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Introduction  

 Problem: 

Off-policy Q-learning methods do not scale well in multiagent 

environments    

 

 

 Solution: 

Design of on-policy Q-learning methods that are scalable and 

efficient 
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Introduction  

 The reinforcement learning paradigm provides techniques 
using which an individual agent can optimize its environmental 
payoff. 

 

 Standard reinforcement learning techniques like Q-learning 
are not guaranteed to converge in a multi-agent environment. 
(due to the non-stationary nature of the environment) 

 

 SARSA, an on-policy version of Q-learning, with function 
approximation has been demonstrated to converge to a 
bounded region at worst (Gordon 2000).  
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Introduction  

In this paper: 

 Presenting SARSA Q-learning for competitive and general-sum 

domains 

 

 Proving convergence to minimax and Nash equilibrium value-

functions in the limit, under appropriate assumptions. 

  

 Showing experimentally that the new method can not only 

learn better policies in competitive domains, but can also learn 

faster in general-sum domains. 
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   Multi-agent Q-learning 

 A Markov Decision Process (MDP) is a quadruple {S, A, T, R}, 

where S is the set of states, A is the set of actions, T is the 

transition function, 𝑇: 𝑆 × 𝐴 → 𝑃𝐷(𝑆), PD being a probability 

distribution and R is the reward function 𝑅: 𝑆 × 𝐴 → ℜ. 

 

 

 

𝑠0 = initial joint state 

𝑟𝑡
𝑖  = reward of the ith agent at time t 

𝛾 = discount factor 
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   Multi-agent Q-learning 

 A bimatrix game is given by a pair of matrices, (𝑀1 and 𝑀2), 

where the payoff of the kth agent for the joint action (𝑎1, 𝑎2) is 

given by the entry 𝑀𝑘 𝑎1, 𝑎2 , ∀ 𝑎1, 𝑎2 ∈  𝐴1 × 𝐴2, 𝑘 = 1,2 

 

 A mixed-strategy Nash Equilibrium for a bimatrix game         

(𝑀1, 𝑀2) is pair of probability vectors (𝜋1
∗, 𝜋2

∗) such that 

 

 

 

    PD(𝐴𝑖) = set of  probability-distributions over the ith agent’s 

action space 
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   Multi-agent Q-learning 

 Q-learning for an individual learner 

 

 

 

 Minimax-Q algorithm for simultaneous-move zero-sum games 

 

 For general-sum games, each agent observes the other agent’s 

actions and rewards and maintains separate action values for 

each of them in addition to its own 
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 Off-policy learning - the update of Q depends on V which 

relies on actions that are not taken 

 On-policy learning - Q depend on the actual learning policy 

followed 

 

 Off-policy algorithms separate control from exploration but 

on-policy methods are superior in control and prediction 

problems 

 SARSA (on-policy method) converges to a stable Q value while 

the classic Q-learning diverges 

 On-policy concurrent Q-learning  

Introduction 
Multi-agent 

Q-learning 

On-policy 

Q-learning  

Competitive 

Domain 
Conclusions General Sum 

 Minimax-SARSA learning 

   - classic SARSA update rule (in simple Q-learning scenario): 

 

   - minimax-SARSA update rule (in multi-agent minimax-Q setting): 

 

   

  

- paper shows that minimax-SARSA learning converges to        

   minimax-Q values if agents actions follow MLIE scheme 

   (Minimax in the limit with infinite exploration)  

  

 On-policy concurrent Q-learning  
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 Nash-SARSA learning 

   - extends SARSA technique to Nash learning in general-sum    

     domains 

 

   - similar strategy for convergence proof as in minimax-SARSA 

   - converges to Nash equilibrium if actions follow NELIE strategy 

     (Nash equilibrium in the limit with infinite exploration) 

   - restrictions for obtaining convergence limit the applicability of           

     the method 

 On-policy concurrent Q-learning  
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On-policy concurrent Q-learning 

 Minimax-Q(λ) 

- Uses Time Difference (TD) estimators  

- Combines Monte-Carlo and dynamic programming 

 

- λ represents the trace decay parameter. Higher λ means 

longer lasting traces (e.g. rewards that come from          

states and actions which are further away) 

 

- Used in this paper to provide comparison to other methods 
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Experiments in competitive domain 

 Soccer game 

- 4x5 grid 

- Two agents (A and B) try to score goal 

- Can move up, down, left, right, or stay put 

- If a moving agent hits a stationary agent who has the 

ball, the moving agent gets the ball 

- Reward +1 for goal, -1 for opponent scoring or self goal 

(zero sum game) 

- Resets once goal is scored 
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Experiments in competitive domain 
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Experiments in competitive domain 

 Soccer game 

- Conducted i x 10,000 iterations (i = 1 to 10)  

- Minimax-SARSA vs. Ordinary Minimax 

- Minimax-Q(λ) vs. Ordinary Minimax 

- Minimax-Q(λ) vs. Minimax-SARSA 

 

- Exploration probability = 0.2 

- Decay-factor for learning = 0.999954 

- λ = 0.7  
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Experiments in competitive domain 

 Results 

- Ordinary minimax-Q initially dominates, but SARSA catches 

up and outperforms 

- Q(λ) initially outperforms minimax, but loses edge as minimax 

learns better progressively (also seen vs SARSA) 

- SARSA performs better than minimax because minimax is 

pessimistic in nature and SARSA backpropagates information 

more expeditiously  

- Results are far from convergence, where all algorithms would 

perform equally well 
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Experiments in general-sum domain  

 A domain where the rationale of the assumption of minimizing 

policy of the opponent is to guarantee a minimum security 

level to the learner, instead of maximizing the reward of the 

opponent itself as in the zero-sum interpretation.  

 

 

 A general-sum problem called ‘tightly coupled navigation’ is 

introduced because of the purpose of experimentation. 
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Experiments in general-sum domain  

 Tightly coupled navigation   

 

 

 

 

 

 

 

 

The tightly coupled navigation domain 

 

 4*3 grid world 

 The values in the lower left corners of 

each cell is the reward to agent 1 for 

reaching the state corresponding to 

that cell. (The upper right corner is for 

agent 2) 

 

 Two agents are tightly coupled as 

they must always reach in the same 

cell if they want to get the reward 

 Three moving actions: up, down & 

right 
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Experiments in general-sum domain  

A realistic scenario 

 Two men carrying a piece of heavy furniture 

 Furniture moves in a given direction if both the agents move in 

that direction 

 Moves not coordinated by explicit communication, but each 

man observes the moves and the subsequent situation of the 

other.  

 Since they are tightly coupled, they must strike a compromise 

and find an intermediate path that both can be maximally 

satisfied with. 
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Experiments in general-sum domain  

 

 Minimax-Q vs. Minimax-SARSA 

 For each iteration (from start state to goal state) 

 Setting the exploration probabilities for the agents: 0.2 

 Varying the probability of reward-generation 

    from 0 to 0.5 to 1.0 

 

 Exact minimax action values computed off-line  

 Plot of average RMS deviation of the learned action values 
for every 1000 training-iterations  

 Total training of 10, 000 iterations.  
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Experiments in general-sum domain  
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Experiments in general-sum domain  
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Experiments in general-sum domain  
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Experiments in general-sum domain  

Result Statistics: 

 The minimax-SARSA algorithm always approaches minimax 

values faster than the ordinary minimax-Q algorithm 

 

 Error in all cases decreases monotonically, suggesting that 

both algorithms will eventually converge 

 

 Error-levels fall with increasing probability of reward-

generation 
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Conclusions 

 

 Both the SARSA and Q(λ) versions of minimax-Q learn 

better policies early on than Littman’s minimax-Q algorithm 

 

 

 A combination of minimax-SARSA and Q(λ), minimax-

SARSA(λ), would probably be more efficient than either of 

the two, by naturally combining their disjoint areas of 

expediency 
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Praises 

 
 

 SARSA techniques (minimax and Nash) pave the way for  

    Q-learning in large multiagent environments where maintaining      

    table-based representations is intractable 

 

 

 For time-dependent applications, the ability of minimax Q(λ) 

to learn good policies early on is a clear advantage 

Critiques 

 Only symmetric training used for both domain types 

   (match-up between two agents of the same type) 

 Convergence proof for minimax-Q(λ) not given; 

    eventual restrictions for convergence not mentioned 

 For general sum, minimax Q(λ) not used to compare with 

ordinary minimax and minimax-SARSA 

 Comparison between ordinary Nash method and Nash-SARSA 

not given  

 Time-dependent applications in general-sum domains could be 

well served by Nash-Q(λ) but this method is not developed in 

this paper 
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