Review of Hierarchical Multi-Agent Reinforcement Learning

Team JRL
Jesse Meyer, Ryan Praeuner, Luke Vanderbeek
Outline

- Introduction
- HRL Framework
- Pros and Cons
- Cooperative HRL algorithm
- Cooperative HRL algorithm with communication
- Conclusion
Introduction

- HRL accelerates learning
 - Cooperative subtasks
 - Highest level of hierarchy
 - Primitive action complexity

- Trash collection problem
 - Cooperative HRL
 - Selfish multi-agent HRL
 - Single-agent HRL
 - Q-learning
Challenges

- Curse of dimensionality
 - Parameters to be learned vs number of agents

- Partial observability
 - Actions of other agents
 - Communication

- HRL
 - Task hierarchies to scale reinforcement learning
 - Task structure restricts space
Algorithms

- **Cooperative HRL**
 - Homogeneous
 - Decentralized learning
 - Perform subtasks
 - Order of execution
 - Coordination with other agents

- **COM-Cooperative HRL**
 - Adds communication level below cooperation level
 - Optimize action and communication
HRL Framework for multi-agents

- Lets agents use hierarchical structure to learn tasks

- Task split into different levels:
 - Primitive Tasks
 - Subtasks
 - Overall task

- Subtask sharing
 - Only one agent has to learn each

- Can use graph to represent task relations
 - state abstraction
Example - Trash Pickup Robots

- Simple task that could use HRL
- As described in the paper
 - To pick up trash and take it to dump zone
 - Can be parallelized by more than one agent (A1, A2)
 - More than one pick up spot (T1, T2)
 - One dump zone (Dump)
 - For example in an office

- Subtasks
 - Navigate to T1, T2 or Dump
 - When to perform Pick or Put action
 - Order of other subtasks
Example Diagram

A1, A2: Agents
T1: Location of the first trash can
T2: Location of the second trash can
Dump: Location to deposit all trash
Semi-Markov Decision Processes

- Decisions only made at discrete points in time
- State of the system may change between decisions
- Decision epochs

- Used for multi-agent system domains
 - Assume agents cooperative
 - Agent's actions effect others' decisions
 - Actions may terminate at different times

- Termination strategies
 - Synchronous - T_{any} or T_{all}
 - Asynchronous - T_{continue}
Multi-Agent Setup

- Agents are homogeneous
 - share same task hierarchy
 - heterogeneous more complicated

- System designer makes task chart
 - Could automate this

- Cooperative subtasks are set before hand

- High level of coordination
 - agents look less are lower details
Pros and Cons of Co-op Multi-agent

● Pros
 ○ scales large state spaces down
 ○ fast cooperation
 ■ only done at high level(s)
 ○ Less communication needed

● Cons
 ○ Low cooperative level can cause none optimal solution
 ○ Storing only local state information is sub-optimal
Cooperative HRL Algorithm

- In this algorithm:
 - an agent starts from the root task and chooses a subtask until it reaches a primitive action.
 - It executes primitive action in the current state
 - Receives reward
 - Observes resulting state
 - Updates the value function of primitive subtask

- Assumes zero communication cost
Experimental Results

- The size of the state space would grow to: $124 \times 124 \times 4 \times 4 = 240,000$ states with multiple agents.
- $124 \times 3 \times 3 = 1116$ states with a single agent.
- Agents learn a specific policy.
- Number of steps greatly reduced.
Learned Policy for Agent 1

root
 navigate to T1
 go to location of T1 in room 1
 pick trash from T1
 navigate to Dump
 exit room 1
 enter room 3
 go to location of Dump in room 3
 put trash collected from T1 in Dump
end

Learned Policy for Agent 2

root
 navigate to T2
 go to location of T2 in room 2
 pick trash from T2
 navigate to Dump
 exit room 2
 enter room 3
 go to location of Dump in room 3
 put trash collected from T2 in Dump
end
Required Steps

Figure 4. This figure shows that the Cooperative HRL algorithm learns the trash collection task with fewer number of steps than the single-agent HRL algorithm.
Cooperative HRL with communication

- Same steps in algorithm with extra communication level
- In the real world, communication is not free.
- Communication usually consists of three steps: send, answer, and receive.
 - **send**: agent j decides if communication is necessary, performs a communication action, and sends a message to agent i
 - **answer**: agent i receives the message from agent j, updates its local information using the content of the message, and sends back the answer.
 - **receive**: agent j receives the answer, updates local information, and decides on action.
Cooperative HRL with communication

- Generally there are two types of messages in a communication framework: request and inform.
 - **Tell**: agent j sends and inform message to agent i
 - **Ask**: agent j sends request message to agent i, i responds with inform message
 - **Sync**: agent j sends inform message to agent i, which is answered with an inform message
Cooperative HRL with communication

● Agents must learn to use communication optimally.
 ○ compare expected values

● If no communication, acts like selfish agent.

● Communication:
 ○ sends request message to all agents
 ○ respond with actions in an inform message
Figure 12. Task graph of the trash collection problem with communication actions.
Experimental Results

● Taxi example:
 ○ Two taxis
 ○ passengers arrive at stations

● On average, has a higher throughput and lower waiting time.
Throughput

![Graph showing throughput over number of steps with different HRL strategies.]

- **Single-Agent HRL**
- **Selfish Multiagent HRL**
- **Cooperative HRL**
- **COM–Cooperative HRL, ComCost = 0**

Number of Steps (Passenger Arrival Rate = 10) × 10^4
Waiting Time

![Graph showing waiting time versus number of steps with different strategies: Single-Agent HRL, Selfish Multiagent HRL, Cooperative HRL, and COM-Cooperative HRL. The graph indicates that Cooperative HRL and COM-Cooperative HRL with ComCost = 0 have the lowest average waiting time per passenger after a certain number of steps.]
Conclusion

- If you want more accuracy, use the communication model.
- Graph to represent sub tasks has to be made, this can be a huge downside
- The key idea is that coordination skills are learned much more efficiently if agents have a hierarchical representation of the task structure.
Questions?