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• Multiagent systems are being applied in various fields such as 

robotics, disaster management, e-commerce 

 

• Need robust algorithms for coordinating multiple agents 

 

• Agent Learning is required to discover and exploit the 

dynamics of the environment 

 

• Learning is difficult in case of an environment with “moving 

target”  

 

• Multiagent learning has strong connection with game theory 

 

• Introduction of a learning algorithm based-on game theory 

Introduction 
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• Previous contributions on multiagent learning introduce two 

important desirable properties –  

 
• Rationality  

• Convergence 

 

• Previous algorithms offer either one of these properties, not 

both 

 

• This paper introduces an algorithm that addresses both 

 

• The developed algorithm uses the WoLF principle 

 

Motivation 
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  Markov Decision Process (MDP) – a single agent, multiple  

state framework 

 

  Matrix games – a multiple agent, single state framework 

 

  Stochastic games – merging of MDP and Matrix games 

 

  Learning in stochastic games is difficult because of moving 

targets 

 

  Some previous work have been done using “On-Policy Q-

learning” 

Stochastic Game Framework 
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  Also known as MDP – single agent, multiple state framework 

 

  A model for decision making in an uncertain, dynamic world 

 

  Formally, MDP is a tuple, (S,A,T,R), where S is the 

     set of states, A is the set of actions, T is a transition function    

S×A×S → [0, 1], and R is a reward function S × A → R. 

Agent 
senses 

environment 
and takes 
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makes 
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Markov Decision Process 
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 A matrix game or strategic game is a tuple (n, A1…n,R1…n) 

 n is the number of players  

 A is the joint action space and 

 R is the payoff function of player i 

 In a matrix game, players find strategies to maximize their payoffs 

 Pure strategy – selection of action deterministically 

 Mixed strategy – selection of action probabilistically from available actions 

 Types of matrix games – zero sum games, general sum games 

(a) and (b) are zero sum games, (c) is a general sum game 

Matrix Games 
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  A Stochastic game is a combination of Matrix games and MDP 

  Multiple agents, multiple states  

  A stochastic game is a tuple (n, S, A1…n, T, R1…n) 

  n is the number of players  

  S is the set of states  

  A is the joint action space and 

  T is a transition function S×A×S → [0, 1] 

  R is the payoff function of player i 

  Types of stochastic games – strictly collaborative games, 

strictly competitive games 

Stochastic Games 
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  Simultaneous learning of agents 

 

  Two desirable properties of multiagent learning algorithms – 

 
  Rationality – The learner plays its best response policy in reply to 

other agents’ stationary policies. 

 

  Convergence – The learner’s policy will converge to a stationary 

policy in reply to other players’ learning algorithms (stationary or 

rational) 

 

  In case of using rational learning algorithm by the players, if 

their policies converge, they will converge to an equilibrium 

  

   In this article, the discussion is mostly in case of self play 

 Learning in Stochastic Games 
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 A number of algorithms for “solving” stochastic games 

 Algorithms using reinforcement learning -  

 Q-learning –  

 Single agent learning that finds optimal policies in MDPs 

 Does not play stochastic policy 

 Rational but not convergent 

 Minimax Q –  

 Extension of Q-learning to zero-sum stochastic games 

 Q-function is extended to maintain the value of joint actions 

 Not rational but convergent in self play 

 Opponent modeling 

 Learn explicit models of other players assuming their stationary policy 

 Rational but not convergent 

Previous Algorithms 
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 Gradient Ascent as a technique of learning 

 Simple two player, two action, general sum repeated games 

 Players choose new strategy according to these equations –  

 

 

 

 

 α is the strategy of the row player, β is the strategy of the column player 

 η is a fixed step size 

 ∂Vr(α,β)/ ∂α and ∂Vr(α,β)/ ∂β are expected payoffs w.r.t. strategies 

 k is the number of iterations 

 Rational but not convergent 

 

Gradient Ascent Algorithms 
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  IGA – cases with infinitesimal step size (limη → 0) 

 

  Theorem: If both players follow Infinitesimal Gradient Ascent (IGA), 

where (η → 0), then their strategies will converge to a Nash equilibrium OR 

the average payoffs over time will converge in the limit to the expected 

payoffs of a Nash equilibrium. 

 

  This is one of the first convergence results of a rational 

multiagent learning algorithm 

 

  The notion of convergence is rather weak because – 

 
  players’ policies may not converge 

 

  expected payoffs may not converge 

Infinitesimal Gradient Ascent 
Slide 13 / 30 



 

 Introduction of variable learning rate in Gradient Ascent 

 Steps taken in the direction of the gradient varies –  

 

 

 

 WoLF principle – learn quickly when losing, cautiously when winning 

 If αe and βe are equilibrium strategies, then – 

 

IGA: does not converge vs. WoLF IGA: converges 

WoLF IGA 
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 Gradient Ascent requires –  

 Player’s own payoff matrix 

 Actual distribution of actions the other player is playing 

 Limitations of Gradient Ascent are -  

 Payoffs are often not known and needed to be learned from experience 

 Often the action of other player is known, not the distribution of actions 

 WoLF Gradient Ascent requires –  

 Known Nash equilibrium (unknown for more general algorithm) 

 Difficulty of determining win / loss in case of unknown equilibrium 

Requirements of Gradient Ascent Algorithms 
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 Policy Hill Climbing (PHC) –  

 A simple rational learning algorithm 

 Capable of playing mixed strategies 

 Q-values are maintained as in normal Q-learning 

 In addition, a current mixed policy is maintained  

 The policy is improved by increasing the probability of highest valued action 

   according to a learning rate δ(0,1]  

 Rational but not convergent 

 WoLF PHC 

 Variable learning rate, δ 

 Win / loss is determined using average policy 

 No need to use equilibrium policy 

 Rational and convergent 

A Practical Algorithm 
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  Examples of applying PHC and WoLF PHC for the 

following games –  

 

 Matching pennies and rock-paper-scissor 

 Grid World 

 Soccer 

 Three player matching pennies 

Result Analysis 
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  PHC oscillates around equilibrium, 

without appearance of converging 

 

  WoLF PHC oscillates around 

equilibrium with ever decreasing 

amplitude 

Matching pennies game Rock-paper-scissors game (one million iterations) 

Matching Pennies and Rock-Paper-Scissor 
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 Agents start in two corners, try to reach the goal in the opposite wall  

 Players have four compass directions (N,S,E,W) 

 In attempt to move to same squares, both moves fail 

 For WoLF PHC, players converges to equilibrium (PHC is not tested) 

For WoLF PHC: Initial states of learning (100,000 steps) 

Grid World Game 
Slide 19 / 30 



 

 Goal  of the players is to carry the ball to the goal in the opposite wall 

 Available actions are four compass directions and not moving 

 Attempt to move to an occupied square results in ball possession of stationary agent 

 Closer to 50% win against opponent means closer to the equilibrium 

Soccer Game 
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  Involving more than two players in a game 

 

  Player 1: row, player 2: column, player 3: right 

or left table 

 

  WoLF PHC is compared against Nash 

equilibrium 

 

  Convergent in case of high ratio of learning rate 

Three Players Matching Pennies Games 
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 Rock-paper-scissors was tested for PHC vs. WoLF PHC 

 Convergence was attained to Nash equilibrium 

 Convergence is slower than with two WoLF learners (i.e, self play) 

Matrix Game beyond Self-Play 
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 WoLF tested against opponents having PHC and Q-learning 

 Closer to 50% win against opponent means closer to the equilibrium 

 Learned policy is comparatively closer to equilibrium 

 More training moves the policy closer to equilibrium 

Soccer Game beyond Self-Play 
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 Learning in stochastic game framework elucidates learning moving targets 

 In this paper, WoLF principle is introduced to define how to vary the learning rate 

 Using WoLF principle, a rational algorithm can be made convergent 

 Proof has been provided for several different cases – 

 Single vs. multiple state 

 Zero sum vs. general sum games 

 Two player vs. multiple player stochastic games 

 Two important future directions –  

 Explore learning outside self play 

 Making the algorithm scale to large problems 

Conclusion 
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 Our discussion is presented in terms of -  

 Praises in favor of the WoLF PHC algorithm 

 Critiques against the algorithm 

 Applications of the developed algorithm 

Discussion 
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  The paper introduces a strong algorithm for obtaining two important 

desirable learning properties – rationality and convergence 

 

  The developed algorithm is robust – it can be used for two / multiple 

players, self play and beyond, zero sum and general sum games 

 

  The algorithm was successful to handle mixed strategy profiles 

 

  It demonstrates the effects of training rates on convergence 

 

  The paper also demonstrates effects of high / low learning ratio on 

convergence  

Praises 
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  The algorithm uses MDP which is a discretized approximation of a 

continuous system 

 

  In case of a large system, the algorithm may be computationally challenging 

because of maintaining the Q-values and variable learning rates 

 

  The algorithm required very high number of training / iterations to converge 

to equilibrium 

 

  The paper did not discuss consequences of communication among the 

learning agents  

Critiques 
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  The algorithm is suitable for stochastic games  

 

  It can be applied both in the cases of self play and beyond 

 

  Another possible application is for multiple players (as well as 

two players) games 

 

  Practical applications are –  

 
  Robocup robots’ learning that includes multiple players  

  Disaster management robotic systems where they use different learning 

strategies 

  Share market where multiple agents learn in different strategies 

 

  In our final project of “Shark-Sardine Model,” such learning could be 

applied – 

 
  For learning among the shark agents 

  For learning among the sardine agents 

Applications 
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 The paper introduces a new learning algorithm utilizing variable learning rate 

 The developed algorithm addresses two desirable properties: rationality and convergence 

 Explanation of a stochastic game framework is provided 

 Previous algorithms are explained with examples 

 Results using the new algorithm for different games is presented 

 The praises, critiques and applications of the WoLF algorithm are presented 

Summary 
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