Distributed Optimization

(Based on Shoham and Leyton-Brown (2008). Multiagent Systems:
Algorithmic, Game-Theoretic, and Logical Foundations, Cambridge.)

Leen-Kiat Soh



Introduction

How can agents, in a distributed fashion,

optimize a global objective function?

e Distributed: coordination, communication
* Global: local, autonomy vs. coherence, resolution
* Optimal: complexity, how to compute optimality
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Why is this difficult?



Introduction | Four Families of Approaches

* Distributed dynamic programming
* as applied to path-planning problems

 Distributed solutions to Markov Decision Problems (MDPs)
e Optimization algorithms with an economic flavor

 as applied to matching and scheduling problems
* auctions and contract nets

e Coordination via social laws and conventions
* Includes voting



Distributed Dynamic Programming | ADP

* Asynchronous Dynamic Programming

* Underlying strategy: principle of optimality
* |If node x lies on a shortest path from s to t, then the portion of the path
from s to x (or, respectively, from x to t) must also be the shortest paths

between s and x (resp., x and t).
* This allows an incremental divide-and-conquer procedure, also known as

dynamic programming.
* Notes: It is complete, optimal, but not scalable.



Distributed Dynamic Programming | ADP 2

* The shortest distance from any node i to the goal g as h*(i).
* The cost for the link between nodes i and jis w(i, j).

* The shortest distance from i to the goal g via a node j neighboring i
IS:
. frG,j)=w(,j)+h*@(G)
* h*(i) = min f*(i,j) (by the principle of optimality)
J
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Optimal at every step!



Distributed Dynamic Programming | ADP 3

procedure ASYNCHDP (node 7)

if 2 is a goal node then

h(z) « 0

else

| initialize h(¢) arbitrarily (e.g., to oo or 0)

repeat
forall neighbors 7 do

L F() < w(i,5) + h(j)
| h(i)  min; £(j)




Distributed Dynamic Programming | LRTA*

* Learning Real-Time A*

* Here, the agent starts at a given node, performs an operation similar
to that of asynchronous dynamic programming, and then moves to
the neighboring node with the shortest estimated distance to the

goal, and repeats
* Interleave planning and execution

v !

\ ’
~
Why execute while still planning?



Distributed Dynamic Programming | LRTA* 2

procedure LRTA*
14— S
while 7 is not a goal node do
foreach neighbor 5 do

L f() < w(i,j) +h(j)
i/ «— arg min; f(j)
h(i) < max(h(), f(¢'))

3 — 1

// the start node

// breaking ties at random

e

Notes: h must be admissible: 4 never

overestimates the distance to the goal, i.e...
h(i) < h*(i). (WHY?)

e Complete. Optimal given enough trials.

e Multiple agents? (1) agents have different
ways of breaking ties, and (2) all have access
to a shared /-value table



Markov Decision Process (MDP)

* A Markov Decision Process (MDP) is a discrete time stochastic control
process

* At each time step, given state s, the decision maker chooses action a that is
available in state s

« With a state transition function, p(s, a, s"), the process probabilistically
transitions into a new state s’

* This transition gives a reward for that state-action decision: (s, a, s').

e Given s and aq, it is conditionally independent of all previous states
and actions

* i.e., the state transitions of an MDP meet the Markov property \Qz
~

Why is the Markov property desired?



MDP | Action Selection via Value Ilteration

* Goal: To maximize the total reward over time

 Strategy: By assigning the best possible action to each state

 Method: Value iteration is the most popular algorithm, to find control policies
* |t recursively calculates the utility of each action relative to a reward function

Q" (s,a)=r(s,a,sV+B ) p(s,as)VT(s)

~value (utility) of the best poli // K S!
Q-value (utility) (? e . est policy best policy 7r*
for the state-action pair of (s, a) :
reward Discount factor fors

Value of the

* Then it updates:

VT (s) = max Q™ (s, a)



MDP | Action Selection via Value Iteration 2

* The algorithm
Qi11(s,a) «r(s,a,s)+ B z p(s,a,s) V.(s")
S

Vi(s) = maxQu(s, @)\

Notes: The future term is

the expected cumulative
reward of state s.

* |n a multiagent MDP, any (global) action a is really a vector
of local actions (a4, ..., ay), one by each of n agents.

\\ |, v o ’ Think about asynchronous
~ dynamic programming in
Q-learning, reinforcement learning! path-finding




Optimization with Economic Flavor
Negotiations & Auctions

* From Contract Nets to Auction-Like Optimization

* A global problem is decomposed into subtasks, and distributed among
agents; and each agent has different capabilities

* For each agent j, there is a function c; such that for any set of tasks T,
¢;(T) is the cost for the agent to achieve all the tasks in T

* The agents then enter into a negotiation process which improves on the
assignment, and hopefully, culminates in an optimal assignment, that is,

one with minimal cost
Furthermore, the process can have a so-called « ’
anytime property; even if it is interrupted prior to ~
achieving optimality, it can achieve significant
improvements over the initial allocation



Optimization with Economic Flavor 2

Negotiations & Auctions

* Contract net protocol: contract host and bidders, auctions (Chapter
11)

* Direct 1-to-N, or multiple 1-to-1 negotiations (Advanced topics, if
time permits)



Optimization with Economic Flavor 3
WHY?

* We start with some global problem to be solved, but then speak
about minimizing the total cost to the agents. What is the connection
between the two?

* Think about autonomy and emergent behavior!

* When exactly do agents make offers, and what is the precise method
by which the contracts are decided on?

* Think about utility, future and current rewards, reinforcement learning!

e Since we are in a cooperative setting, why does it matter whether
agents “lose money" or not on a given contract?

* Think about incomplete and dynamic environmental properties and

optimality! \ ’
~
Think about why we need an agent-based, distributed solution in the first place!



Optimization with Economic Flavor
Assignment Problem

* A (symmetric) assignment problem consists of
* Aset N of n agents
* A set X of nobjects
e Aset M € NXX of possible assignment pairs
* Afunctionv : M — R giving the value of each assignment pair

* A feasible assignment § is optimal if it maximizes Z(i j)eSv(i’j)



Optimization with Economic Flavor ot
ASSlgnment PrOblem 2 Implication of this equilibrium? @

What is an equilibrium?
* Imagine that each of the objects in X has an associated price; the
price vector is p = (p1, ..., Pn), Where p; is the price of object j.
e Given an assignment S € M and a price vector p, define the “utility”
for an assignment jto agentias u(i,j) = v(i,j) — p;

* An assignment and a set of prices are in competitive equilibrium when
each agent is assigned the object that maximizes his or her utility
given the current prices

Definition 2.3.4. (Competitive Equilibrium). A feasible assignment S and a price

vector p are in competitive equilibrium when for every pairing (i,j) € S it is the
case that Vk u(i,j) = u(i, k).
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Naive Auction Algorithm \ ’ \ « . . .

//Ialni‘t,izliz:t(i:orll(:m - Potential { ~* :,::r\(lement ~ Opt|m|zat|0n Wlth

S — 0 problem? this wav? .

ot € X do v; Economic Flavor
bj . .

repeat Assignment Problem and Auction
// Bidding Step:

let ¢ € N be an unassigned agent

// Find an object j € X that offers ¢ maximal value at current prices:

J € arg maxk|(z',k)eM(U(’ia k) — px)

// Compute ¢’s bid increment for j7:

b; — (v(i,5) —p;) — MaXE|(i,k) € M;k+#j (v(i, k) — p)

// which is the difference between the value to ¢ of the best and second-best objects at
current prices (note that 7’s bid will be the current price plus this bid increment).

/I Assignment Step:

add the pair (7, j) to the assignment S

if there is another pair (i', j) then
| remove it from the assignment S

increase the price p; by the increment b,

until S is feasible // that is, it contains an assignment for all 4 € N

* What if there are two or more objects
offering maximal value for a given
agent? The agent’s bid increment will
be zero

* |[f these two items also happen to
be the best items for another
agent, they will enter into an
infinite bidding war in which the
price never rises

* To remedy, add a small value:

b; < u(i,j) — k|(i,i£1)l§1\>/1(;k¢j u(i,k) + €




Social Laws and Conventions

*Would you drive if there weren’t any
traffic rules? @
Why or why not?

2003




Social Laws and Conventions 2

* Consider the task of a city transportation official who wishes to
optimize traffic flow in the city. While he or she cannot redesign cars
or create new roads, he or she can impose traffic rules

* A traffic rule is a form of a social law: a restriction on the given
strategies of the agents

* A typical traffic rule prohibits people from driving on the left side of the road
or through red lights

* For a given agent, a social law presents a tradeoff; it suffers from
loss of freedom (think: autonomy!), but can benefit from the fact
that others lose some freedom

* A good social law is designed to benefit all agents



Social Laws and Conventions 3

* In general, agents are free to choose their own strategies, which they
will do based on their guesses about the strategies of other agents

* Sometimes the interests of the agents are at odds with each other, but
sometimes they are not

* If the interests are perfectly alighed, then the only problem is coordination
among the agents

* Traffic presents the perfect example; agents are equally happy driving on the left or on
the right, provided everyone does the same
* A social law simply eliminates from a given game certain strategies for
each of the agents, and thus induces a subgame
'

* When the subgame consists of a single strategy for each agent, we )~
call it a social convention Can you think of any social convention? @

Say, in this classroom?



Social Laws and Conventions 4

* How might one find a good social law or social convention?

* Democratic perspective
 How conventions can emerge dynamically as a result of a learning process

within the population AL
* Note: Learning and Teaching and Voting! Implications for MAS [ «
. . designers?
e Autocratic perspective

* Imagine a social planner imposing a good social law (or even a single
convention)

* The question is how such a benign dictator arrives at such a good social law
* Note: Mechanism design!

* The general problem of finding a good social law (under an
appropriate notion of “good”) can be shown to be NP-hard



v !
Distributed: coordination, communication

CO n n ECti O n to M AS ? Global: local, autonomy vs. coherence, resolution

Optimal: complexity, how to compute optimality

’

Stupid question: What if the “pedestrian crossing” button resets ﬂ?
its timing after every time a person presses it? /.E.

Stupid question: What if the elevator always goes to the nearest ﬂ?
floor on-demand? /.E.



