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Introduction  

 Problem: 

Off-policy Q-learning methods do not scale well in multiagent 

environments    

 

 

 Solution: 

Design of on-policy Q-learning methods that are scalable and 

efficient 
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Introduction  

 The reinforcement learning paradigm provides techniques 
using which an individual agent can optimize its environmental 
payoff. 

 

 Standard reinforcement learning techniques like Q-learning 
are not guaranteed to converge in a multi-agent environment. 
(due to the non-stationary nature of the environment) 

 

 SARSA, an on-policy version of Q-learning, with function 
approximation has been demonstrated to converge to a 
bounded region at worst (Gordon 2000).  
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Introduction  

In this paper: 

 Presenting SARSA Q-learning for competitive and general-sum 

domains 

 

 Proving convergence to minimax and Nash equilibrium value-

functions in the limit, under appropriate assumptions. 

  

 Showing experimentally that the new method can not only 

learn better policies in competitive domains, but can also learn 

faster in general-sum domains. 
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   Multi-agent Q-learning 

 A Markov Decision Process (MDP) is a quadruple {S, A, T, R}, 

where S is the set of states, A is the set of actions, T is the 

transition function, 𝑇: 𝑆 × 𝐴 → 𝑃𝐷(𝑆), PD being a probability 

distribution and R is the reward function 𝑅: 𝑆 × 𝐴 → ℜ. 

 

 

 

𝑠0 = initial joint state 

𝑟𝑡
𝑖  = reward of the ith agent at time t 

𝛾 = discount factor 
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   Multi-agent Q-learning 

 A bimatrix game is given by a pair of matrices, (𝑀1 and 𝑀2), 

where the payoff of the kth agent for the joint action (𝑎1, 𝑎2) is 

given by the entry 𝑀𝑘 𝑎1, 𝑎2 , ∀ 𝑎1, 𝑎2 ∈  𝐴1 × 𝐴2, 𝑘 = 1,2 

 

 A mixed-strategy Nash Equilibrium for a bimatrix game         

(𝑀1, 𝑀2) is pair of probability vectors (𝜋1
∗, 𝜋2

∗) such that 

 

 

 

    PD(𝐴𝑖) = set of  probability-distributions over the ith agent’s 

action space 
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   Multi-agent Q-learning 

 Q-learning for an individual learner 

 

 

 

 Minimax-Q algorithm for simultaneous-move zero-sum games 

 

 For general-sum games, each agent observes the other agent’s 

actions and rewards and maintains separate action values for 

each of them in addition to its own 
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 Off-policy learning - the update of Q depends on V which 

relies on actions that are not taken 

 On-policy learning - Q depend on the actual learning policy 

followed 

 

 Off-policy algorithms separate control from exploration but 

on-policy methods are superior in control and prediction 

problems 

 SARSA (on-policy method) converges to a stable Q value while 

the classic Q-learning diverges 

 On-policy concurrent Q-learning  
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 Minimax-SARSA learning 

   - classic SARSA update rule (in simple Q-learning scenario): 

 

   - minimax-SARSA update rule (in multi-agent minimax-Q setting): 

 

   

  

- paper shows that minimax-SARSA learning converges to        

   minimax-Q values if agents actions follow MLIE scheme 

   (Minimax in the limit with infinite exploration)  

  

 On-policy concurrent Q-learning  
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 Nash-SARSA learning 

   - extends SARSA technique to Nash learning in general-sum    

     domains 

 

   - similar strategy for convergence proof as in minimax-SARSA 

   - converges to Nash equilibrium if actions follow NELIE strategy 

     (Nash equilibrium in the limit with infinite exploration) 

   - restrictions for obtaining convergence limit the applicability of           

     the method 

 On-policy concurrent Q-learning  
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On-policy concurrent Q-learning 

 Minimax-Q(λ) 

- Uses Time Difference (TD) estimators  

- Combines Monte-Carlo and dynamic programming 

 

- λ represents the trace decay parameter. Higher λ means 

longer lasting traces (e.g. rewards that come from          

states and actions which are further away) 

 

- Used in this paper to provide comparison to other methods 
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Experiments in competitive domain 

 Soccer game 

- 4x5 grid 

- Two agents (A and B) try to score goal 

- Can move up, down, left, right, or stay put 

- If a moving agent hits a stationary agent who has the 

ball, the moving agent gets the ball 

- Reward +1 for goal, -1 for opponent scoring or self goal 

(zero sum game) 

- Resets once goal is scored 
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Experiments in competitive domain 
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Experiments in competitive domain 

 Soccer game 

- Conducted i x 10,000 iterations (i = 1 to 10)  

- Minimax-SARSA vs. Ordinary Minimax 

- Minimax-Q(λ) vs. Ordinary Minimax 

- Minimax-Q(λ) vs. Minimax-SARSA 

 

- Exploration probability = 0.2 

- Decay-factor for learning = 0.999954 

- λ = 0.7  
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Experiments in competitive domain 
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Experiments in competitive domain 

 Results 

- Ordinary minimax-Q initially dominates, but SARSA catches 

up and outperforms 

- Q(λ) initially outperforms minimax, but loses edge as minimax 

learns better progressively (also seen vs SARSA) 

- SARSA performs better than minimax because minimax is 

pessimistic in nature and SARSA backpropagates information 

more expeditiously  

- Results are far from convergence, where all algorithms would 

perform equally well 
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Experiments in general-sum domain  

 A domain where the rationale of the assumption of minimizing 

policy of the opponent is to guarantee a minimum security 

level to the learner, instead of maximizing the reward of the 

opponent itself as in the zero-sum interpretation.  

 

 

 A general-sum problem called ‘tightly coupled navigation’ is 

introduced because of the purpose of experimentation. 
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Experiments in general-sum domain  

 Tightly coupled navigation   

 

 

 

 

 

 

 

 

The tightly coupled navigation domain 

 

 4*3 grid world 

 The values in the lower left corners of 

each cell is the reward to agent 1 for 

reaching the state corresponding to 

that cell. (The upper right corner is for 

agent 2) 

 

 Two agents are tightly coupled as 

they must always reach in the same 

cell if they want to get the reward 

 Three moving actions: up, down & 

right 
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Experiments in general-sum domain  

A realistic scenario 

 Two men carrying a piece of heavy furniture 

 Furniture moves in a given direction if both the agents move in 

that direction 

 Moves not coordinated by explicit communication, but each 

man observes the moves and the subsequent situation of the 

other.  

 Since they are tightly coupled, they must strike a compromise 

and find an intermediate path that both can be maximally 

satisfied with. 
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Experiments in general-sum domain  

 

 Minimax-Q vs. Minimax-SARSA 

 For each iteration (from start state to goal state) 

 Setting the exploration probabilities for the agents: 0.2 

 Varying the probability of reward-generation 

    from 0 to 0.5 to 1.0 

 

 Exact minimax action values computed off-line  

 Plot of average RMS deviation of the learned action values 
for every 1000 training-iterations  

 Total training of 10, 000 iterations.  
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Experiments in general-sum domain  
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Experiments in general-sum domain  
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Experiments in general-sum domain  
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Experiments in general-sum domain  

Result Statistics: 

 The minimax-SARSA algorithm always approaches minimax 

values faster than the ordinary minimax-Q algorithm 

 

 Error in all cases decreases monotonically, suggesting that 

both algorithms will eventually converge 

 

 Error-levels fall with increasing probability of reward-

generation 
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Conclusions 

 

 Both the SARSA and Q(λ) versions of minimax-Q learn 

better policies early on than Littman’s minimax-Q algorithm 

 

 

 A combination of minimax-SARSA and Q(λ), minimax-

SARSA(λ), would probably be more efficient than either of 

the two, by naturally combining their disjoint areas of 

expediency 
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Praises 

 
 

 SARSA techniques (minimax and Nash) pave the way for  

    Q-learning in large multiagent environments where maintaining      

    table-based representations is intractable 

 

 

 For time-dependent applications, the ability of minimax Q(λ) 

to learn good policies early on is a clear advantage 

Critiques 

 Only symmetric training used for both domain types 

   (match-up between two agents of the same type) 

 Convergence proof for minimax-Q(λ) not given; 

    eventual restrictions for convergence not mentioned 

 For general sum, minimax Q(λ) not used to compare with 

ordinary minimax and minimax-SARSA 

 Comparison between ordinary Nash method and Nash-SARSA 

not given  

 Time-dependent applications in general-sum domains could be 

well served by Nash-Q(λ) but this method is not developed in 

this paper 
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