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• Multiagent systems are being applied in various fields such as 

robotics, disaster management, e-commerce 

 

• Need robust algorithms for coordinating multiple agents 

 

• Agent Learning is required to discover and exploit the 

dynamics of the environment 

 

• Learning is difficult in case of an environment with “moving 

target”  

 

• Multiagent learning has strong connection with game theory 

 

• Introduction of a learning algorithm based-on game theory 

Introduction 
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• Previous contributions on multiagent learning introduce two 

important desirable properties –  

 
• Rationality  

• Convergence 

 

• Previous algorithms offer either one of these properties, not 

both 

 

• This paper introduces an algorithm that addresses both 

 

• The developed algorithm uses the WoLF principle 

 

Motivation 
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  Markov Decision Process (MDP) – a single agent, multiple  

state framework 

 

  Matrix games – a multiple agent, single state framework 

 

  Stochastic games – merging of MDP and Matrix games 

 

  Learning in stochastic games is difficult because of moving 

targets 

 

  Some previous work have been done using “On-Policy Q-

learning” 

Stochastic Game Framework 
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  Also known as MDP – single agent, multiple state framework 

 

  A model for decision making in an uncertain, dynamic world 

 

  Formally, MDP is a tuple, (S,A,T,R), where S is the 

     set of states, A is the set of actions, T is a transition function    

S×A×S → [0, 1], and R is a reward function S × A → R. 

Agent 
senses 

environment 
and takes 

action 

Agent 
receives a 

reward 

Environment 
makes 

transition to 
a new state 

Markov Decision Process 
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 A matrix game or strategic game is a tuple (n, A1…n,R1…n) 

 n is the number of players  

 A is the joint action space and 

 R is the payoff function of player i 

 In a matrix game, players find strategies to maximize their payoffs 

 Pure strategy – selection of action deterministically 

 Mixed strategy – selection of action probabilistically from available actions 

 Types of matrix games – zero sum games, general sum games 

(a) and (b) are zero sum games, (c) is a general sum game 

Matrix Games 
Slide 8 / 30 



  A Stochastic game is a combination of Matrix games and MDP 

  Multiple agents, multiple states  

  A stochastic game is a tuple (n, S, A1…n, T, R1…n) 

  n is the number of players  

  S is the set of states  

  A is the joint action space and 

  T is a transition function S×A×S → [0, 1] 

  R is the payoff function of player i 

  Types of stochastic games – strictly collaborative games, 

strictly competitive games 

Stochastic Games 
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  Simultaneous learning of agents 

 

  Two desirable properties of multiagent learning algorithms – 

 
  Rationality – The learner plays its best response policy in reply to 

other agents’ stationary policies. 

 

  Convergence – The learner’s policy will converge to a stationary 

policy in reply to other players’ learning algorithms (stationary or 

rational) 

 

  In case of using rational learning algorithm by the players, if 

their policies converge, they will converge to an equilibrium 

  

   In this article, the discussion is mostly in case of self play 

 Learning in Stochastic Games 
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 A number of algorithms for “solving” stochastic games 

 Algorithms using reinforcement learning -  

 Q-learning –  

 Single agent learning that finds optimal policies in MDPs 

 Does not play stochastic policy 

 Rational but not convergent 

 Minimax Q –  

 Extension of Q-learning to zero-sum stochastic games 

 Q-function is extended to maintain the value of joint actions 

 Not rational but convergent in self play 

 Opponent modeling 

 Learn explicit models of other players assuming their stationary policy 

 Rational but not convergent 

Previous Algorithms 
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 Gradient Ascent as a technique of learning 

 Simple two player, two action, general sum repeated games 

 Players choose new strategy according to these equations –  

 

 

 

 

 α is the strategy of the row player, β is the strategy of the column player 

 η is a fixed step size 

 ∂Vr(α,β)/ ∂α and ∂Vr(α,β)/ ∂β are expected payoffs w.r.t. strategies 

 k is the number of iterations 

 Rational but not convergent 

 

Gradient Ascent Algorithms 
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  IGA – cases with infinitesimal step size (limη → 0) 

 

  Theorem: If both players follow Infinitesimal Gradient Ascent (IGA), 

where (η → 0), then their strategies will converge to a Nash equilibrium OR 

the average payoffs over time will converge in the limit to the expected 

payoffs of a Nash equilibrium. 

 

  This is one of the first convergence results of a rational 

multiagent learning algorithm 

 

  The notion of convergence is rather weak because – 

 
  players’ policies may not converge 

 

  expected payoffs may not converge 

Infinitesimal Gradient Ascent 
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 Introduction of variable learning rate in Gradient Ascent 

 Steps taken in the direction of the gradient varies –  

 

 

 

 WoLF principle – learn quickly when losing, cautiously when winning 

 If αe and βe are equilibrium strategies, then – 

 

IGA: does not converge vs. WoLF IGA: converges 

WoLF IGA 
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 Gradient Ascent requires –  

 Player’s own payoff matrix 

 Actual distribution of actions the other player is playing 

 Limitations of Gradient Ascent are -  

 Payoffs are often not known and needed to be learned from experience 

 Often the action of other player is known, not the distribution of actions 

 WoLF Gradient Ascent requires –  

 Known Nash equilibrium (unknown for more general algorithm) 

 Difficulty of determining win / loss in case of unknown equilibrium 

Requirements of Gradient Ascent Algorithms 
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 Policy Hill Climbing (PHC) –  

 A simple rational learning algorithm 

 Capable of playing mixed strategies 

 Q-values are maintained as in normal Q-learning 

 In addition, a current mixed policy is maintained  

 The policy is improved by increasing the probability of highest valued action 

   according to a learning rate δ(0,1]  

 Rational but not convergent 

 WoLF PHC 

 Variable learning rate, δ 

 Win / loss is determined using average policy 

 No need to use equilibrium policy 

 Rational and convergent 

A Practical Algorithm 
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  Examples of applying PHC and WoLF PHC for the 

following games –  

 

 Matching pennies and rock-paper-scissor 

 Grid World 

 Soccer 

 Three player matching pennies 

Result Analysis 
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  PHC oscillates around equilibrium, 

without appearance of converging 

 

  WoLF PHC oscillates around 

equilibrium with ever decreasing 

amplitude 

Matching pennies game Rock-paper-scissors game (one million iterations) 

Matching Pennies and Rock-Paper-Scissor 
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 Agents start in two corners, try to reach the goal in the opposite wall  

 Players have four compass directions (N,S,E,W) 

 In attempt to move to same squares, both moves fail 

 For WoLF PHC, players converges to equilibrium (PHC is not tested) 

For WoLF PHC: Initial states of learning (100,000 steps) 

Grid World Game 
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 Goal  of the players is to carry the ball to the goal in the opposite wall 

 Available actions are four compass directions and not moving 

 Attempt to move to an occupied square results in ball possession of stationary agent 

 Closer to 50% win against opponent means closer to the equilibrium 

Soccer Game 
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  Involving more than two players in a game 

 

  Player 1: row, player 2: column, player 3: right 

or left table 

 

  WoLF PHC is compared against Nash 

equilibrium 

 

  Convergent in case of high ratio of learning rate 

Three Players Matching Pennies Games 
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 Rock-paper-scissors was tested for PHC vs. WoLF PHC 

 Convergence was attained to Nash equilibrium 

 Convergence is slower than with two WoLF learners (i.e, self play) 

Matrix Game beyond Self-Play 
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 WoLF tested against opponents having PHC and Q-learning 

 Closer to 50% win against opponent means closer to the equilibrium 

 Learned policy is comparatively closer to equilibrium 

 More training moves the policy closer to equilibrium 

Soccer Game beyond Self-Play 
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 Learning in stochastic game framework elucidates learning moving targets 

 In this paper, WoLF principle is introduced to define how to vary the learning rate 

 Using WoLF principle, a rational algorithm can be made convergent 

 Proof has been provided for several different cases – 

 Single vs. multiple state 

 Zero sum vs. general sum games 

 Two player vs. multiple player stochastic games 

 Two important future directions –  

 Explore learning outside self play 

 Making the algorithm scale to large problems 

Conclusion 
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 Our discussion is presented in terms of -  

 Praises in favor of the WoLF PHC algorithm 

 Critiques against the algorithm 

 Applications of the developed algorithm 

Discussion 
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  The paper introduces a strong algorithm for obtaining two important 

desirable learning properties – rationality and convergence 

 

  The developed algorithm is robust – it can be used for two / multiple 

players, self play and beyond, zero sum and general sum games 

 

  The algorithm was successful to handle mixed strategy profiles 

 

  It demonstrates the effects of training rates on convergence 

 

  The paper also demonstrates effects of high / low learning ratio on 

convergence  

Praises 
Slide 26 / 30 



 

  The algorithm uses MDP which is a discretized approximation of a 

continuous system 

 

  In case of a large system, the algorithm may be computationally challenging 

because of maintaining the Q-values and variable learning rates 

 

  The algorithm required very high number of training / iterations to converge 

to equilibrium 

 

  The paper did not discuss consequences of communication among the 

learning agents  

Critiques 
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  The algorithm is suitable for stochastic games  

 

  It can be applied both in the cases of self play and beyond 

 

  Another possible application is for multiple players (as well as 

two players) games 

 

  Practical applications are –  

 
  Robocup robots’ learning that includes multiple players  

  Disaster management robotic systems where they use different learning 

strategies 

  Share market where multiple agents learn in different strategies 

 

  In our final project of “Shark-Sardine Model,” such learning could be 

applied – 

 
  For learning among the shark agents 

  For learning among the sardine agents 

Applications 
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 The paper introduces a new learning algorithm utilizing variable learning rate 

 The developed algorithm addresses two desirable properties: rationality and convergence 

 Explanation of a stochastic game framework is provided 

 Previous algorithms are explained with examples 

 Results using the new algorithm for different games is presented 

 The praises, critiques and applications of the WoLF algorithm are presented 

Summary 
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