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Intro

e The CLRI Framework: used to model and predict the behavior of multiagent
systems with learning agents
o CLRI:

o C-change rate
o L -learning rate
o R -retention rate
o | -Impact
e Purpose: a way to model/predict the behavior of a MAS beyond observation-
based experiment results



Framework for modeling MASs

N — the set of all agents, where i is one particular agent

W — the set of possible states of the world, where w is one particular state
A,— the set of all actions that agent j can take

A decision function for agent i — a mapping which tells us which action agent i
will take in each state

A target function for agent / — a mapping which tells us what action agent i
should take. Takes into account the actions other agents will take.

An error probability function for agent i at time t — the probability that agent i
will take an incorrect action (i.e., the decision function is not the same result
as the target function for an agent / at time t in state w)

Note: an action taken by an agent that is not the action indicated by the target
function is “incorrect” — there is no continuum of “correctness”



Framework for modeling MASs (continued)

Change rate — the probability that the agent will change at least one of its
incorrect mappings of a decision function at a given state w (i.e., the likelihood
the agent will change an incorrect mapping to something else, but not
necessarily into the correct mapping)

C = .5 =50% chance that an incorrect mapping of a decision function will be
modified

Learning rate — the probability that the agent changes an incorrect mapping to
the correct action at at a given state w (note: different than learning rate in Q-
learning; we care about whether the agent correctly changes an incorrect
mapping)

L =.5 =50% chance that an incorrect mapping of a decision function will be
changed to the correct mapping (i.e., to match the target function mapping)



Framework for modeling MASs (continued)

e Retention rate — probability that a correct mapping will stay correct in the next
iteration

e R =0 = all correct mapping will be made incorrect. R = 1 = all correct mapping
will persist.

e |mpact — given agent i and agent j, the impact that /’s changes in its decision
function have on j's target function

e The greater an agent /s Impact on agent j, the greater the likelihood if
changes its decision function that it will change j's target function

e \olatility - probability the target for learning will change from world state to
world state

e V =1 =an agent’s target function will always change between iterations. V =
0 = an agent’s target function will always remain the same.



Volatility and Impact

e Intuitively:
o Volatility: odds that how an agent should react (the correct w — a at time
t, a.k.a. the target function) will change
o Impact: how much influence one agent’s decision has on how another
agent should act: if agent j has a high impact on agent j, and agent i's
decision for w — a changes, there’s a good change how agent j should
act w — a will also change because of it



Calculating the Agent’s Error

2 conditions that determine the new error - the result of volatility and whether
or not the current decision function matches the target

This results in 4 different cases to consider

o a = an agent’s target function remains the same between iterations
o b =an agent’s decision function is the same as its target function
o (1)a&b((2)a&b@3)la&b@4)la&!b

(1) agent’s target function does not change, decision function is a correct
mapping w — a: agent has a probability of changing this mapping with
probability 1 - r (i.e., the odds that it will change a correct mapping)

(2) agent’s target function does not change, but decision function is incorrect
mapping w — a: agent has a probability of changing this mapping to a correct
mapping of 1 - / (i.e., the odds that the agent will be incorrect in the next
iteration -- odds that agent does not change the incorrect mapping)



Calculating the Agent’s Error (continued)

e (3) agent’s mapping of w — a is correct, but the target function changes:
probability that a correct mapping does change 1 - r (if r =1, 0% chance it will
change, agent will definitely be wrong in the next iteration)

e (4) agent’'s mapping of w — a is incorrect, and the target function also

changes
o 1 -agent does not change its mapping (1 - ¢)
o 2 -agent changes its mapping, and changes it to the correct mapping (/)
o 3 -agent changes its mapping, does not change it to the correct mapping (c - /)



Equation and Simplification of a Further nature
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Equation and Simplification of a Further nature

e 2 assumptions can be made to simplify the equation above
o that actions chosen when either mapping changes are chosen from a flat

probability distribution of actions

o the probability that the target changes is irrelevant to the probability that
an agent’s mapping is correct (this was not the case in the matching

game)
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An Example

e Example:l1=.2;c=1;r=1; 20 actions; values identical for i and |

e As impact increases, the emergent error does as well

e Abrupt change from final errors of 0 and non-zero - this aspect is a result of
systems that converge or diverge

e Graph is asymmetric!

e Agentj's error makes it harder for i to come to a
smaller emergent error
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An Example

e [f the impact of i is high, then when i's error is large, j's will increase and j will
start changing its decision function

e Ifthe impact of i is low, then regardless of j's impact, both agents will probably
settle to a low emergent error

e Goal is to hit outer region, where erroris 0
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Figure 8: Vector plot for e(d}) and e(d%), where |4;| = |4;] =20, I; = I; = .2, 0
ri=rj=1,¢=.5,¢c; =1, L; = .1, I;; = .3. It shows the error progression for

a pair agents i and j. For each pair of errors (e(d!), e(6%)), the arrows indicate

the expected (e(éf"’l),e(é;-"'l)).




An Application

Market based MAS - 3 agents: 1 buyer, 2 sellers

Reinforcement: profit earned each round; 20 possible bid values
Vary j’s alpha value (the weight the algorithm assigns to the latest result)
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I's error rate shown below
slight delay before decrease - due to high exploration rate
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Applications of the Theory

A comparison of CLRI framework application to experimental results from the
matching game explored by Claus and Boutilier
CLRI cannot account for initial exploration yet again
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Applications of the Theory

Shoham and Tennenholtz investigate an experiment similar to the matching
game known as the coordination game; all agents use their custom algorithm:
HCR (highest cumulative reward)

at every t, each agent takes an action, the agents are paired up randomly with
the goal of taking the same action

the agents take their action after a
delay, this delay is varied in ol
the experiment

final error

(a) Original Experiment (b) Theory and Experiment



Bounding the Learning rate with Sample Complexity

e Previous examples assume /, ¢, r can be found based on an agent’s learning
algorithm

e \What if the algorithm is highly complex or unknown?

e Probably Approximately Correct (PAC) theory: loose upper bound on number
of examples an agent must observe before arriving at a PAC hypothesis

e Determine /and then find cand r

e With assumptionthatr=1andv=20

e Simply put: can find the lower bound of an agent’s learning rate (/), and can
be used to determine its c and r



Conclusions

The CLRI framework can get fairly limited as the constraints imposed on the
agents are critical for its function; additionally, there is no room for non-binary
degrees of success, an agent is correct or incorrect

The world states the framework must act upon must be chosen from a
uniform probability distribution and must be episodic. There isn’'t much room
for chaotic, shifting environments

The description given by the CLRI is very high-level behavior, meaning it
doesn’t work well when describing specific systems, but works well in
predicting agents emergent behaviors



