipping	a	robot/rover	with	
the	reasoning	that	will	decide	to	do	the	right	things	
towards	its	“goal”.

Especially	in	a	complex	environment	with	incomplete	
information,	uncertainty,	dynamic	properties,	etc.



Introduction

• Reinforcement	learning	does	not explicitly	model	the	opponent’s	
strategy	
• The	specific	family	of	techniques	we	look	at	are	derived	from	the	Q-
learning	algorithm	for	learning	in	unknown	(single-agent)	MDPs

Q-learning:	most	popular	and	
fundamental	in	agent-related	
learning,	real-time,	online

Single-agent	MDPs:		An	agent	
does	not	care	about	what	others	
are	doing,	or	their	probabilities	
of	their	mixed	strategies,	or	their	
types/models	…

How	can	an	agent	afford	to	not	model	how	other	
agents	do	things	if	they	are	in	the	same	system	or	
environment?		(Key:	in	the	“same”	system	or	
environment)



Markov	Decision	Process	(MDP)

• A	Markov	Decision	Process	(MDP)	is	a	discrete	time	stochastic control	
process
• At	each	time	step,	given	state	s,	the	decision	maker	chooses	action	a that	is	
available	in	state	s
• With	a	state	transition	function, 𝑝 𝑠, 𝑎, 𝑠% , the	process	probabilistically
transitions	into	a	new	state	𝑠′
• This	transition	gives	a	reward for	that	state-action	decision:	𝑟 𝑠, 𝑎, 𝑠′ .			

• Given	s and	a,	it	is	conditionally	independent of	all	previous	states	
and	actions
• i.e.,	the	state	transitions	of	an	MDP	meet	the	Markov	property



MDP	|	Action	Selection	via	Value	Iteration

• Goal:		To	maximize	the	total	reward	over	time
• Strategy:		By	assigning	the	best	possible	action	to	each	state		
• Method:		Value	iteration	is	the	most	popular	algorithm,	to	find	control	policies
• It	recursively	calculates	the	utility	of	each	action	relative	to	a	reward	function		

𝑄)∗ 𝑠, 𝑎 = 𝑟 𝑠, 𝑎, 𝑠′ + 𝛽.𝑝(𝑠, 𝑎, 𝑠′)
�

2%

𝑉)∗ 𝑠′

• Then	it	updates:
𝑉)∗ 𝑠 = 	max

8
𝑄)∗(𝑠, 𝑎)

reward Discount	factor

Value	of	the	
best	policy	𝜋∗

for	s

Q-value	(utility)	of	the	best	policy	
for	the	state-action	pair	of	 𝑠, 𝑎



MDP	|	Action	Selection	via	Value	Iteration	2

• The	algorithm
𝑄:;< 𝑠, 𝑎 ← 𝑟 𝑠, 𝑎, 𝑠′ + 𝛽.𝑝(𝑠, 𝑎, 𝑠′)

�

2̂

𝑉: 𝑠′

𝑉: 𝑠 ← max
8
𝑄:(𝑠, 𝑎)

What	if	we	don’t	know	the	transition	probabilities?

Notes:		The	future	term	is	
the	expected	cumulative	

reward of	state	s.	• In	a	multiagent MDP,	any	(global)	action	𝑎 is	really	a	vector	
of	local	actions (𝑎<,… , 𝑎@),	one	by	each	of	n agents.	



Introduction	2

• Considering	(single-agent)	MDPs	again:	Value	iteration	assumes	that	the	
MDP	is	known
• What	if	we	do	not	know	the	rewards	or	transition	probabilities	of	the	
MDP?
• It	turns	out	that,	if	we	always	know	what	state	we	are	in	and	the	reward	
received	in	each	iteration,	we	can	still	converge	to	the	correct	Q-values	
using	Q-learning
• Intuition:		We	approximate	the	unknown	transition	probability	by	using	the	
actual	distribution	of	states	reached	in	the	game	itself

Do	humans	do	this?



Q-Learning

When	is	convergence?

Carry	out	actions	as	
it	learns	…

Value	iteration



Q-Learning	2

Implications	with	the	
future	term?		Path-finding?

Updated	Q Current	RewardCurrent	Q
Value	of	the	
resulting	state

How	good	is	the	next	
state?		What	have	I	
gotten	myself	into?
The	future	term,	the	
look	ahead	term

Learning	Rate Discount	Factor

High	learning	rate	vs.	
low	learning	rate:	

Implications?
Learning	rate:	why	is	it	
dependent	on	time?

Why	discount	factor?	
Uncertainty?



Is	Q-Learning	intuitive	to	you?
We	learn	the	best	target	or	best	path	
not haphazardly
We	use	past experience,	are	adaptive	to	
current situations	(e.g.,	rewards),	look	
ahead	to	the	promise	of	future



Q-Learning	3

V	=	sort	of	intrinsic	
value	of	a	state,	

regardless	of	which	
action	is	carried	out

Updated	value	of	
a	state

Maximum	Q-
value	that	an	
agent	can	get	
from	acting	on	

the	state

• Knowledge	accumulated	in	Qs
• is	then	used	to	update	Vs
• which	is	then	used	to	compute	Qs	in	the	next	time	step
• This	iterates

Q(s,a)	=	inform	us	
which	a to	select	

given s



Q-Learning	and	Optimality

Theorem	7.4.2	Q-learning	guarantees	that	the	Q	and	V	values	converge	
to	those	of	the	optimal	policy,	provided	that	each	state-action	pair	is	
sampled	an	infinite	number	of	times,	and	that	the	time-dependent	
learning rate	𝛼:	obeys	0 ≤ 𝛼: < 1, ∑ 𝛼:G

H = ∞	and	∑ 𝛼:JG
H < ∞.

• Infinite	number	of	times	to	be	complete
• 𝛼: is	smaller	and	smaller	as	t progresses
• Experienced	à refined	à no	need	to	learn	that	quickly

Think	about	us.		If	something	is	
working	well,	we	only	tweak	it	
to	refine	it,	and	don’t	change	it	
much	…

… unless	things	change	in	the	
current	situations	(e.g.,	rewards)



Q-Learning	Issues

• How	to	design	the	order	in	which	the	algorithm	selects	actions?
• What	is	the	rate	of	convergence?
• It	gives	no assurance	regarding	the	accumulation	of	optimal	future	
discounted	rewards	by	the	agent
• It	could	well	be,	depending	on	the	discount	factor,	that	by	the	time	the	agent	
converges	to	the	optimal	policy	it	has	paid	too	high	a	cost,	which	cannot	be	
recouped	by	exploiting	the	policy	going	forward
• This	is	not a	concern	if	the	learning	takes	place	during	training	sessions,	and	only
when	learning	has	converged	sufficiently	is	the	agent	unleashed	on	the	world
• e.g.,	think	of	a	fighter	pilot	being	trained	on	a	simulator	before	going	into	combat	

• But	in	general	Q-learning	should	be	thought	of	as	guaranteeing	good	
learning,	but	neither	quick	learning	nor	high	future	discounted	rewards



Revisiting	Q-Learning

How	should	we	choose	actions?		
When	do	we	reap	the	benefits	of	
what	we	have	learned?		

This	does	not	tell	us	how	
to	select	actions?

Should	we	explore	and	learn	
until	convergence?		Would	that	
be	too	late?		

What’s	the	danger	of	reaping	the	
benefits	too	early?		(Think:	
suboptimal solutions)



Exploration	vs.	Exploitation

• When	should	one	continue	to	explore	(e.g.,	trying	out	all	possible	state-
action	combinations)?
• Exploring	for	too	long	may	not	leave	enough	time	for	agent	to	recoup	lost	
rewards—that	were	sacrificed	when	agent	chooses	less	rewarding	actions	during	
exploration

• When	should	one	start	exploiting	(e.g.,	choosing	actions	that	give	
highest	Q(s,a))?
• Exploiting	too	early	may	lead	to	sub-optimal	solutions

• And	agent	may	never	find	the	the	optimal	solutions

• One	option:		exploring	offline—i.e.,	training;	obtaining	all	Q(s,a)	values;	
finding	the	best	paths;	exploiting	when	deployed	(with	learning	turned	
off)

Key	tradeoff	agents	have	to	
reason	with	when	practicing	

reinforcement	learning



Connection	to	MAS?

Or,	we	learn	offline	(training	phase),	simulating	and	going	through	thousands	
and	thousands	of	runs	to	obtain	convergence	on	all	Q(s,a)	values,	and	then	

deploy	(testing	phase)	the	agents	with	their	“learning”	mechanism	turned	off,	
allowing	them	to	select	actions	with	the	best	Q	given	a	state

In	a	complex	environment,	agent	autonomy	in	reasoning	is	
necessary;	we	design	them	to	have	that	reasoning	power	so	

that	they	can	handle	the	“unforeseen”,	especially	when	there	
are	other	agents	present	in	the	environment

Silly	Question:	Suppose	that	in	order	to	reduce	costs	(from	manufacturing	and	installing	road	signs),	your	
state	no	longer	puts	up	road	signs	2,	1.5,	1,	0.5,	or	0.25	miles	away	from	an	exit. Instead,	your	state	only	

puts	up	one	road	sign	indicating	the	exit	just	right	(0.25	miles)	before	the	exit. What	would	happen? What	
would	you	learn	in	order	to	deal	with	this	new	change	as	a	driver?



Belief-Based	Reinforcement	Learning

• Explicit	modeling	of	the	other	agent(s)
• The	agent	updates	the	value	of	the	game	using	the	probability it	assigns	
to	the	opponent(s)	playing	each	action	profile
• The	belief	function	is	updated	after	each	play



Other	Learning	Behaviors

• No-Regret	Learning.	A	learning	rule	is	said	to	exhibit	no	regret	if	it	
guarantees	that	with	high	probability	the	agent	will	experience	no	
positive	regret:	no	worse-off	than	the	agent	could	have	obtained	by	
playing	any	one	of	its	pure	strategies	throughout
• Risk	averse

• Targeted	Learning.		An	alternative	sense	of	“good,”	which	retains	the	
requirement	of	best	response,	but	limits	it	to	a	particular	class	of	
opponents
• Intuition:	one	has	some	sense	of	the	agents	in	the	environment
• E.g.,	a	chess	player	has	studied	previous	plays	of	his	opponent,	and	so	on.	And	so	
it	makes	sense	to	try	to	optimize	against	this	set	of	opponents,	rather	than	
against	completely	unknown	opponents



Other	Learning	Behaviors	2

• Difference	between	No-Regret	Learning	and	Targeted	Learning
• Consider	learning	in	a	repeated	Prisoner’s	Dilemma	game
• Suppose	that	the	target	class	consists	of	all	opponents	whose	strategies	rely	on	
the	past	iteration	(e.g.,	Tit-for-Tat)
• Successful	targeted	learning	will	result	in	constant	cooperation
• while	no-regret	learning	prescribes	constant	defection


