ON-POLICY

CONCURRENT LEARNING

Introduction
I

o Problem:

Off-policy Q-learning methods do not scale well in multiagent

environments

o Solution:
Design of on-policy Q-learning methods that are scalable and
efficient
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Introduction
I

o The reinforcement learning paradigm provides techniques
using which an individual agent can optimize its environmental
payoff.

o Standard reinforcement learning techniques like Q-learning
are not guaranteed to converge in a multi-agent environment.
(due to the non-stationary nature of the environment)

1 SARSA, an on-policy version of Q-learning, with function
approximation has been demonstrated to converge to a
bounded region at worst (Gordon 2000).
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I
In this paper:

0 Presenting SARSA Q-learning for competitive and general-sum
domains

o1 Proving convergence to minimax and Nash equilibrium value-
functions in the limit, under appropriate assumptions.

0 Showing experimentally that the new method can not only
learn better policies in competitive domains, but can also learn
faster in general-sum domains.
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Multi-agent Q-learning
I

1 A Markov Decision Process (MDP) is a quadruple {S, A, T, R},
where S is the set of states, A is the set of actions, T is the
transition function, T: S X A = PD(S), PD being a probability
distribution and R is the reward function R: S X A = R.

=
V) = )V EC s s = 9)

r=0
So = initial joint state

rti = reward of the ith agent at time t
Y = discount factor
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Multi-agent Q-learning
-

o A bimatrix game is given by a pair of matrices, (M; and M),
where the payoff of the kth agent for the joint action (ay, a,) is
given by the entry My (ay,a;),V (a,a,) € Ay X Ay, k=12

o A mixed-strategy Nash Equilibrium for a bimatrix game
(M1, M3) is pair of probability vectors (13, 5) such that
a"M73 = 7] M3, Ve PD(A)).

aT Moy = wi¥ Mamy, Vo € PD(Ay).

PD(A;) = set of probability-distributions over the ith agent’s
action space
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On-policy concurrent Q-learning

I
01 Off-policy learning - the update of Q depends on V which
relies on actions that are not taken

o On-policy learning - Q depend on the actual learning policy
followed

o Off-policy algorithms separate control from exploration but
on-policy methods are superior in control and prediction
problems

o1 SARSA (on-policy method) converges to a stable Q value while
the classic Q-learning diverges
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Multi-agent Q-learning
I

1 Q-learning for an individual learner
O (sna) = (1 — a)0'(se.a) + afr, + yv'(s,41)]

V(1) = m‘?-x Q'(s111, )

1 Minimax-Q algorithm for simultaneous-move zero-sum games

t H Tt
v, = max minm 5, .0
1 1+1) RePDA) 060 [SJ{ES N )

o1 For general-sum games, each agent observes the other agent’s
actions and rewards and maintains separate action values for
each of them in addition to its own

Vilsis) = ”T(3=+1)TQ’1(5=+1s (i)
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On-policy concurrent Q-learning
I
o Minimax-SARSA learning

- classic SARSA update rule (in simple Q-learning scenario):
V(80 1) =0 (srp1: @rg1)

- minimax-SARSA update rule (in multi-agent minimax-Q setting):
O (e 00) = (1 = @)Q (5. ar. 0) + ailr] + yO{(sigr. g, 001
Vi(ser1) = O1(Ser 15 @1, 0041)

Qi(sr.ar,00) = Ri(se, ar,00) + Ey[n;z‘\xn'lain 7 0i(, -.0)
- paper shows that minimax-SARSA learning converges to
minimax-Q values if agents actions follow MLIE scheme

(Minimax in the limit with infinite exploration)
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On-policy concurrent Q-learning
I
o Nash-SARSA learning

- extends SARSA technique to Nash learning in general-sum
domains
Qisr,a,0) = Rilsi, a0 + Bl "y, -, )mi]
- similar strategy for convergence proof as in minimax-SARSA
- converges to Nash equilibrium if actions follow NELIE strategy
(Nash equilibrium in the limit with infinite exploration)
- restrictions for obtaining convergence limit the applicability of

the method
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On-policy concurrent Q-learning

T I —
o Minimax-Q(A)
- Uses Time Difference (TD) estimators

- Combines Monte-Carlo and dynamic programming

- A represents the trace decay parameter. Higher A means
longer lasting traces (e.g. rewards that come from
states and actions which are further away)

- Used in this paper to provide comparison to other methods
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Experiments in competitive domain
N

0 Soccer game
- 4x5 grid
- Two agents (A and B) try to score goal
- Can move up, down, left, right, or stay put
- If a moving agent hits a stationary agent who has the
ball, the moving agent gets the ball

- Reward +1 for goal, -1 for opponent scoring or self goal
(zero sum game)

- Resets once goal is scored
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Experiments in competitive domain
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Experiments in competitive domain
N

o1 Soccer game
- Conducted i x 10,000 iterations (i = 1 to 10)
- Minimax-SARSA vs. Ordinary Minimax
- Minimax-Q(A) vs. Ordinary Minimax
- Minimax-Q(A) vs. Minimax-SARSA

- Exploration probability = 0.2
- Decay-factor for learning = 0.999954
- A=07
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Experiments in competitive domain
N

o Results
Ordinary minimax-Q initially dominates, but SARSA catches
up and outperforms
Q(A) initially outperforms minimax, but loses edge as minimax
learns better progressively (also seen vs SARSA)
SARSA performs better than minimax because minimax is
pessimistic in nature and SARSA backpropagates information
more expeditiously
Results are far from convergence, where all algorithms would
perform equally well
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Experiments in general-sum domain
]

o A domain where the rationale of the assumption of minimizing
policy of the opponent is to guarantee a minimum security
level to the learner, instead of maximizing the reward of the
opponent itself as in the zero-sum interpretation.

o1 A general-sum problem called ‘tightly coupled navigation’ is
introduced because of the purpose of experimentation.
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Experiments in general-sum domain
N

o Tightly coupled navigation = 4*3 grid world
01 The values in the lower left corners of

! ! ! i each cell is the reward to agent 1 for
o 0 0 I reaching the state corr ding to
that cell. (The upper right corner is for
o ! ! B _agent 2)
Start Goal / Absorbing
— -
state 0 1 1 2% state
p m " 4 o Two agents are tightly coupled as
they must always reach in the same
w o |s 5 10 cell if they want to get the reward

o Three moving actions: up, down &

The tightly coupled navigation domain right
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Experiments in general-sum domain
N

o Minimax-Q vs. Minimax-SARSA
o1 For each iteration (from start state to goal state)
o Setting the exploration probabilities for the agents: 0.2
o Varying the probability of reward-generation
from 0 to 0.5 to 1.0

o1 Exact minimax action values computed off-line

0 Plot of average RMS deviation of the learned action values
for every 1000 training-iterations

0 Total training of 10, 000 iterations.
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Experiments in general-sum domain
]

A realistic scenario
o Two men carrying a piece of heavy furniture

o1 Furniture moves in a given direction if both the agents move in
that direction

1 Moves not coordinated by explicit communication, but each
man observes the moves and the subsequent situation of the
other.

o1 Since they are tightly coupled, they must strike a compromise
and find an intermediate path that both can be maximally
satisfied with.
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Experiments in general-sum domain
]
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Experiments in general-sum domain
N
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Experiments in general-sum domain
]

RMS error between learned and actual Q-uables
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Experiments in general-sum domain
N
Result Statistics:

01 The minimax-SARSA algorithm always approaches minimax
values faster than the ordinary minimax-Q algorithm

o Error in all cases decreases monotonically, suggesting that
both algorithms will eventually converge

o Error-levels fall with increasing probability of reward-
generation
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Conclusions
I

o Both the SARSA and Q(A) versions of minimax-Q learn
better policies early on than Littman’s minimax-Q algorithm

1 A combination of minimax-SARSA and Q(A), minimax-
SARSA(A), would probably be more efficient than either of
the two, by naturally combining their disjoint areas of
expediency
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Praises
I

1 SARSA techniques (minimax and Nash) pave the way for
Q-learning in large multiagent environments where maintaining

table-based representations is intractable

o For time-dependent applications, the ability of minimax Q(A)
to learn good policies early on is a clear advantage

Critiques
1

o Only symmetric training used for both domain types

(match-up between two agents of the same type)

[m}

Convergence proof for minimax-Q(A) not given;
eventual restrictions for convergence not mentioned

o1 For general sum, minimax Q(A) not used to compare with
ordinary minimax and minimax-SARSA

o Comparison between ordinary Nash method and Nash-SARSA
not given

o Time-dependent applications in general-sum domains could be
well served by Nash-Q(\) but this method is not developed in
this paper



References Questions?e

Bikramiit Banerjee, Sandip Sen and Jing Peng, “On-policy
concurrent reinforcement learning”, Journal of Experimental
and Theoretical Artificial Intelligence, Vol. 16, No. 4, 2004

Michael Littman, “Markov games as a framework for
multiagent reinforcement learning”, retrieved from

http:/ /students.cs.byu.edu/~cs670ta/Fall2009 /Minimax /Qlearning.pdf

12/6/2011



