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Intro
● The CLRI Framework: used to model and predict the behavior of multiagent 

systems with learning agents
● CLRI: 

○ C - change rate
○ L - learning rate
○ R - retention rate
○ I - Impact

● Purpose: a way to model/predict the behavior of a MAS beyond observation-
based experiment results



Framework for modeling MASs
● N – the set of all agents, where i is one particular agent
● W – the set of possible states of the world, where w is one particular state
● Ai – the set of all actions that agent i can take
● A decision function for agent i – a mapping which tells us which action agent i 

will take in each state
● A target function for agent i – a mapping which tells us what action agent i 

should take. Takes into account the actions other agents will take. 
● An error probability function for agent i at time t – the probability that agent i 

will take an incorrect action (i.e., the decision function is not the same result 
as the target function for an agent i at time t in state w)

● Note: an action taken by an agent that is not the action indicated by the target 
function is “incorrect” – there is no continuum of “correctness”



Framework for modeling MASs (continued)
● Change rate – the probability that the agent will change at least one of its 

incorrect mappings of a decision function at a given state w (i.e., the likelihood 
the agent will change an incorrect mapping to something else, but not 
necessarily into the correct mapping)

● C = .5 = 50% chance that an incorrect mapping of a decision function will be 
modified

● Learning rate – the probability that the agent changes an incorrect mapping to 
the correct action at at a given state w (note: different than learning rate in Q-
learning; we care about whether the agent correctly changes an incorrect 
mapping) 

● L = .5 = 50% chance that an incorrect mapping of a decision function will be 
changed to the correct mapping (i.e., to match the target function mapping)



Framework for modeling MASs (continued)
● Retention rate –  probability that a correct mapping will stay correct in the next 

iteration 
● R = 0 = all correct mapping will be made incorrect. R = 1 = all correct mapping 

will persist. 
● Impact – given agent i and agent j, the impact that i’s changes in its decision 

function have on j’s target function 
● The greater an agent i’s Impact on agent j, the greater the likelihood if i 

changes its decision function that it will change j’s target function
● Volatility - probability the target for learning will change from world state to 

world state
● V = 1 = an agent’s target function will always change between iterations. V = 

0 = an agent’s target function will always remain the same.



Volatility and Impact
● Intuitively:

○ Volatility: odds that how an agent should react (the correct w → a at time 
t, a.k.a. the target function) will change

○ Impact: how much influence one agent’s decision has on how another 
agent should act: if agent i has a high impact on agent j, and agent i’s 
decision for w → a changes, there’s a good change how agent j should 
act w → a will also change because of it



Calculating the Agent’s Error
● 2 conditions that determine the new error - the result of volatility and whether 

or not the current decision function matches the target
● This results in 4 different cases to consider

○ a  = an agent’s target function remains the same between iterations
○ b = an agent’s decision function is the same as its target function
○ (1) a & b (2) a & !b (3) !a & b (4) !a & !b

● (1) agent’s target function does not change, decision function is a correct 
mapping w → a: agent has a probability of changing this mapping with 
probability 1 - r (i.e., the odds that it will change a correct mapping)

● (2) agent’s target function does not change, but decision function is incorrect 
mapping w → a: agent has a probability of changing this mapping to a correct 
mapping of 1 - l (i.e., the odds that the agent will be incorrect in the next 
iteration -- odds that agent does not change the incorrect mapping)



Calculating the Agent’s Error (continued)
● (3) agent’s mapping of w → a is correct, but the target function changes: 

probability that a correct mapping does change 1 - r (if r = 1, 0% chance it will 
change, agent will definitely be wrong in the next iteration) 

● (4) agent’s mapping of w → a is incorrect, and the target function also 
changes

○ 1 - agent does not change its mapping (1 - c)
○ 2 - agent changes its mapping, and changes it to the correct mapping (l)
○ 3 - agent changes its mapping, does not change it to the correct mapping (c - l)



Equation and Simplification of a Further nature



Equation and Simplification of a Further nature
● 2 assumptions can be made to simplify the equation above

○ that actions chosen when either mapping changes are chosen from a flat 
probability distribution of actions

○ the probability that the target changes is irrelevant to the probability that 
an agent’s mapping is correct (this was not the case in the matching 
game)



An Example
● Example: l = .2; c = 1; r = 1; 20 actions; values identical for i and j
● As impact increases, the emergent error does as well
● Abrupt change from final errors of 0 and non-zero - this aspect is a result of 

systems that converge or diverge
● Graph is asymmetric!
● Agent j’s error makes it harder for i to come to a                                     

smaller emergent error



An Example
● If the impact of i is high, then when i’s error is large, j’s will increase and j will 

start changing its decision function
● If the impact of i is low, then regardless of j’s impact, both agents will probably 

settle to a low emergent error
● Goal is to hit outer region, where error is 0



An Application
● Market based MAS - 3 agents: 1 buyer, 2 sellers
● Reinforcement: profit earned each round; 20 possible bid values
● Vary j’s alpha value (the weight the algorithm assigns to the latest result)
● i’s error rate shown below
● slight delay before decrease - due to high exploration rate



Applications of the Theory
● A comparison of CLRI framework application to experimental results from the 

matching game explored by Claus and Boutilier
● CLRI cannot account for initial exploration yet again



Applications of the Theory
● Shoham and Tennenholtz investigate an experiment similar to the matching 

game known as the coordination game; all agents use their custom algorithm: 
HCR (highest cumulative reward)

● at every t, each agent takes an action, the agents are paired up randomly with 
the goal of taking the same action

● the agents take their action after a                                                              
delay, this delay is varied in                                                                             
the experiment



 Bounding the Learning rate with Sample Complexity
● Previous examples assume l, c, r can be found based on an agent’s learning 

algorithm
● What if the algorithm is highly complex or unknown? 
● Probably Approximately Correct (PAC) theory: loose upper bound on number 

of examples an agent must observe before arriving at a PAC hypothesis
● Determine l and then find c and r 
● With assumption that r = 1 and v = 0
● Simply put: can find the lower bound of an agent’s learning rate (l), and can 

be used to determine its c and r 



Conclusions
● The CLRI framework can get fairly limited as the constraints imposed on the 

agents are critical for its function; additionally, there is no room for non-binary 
degrees of success, an agent is correct or incorrect

● The world states the framework must act upon must be chosen from a 
uniform probability distribution and must be episodic. There isn’t much room 
for chaotic, shifting environments

● The description given by the CLRI is very high-level behavior, meaning it 
doesn’t work well when describing specific systems, but works well in 
predicting agents emergent behaviors


