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Introduction
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« Multiagent systems are being applied in various fields such as
robotics, disaster management, e-commerce

* Need robust algorithms for coordinating multiple agents

« Agent Learning is required to discover and exploit the
dynamics of the environment

« Learning is difficult in case of an environment with “moving
target”

« Multiagent learning has strong connection with game theory

* Introduction of a learning algorithm based-on game theory



Motivation
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Previous contributions on multiagent learning introduce two
Important desirable properties —

« Rationality
« Convergence

* Previous algorithms offer either one of these properties, not
both

« This paper introduces an algorithm that addresses both

 The developed algorithm uses the WoLF principle

WolLF :"> Win or Learn Fast
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Stochastic Game Framework
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« Markov Decision Process (MDP) — a single agent, multiple
state framework

Matrix games — a multiple agent, single state framework

« Stochastic games — merging of MDP and Matrix games

Learning in stochastic games is difficult because of moving
targets

Some previous work have been done using "On-Policy Q-
learning”



Markov Decision Process
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« Also known as MDP - single agent, multiple state framework
« A model for decision making in an uncertain, dynamic world

. Formally, MDP is a tuple, (S,A,T,R), where S is the
set of states, A Is the set of actions, T IS a transition function
SXAXS — [0, 1], and R is a reward function S X A — R.

Agent

senses Agent Environment

makes
transition to
a new state

environment receives a
and takes reward
action




Matrix Games
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« A matrix game or strategic game is a tuple (n, A; .,R; )
« N is the number of players
« Alis the joint action space and
« R is the payoff function of player i
. In @ matrix game, players find strategies to maximize their payoffs
« Pure strategy — selection of action deterministically

« Mixed strategy — selection of action probabilistically from available actions

. Types of matrix games — zero sum games, general sum games

0-1 1 T
20

1 -1 R = — R]_ —
Ry = 1 1 0-1 01
-1 1 -1 1 0 -
10
Re = -y Rs = -y Ra =
02

(a) Matching Pennies (b)) Rock-Paper-Scissors (¢} Coordination Game

(a) and (b) are zero sum games, (c) is a general sum game



Stochastic Games
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« A Stochastic game is a combination of Matrix games and MDP
« Multiple agents, multiple states

. Astochastic game isatuple (n, S,A, ., TR, )

« nisthe number of players

o Sisthe set of states

« Alisthe joint action space and

« Tis atransition function SXAXS — [0, 1]
« R s the payoff function of player i

« Types of stochastic games — strictly collaborative games,

strictly competitive games

Single agent,
Multiple states

Stochastic
Game

Multiple agents,
Single state




Learning in Stochastic Games
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. Simultaneous learning of agents

« Two desirable properties of multiagent learning algorithms —

. Rationality — The learner plays its best response policy in reply to
other agents’ stationary policies.

« Convergence — The learner’s policy will converge to a stationary

policy in reply to other players’ learning algorithms (stationary or
rational)

« In case of using rational learning algorithm by the players, if
their policies converge, they will converge to an equilibrium

« Inthis article, the discussion is mostly in case of self play



Previous Algorithms
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« A number of algorithms for “solving” stochastic games

« Algorithms using reinforcement learning -

« Q-learning —
. Single agent learning that finds optimal policies in MDPs
« Does not play stochastic policy
« Rational but not convergent

« Minimax Q —
« Extension of Q-learning to zero-sum stochastic games
« Q-function is extended to maintain the value of joint actions
« Not rational but convergent in self play

« Opponent modeling
 Learn explicit models of other players assuming their stationary policy

 Rational but not convergent



Gradient Ascent Algorithms
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« Gradient Ascent as a technique of learning
« Simple two player, two action, general sum repeated games

. Players choose new strategy according to these equations —

m’?ffﬂ’m .3:;:3
g1 = O + 7] oy
; V(o B
Foa1=3 + 71 - .
P41 = g / Bl

. a is the strategy of the row player, [3 is the strategy of the column player
. N is a fixed step size
. dV(a,B)/ oa and dV (a,B)/ dB are expected payoffs w.r.t. strategies

« kK is the number of iterations

« Rational but not convergent



Infinitesimal Gradient Ascent
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IGA — cases with infinitesimal step size (lim, — 0)

Theorem: If both players follow Infinitesimal Gradient Ascent (IGA),
where (n — 0), then their strategies will converge to a Nash equilibrium OR
the average payoffs over time will converge in the limit to the expected
payoffs of a Nash equilibrium.

This is one of the first convergence results of a rational
multiagent learning algorithm

The notion of convergence is rather weak because —

« players’ policies may not converge

« expected payoffs may not converge



WoLF IGA
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« Introduction of variable learning rate in Gradient Ascent
« Steps taken in the direction of the gradient varies —
5‘1:} I:Ift'k, j;ﬂ,'l
Oy 1 = g + T —
k41 T Ty o where,
. . LOVilag, Or)
Pevr =P+ 53 05 & [Lrmins b > 0.
« WoLF principle — learn quickly when losing, cautiously when winning
. If a® and 3¢ are equilibrium strategies, then —
o= Cin 1E V(e Bx) = Vi(0f, By ) WINNING Lr:- ¢ 4 LD 4
¢ { e Otherwise LOSING e .\ ‘ 1'.
e E?min if I{:If{_'k';ﬂ,,u'j;l-) = LZ.I[L'E;;,;‘EEJ WINNING ' e
' (e Otherwise LOSING JC 1 ) B_‘ JC B—|

IGA: does not converge vs. WoLF IGA: converges



Requirements of Gradient Ascent Algorithms
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. Gradient Ascent requires —
« Player’s own payoff matrix
. Actual distribution of actions the other player is playing
. Limitations of Gradient Ascent are -
. Payoffs are often not known and needed to be learned from experience
« Often the action of other player is known, not the distribution of actions
« WoLF Gradient Ascent requires —

« Known Nash equilibrium (unknown for more general algorithm)

« Difficulty of determining win / loss in case of unknown equilibrium



A Practical Algorithm
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« Policy Hill Climbing (PHC) —
« A simple rational learning algorithm
« Capable of playing mixed strategies
« Q-values are maintained as in normal Q-learning

« In addition, a current mixed policy is maintained

. The policy is improved by increasing the probability of highest valued action
according to a learning rate d(0,1]

 Rational but not convergent

« WoLF PHC

. Variable learning rate,
« Win / loss is determined using average policy
« No need to use equilibrium policy

. Rational and convergent



Result Analysis
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« Examples of applying PHC and WoLF PHC for the
following games —

« Matching pennies and rock-paper-scissor
 Grid World
. Soccer

. Three player matching pennies



Matching Pennies and Rock-Paper-Scissor
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Grid World Game
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« Agents start in two corners, try to reach the goal in the opposite wall
« Players have four compass directions (N,S,E,W)
. In attempt to move to same squares, both moves falil

« For WoLF PHC, players converges to equilibrium (PHC is not tested)
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For WoLF PHC: Initial states of learning (100,000 steps)



Soccer Game
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« Goal of the players is to carry the ball to the goal in the opposite wall
. Available actions are four compass directions and not moving
« Attempt to move to an occupied square results in ball possession of stationary agent

« Closer to 50% win against opponent means closer to the equilibrium
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Three Players Matching Pennies Games
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« Involving more than two players in a game i
] 08 |
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Matrix Game beyond Self-Play
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« Rock-paper-scissors was tested for PHC vs. WolLF PHC
« Convergence was attained to Nash equilibrium

« Convergence is slower than with two WoLF learners (i.e, self play)
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Soccer Game beyond Self-Play
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« WoLF tested against opponents having PHC and Q-learning
« Closer to 50% win against opponent means closer to the equilibrium
« Learned policy is comparatively closer to equilibrium

« More training moves the policy closer to equilibrium
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Conclusion
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« Learning in stochastic game framework elucidates learning moving targets
. In this paper, WoLF principle is introduced to define how to vary the learning rate
« Using WoLF principle, a rational algorithm can be made convergent

« Proof has been provided for several different cases —
. Single vs. multiple state
« Zero sum vs. general sum games

. Two player vs. multiple player stochastic games

« Two important future directions —

« Explore learning outside self play

- Making the algorithm scale to large problems



Discussion
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« Our discussion is presented in terms of -
. Praises in favor of the WoLF PHC algorithm
« Critigues against the algorithm

« Applications of the developed algorithm



Praises
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« The paper introduces a strong algorithm for obtaining two important
desirable learning properties — rationality and convergence

« The developed algorithm is robust — it can be used for two / multiple
players, self play and beyond, zero sum and general sum games

« The algorithm was successful to handle mixed strategy profiles
. It demonstrates the effects of training rates on convergence

« The paper also demonstrates effects of high / low learning ratio on
convergence



Critiques
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The algorithm uses MDP which is a discretized approximation of a
continuous system

. Incase of a large system, the algorithm may be computationally challenging
because of maintaining the Q-values and variable learning rates

« The algorithm required very high number of training / iterations to converge
to equilibrium

« The paper did not discuss consequences of communication among the
learning agents



Applications
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The algorithm is suitable for stochastic games

It can be applied both in the cases of self play and beyond

Another possible application is for multiple players (as well as
two players) games

. Practical applications are —

. Robocup robots’ learning that includes multiple players

. Disaster management robotic systems where they use different learning
strategies

. Share market where multiple agents learn in different strategies

In our final project of “Shark-Sardine Model,” such learning could be
applied —

. For learning among the shark agents
. For learning among the sardine agents



Summary
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« The paper introduces a new learning algorithm utilizing variable learning rate

« The developed algorithm addresses two desirable properties: rationality and convergence
« Explanation of a stochastic game framework is provided

« Previous algorithms are explained with examples

 Results using the new algorithm for different games is presented

. The praises, critiques and applications of the WoLF algorithm are presented

Learning Algorithms Rationality Convergence Mixed Policy

Q-Learning

Minimax Q

Opponent Modeling

Gradient Ascent
IGA

WoLF IGA

PHC

WoLF PHC
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