ATTac-2000: An Adaptive Autonomous Bidding Agent

Greg Miller, Cody Musilek, John Steinbach Stone, P., M. L. Littman, S. Singh, and M. Kearns (2001). ATTac-2000: An Adaptive Autonomous Bidding Agent, *Journal of Artificial Intelligence Research*, **15**:189-206.

Outline

- Trading Agent Competition (TAC)
- ATTac-2000
 - Bidding Strategy
 - Flights, Hotels, Entertainment Tickets
 - Allocation Strategy
 - o Adaptivity
- Results
 - Competition
 - Controlled Testing
- Our Critiques
- Q&A

Trading Agent Competition (TAC)

- Requires autonomous bidding agents to buy and sell multiple interacting goods in auctions of different types
- Preliminary round and many practice games before finals
 Developers can change strategies in between
- Game instance pits 8 agents against one another
- Each agent is a travel agent with 8 clients
 - Clients want to travel during a common 5-day period
 - $_{\rm O}$ Clients characterized by random set of preferences
 - Arrival/Departure Dates, Hotel, Entertainment
- Must construct travel package for each client
- Agent's score in game instance is difference between sum of clients' utilities and agent's total expenditure

 Agents buy flights, hotel rooms and entertainment tickets via auctions

- Flights (8 auctions)
 - Inflights days 1-4, outflights days 2-5, separate auctions
 - Unlimited supply
 - Price varies from \$150 to \$600, randomly changes \$0-10
 - If a bid is higher than ask price, ticket is immediately sold to that agent for ask price; no resale

- Hotels (8 auctions)
 - Boston Grand Hotel (BGH) or Le Fleabag Hotel (LFH)
 - Each has 16 rooms on each day 1-4
 - Sold in 16th price English auction
 - Must bid higher than current price, no withdraw/resale
 - Sold when auction closes, can close from inactivity
 - Prevents waiting until end of game to bid

- Entertainment Tickets (12 auctions)
 - Baseball, symphony and theater tickets
 - Continuous double auctions agents can buy and sell
 - Sold immediately when bid at least as high as ask price
 - $_{\odot}$ Sell price is ask price, not bid price
 - Each agent starts with a random endowment of tickets
 - o Bid withdrawal and ticket resale permitted

- Clients have parameters for ideal arrival day, IAD (1-4); ideal departure day, IDD (2-5); grand hotel value, GHV (\$50-150); and entertainment values, EV (\$0-200) for each type of ticket
- The client's utility is defined by the following equation: *utility* = 1000 - travelpenalty + hotelbonus + funbonus

 travelpenalty = 100(|AD - IAD| + |DD - IDD|)
 hotelbonus = GHV if client is in BGH, 0 otherwise
 funbonus = sum of EVs for each ticket type assigned
- Agent's final score is the sum of the clients' utilities minus the agent's expenditures

ATTac-2000

 Finished first in the Trading Agent Competition using a principled bidding strategy, which included several elements of adaptivity.

• Had the flexibility to cope with the wide variety of possible scenarios in competition.

ATTac Bidding Strategy

- Robust to parameter space and opponent strategies
- At every bidding opportunity, ATTac begins by computing the most profitable allocation of goods to clients (denoted by G*), given the goods that are currently owned and the current prices of hotels and flights.
- High-level bidding strategy based on two observations:

 the expected change in price for airline auctions is \$0
 as the game proceeds, the hotel prices approach the eventual closing prices

Bidding Strategy contd..

- ATTac aims to delay most of its purchases, particularly airline purchases, until late in the game.
- Attempts to delay "committing" to the current G* for as long as possible.
- ATTac accomplishes this delay of commitment by bidding in two different modes: *passive* and *active*.
 - Starts out *passive*, switches to *active* when time is running out.

Flights

• Unlimited supply means no competition from other agents

• Passive mode: Does not bid

 Active mode: buys all currently unowned airline tickets needed for the current G*

Hotels

- Passive mode: Bids in hotel auctions to either win them cheaply or prevent the auctions from closing early

 Tries to acquire *n* rooms where *n* depends on the number of rooms of a specific type needed for *G** and the prices
 - Bids \$1 above current ask price, can risk \$40-50 per room type for benefit of flexibility later in the game
- Active mode: Bids on rooms based on their marginal value

 Bids a price of V(G*) V(G*'_c) for hotel rooms assigned to
 client c in G*
 - V(G*) is income from all clients minus cost of yet-to-beacquired goods
 - V(G^{*}) is value of optimal allocation should client c fail to get its hotel rooms

Entertainment Tickets

- Assumes opponent buy/sell price remains constant in a game
 - Gradually decreases/increases its bid over time
- On every iteration, ATTac places a buy bid for each type of ticket and a sell bid for each type of ticket it currently owns
 - In passive mode, for each owned ticket, sets sell bid at optimistic price and gradually lowers, but raises to 1¢ lower than current bid if current bid is higher than sell bid
 - In active mode, offers to sell any unused ticket for \$30
 - Buy bids based on increased value derived from owning that type of ticket
 - Similar to active mode hotel purchasing but also includes a variable based on time remaining

Allocation Strategy

- Uses an integer linear programming approach (ILPA) instead of a greedy approach used by most other participants
 - Defines a set of variables, constraints on these variables, and an objective function
 - ATTac was able to compute optimal final allocations in every game instance during the finals
 - Switches to modified greedy solution as a fallback if this approach takes longer than 6 seconds to compute

$$\sum_{c,f} u_P(c,f) P(c,f) + \sum_{c,e} u_E(c,e) E(c,e)$$
$$- \sum_{d \in \{2,3,4,5\}} p_{DD}(d) B_{DD}(d)$$
$$- \sum_{d \in \{1,2,3,4\}, r \in \{\text{BGH,LFI}, AD\}} p_r(d) B_r(d)$$

Allocation Strategy contd.

- Many constraints were applied for this situation, including:
 - No client gets more than one travel package
 - Demand for resources from selected travel packages must not exceed sum of owned & bought resources
 - Total quantity of each entertainment ticket allocated does not exceed what is owned
 - An entertainment ticket can only be used if its day is between arrival and departure day of the selected package
 - Each client can only use one entertainment ticket per day
 Each client can only use each type of entertainment ticket once
 - All variables are integers
- Solution to ILPA is value-maximizing allocation of owned resources plus list of resources needing to be purchased

Adaptivity

- In TAC game instance, only information available is ask prices
- Lack of within-game info precluded competitors from using detailed models of opponent strategies in decision making
- ATTac instead adapts its behavior in 3 different ways

 Adaptable timing of bidding modes, adaptable allocation strategy, and adaptable hotel bidding
- Timing of bidding modes
 - Decides when to switch from passive to active based on observed server latency during game instance
- Allocation
 - Adapts allocation strategy based on amount of time it takes for ILPA to determine optimal allocations

Adaptibility contd.

- Hotel Bidding
 - Predicts closing prices of hotel auctions based on their closing prices in previous games
 - Divided 8 hotel rooms into 4 equivalence classes, exploiting symmetries (equal demand on days 1&4 and 2&3), assigned priors to expected closing prices, and adjusted these priors based on observed closing prices
 - When actual price was lower than predicted, it used the predicted values for computing allocation values
 - Looked for games with 3+ "high-bidders" to use predicted closing prices; 2 or less failed to cause prices to skyrocket
 - High-bidders bid their marginal utilities on hotel rooms
 - Extremely beneficial when prices escalate, no significantly degraded performance when they don't

Results - Competition

- Agents and conditions constantly changing not a controlled testing environment
- Scores varied widely from -3000 to over 4500 (3000 to 4000 is considered good) with an average of 2700
 - Hadn't implemented adaptive timing of bidding modes
 - Occasionally failed to place bids in time due to lag
 - Fixed by implementing adaptive timing
- Adaptive allocation strategy never came into play, but adaptive hotel bidding did play a big role
 - Rivaled other best teams in early games where hotel prices stayed low, excelled in final games when hotel prices rose to high levels
- Ended up with highest average score and lowest standard deviation - consistently high scores

Results - Competition

Rank	Team	Avg. Score	Std. Dev.	Institution
1	ATTac-2000	3398	443	AT&T Labs – Research
2	RoxyBot	3283	545	Brown University, NASA Ames Research
3	aster	3068	493	STAR Lab, InterTrust Technologies
4	umbctac1	3051	1123	University of Maryland at Baltimore County
5	ALTA	2198	1328	Artificial Life, Inc.
6	m_rajatish	1873	1657	University of Tulsa
7	RiskPro	1570	1607	Royal Inst. Technology, Stockholm University
8	T1	1167	1593	Swedish Inst. Computer Science, Industilogik

Table 4: The scores of the 8 TAC finalists in the semi-finals and finals (13 games).

Results - Controlled Testing

- Ran several game instances against two variants of itself

 High-bidder: always computed G* with current hotel
 prices
 - Low-bidder: same as high-bidder, but only bid for hotel rooms at \$50 over the current asking price
- Setup was same as in TAC 8 agents competing
- With 7 high-bidders at least 1 hotel price skyrockets
- With 7 low-bidders hotel price never skyrocket
- Consistently beat all other agents in simulations
 Many high-bidders results in many large negative scores
- Always used adaptive hotel price expectations, even when only 2 high-bidders were present

Results - Controlled Testing contd.

#high	agent 2	agent 3	agent 4	agent 5	agent 6	agent 7	agent 8
7(14)	<i>~</i>	9526					- →
6(87)	<i>~</i>	10679				<u>→</u> →	1389
5(84)	<i>~</i>	10310			→	<i>←</i>	2650
4(48)	<i>~</i>	10005			<	· 	4015
3(21)	<i>~</i> ——	5067	\longrightarrow	<			3639
2(282)	<i>~</i>	209	<	J			2710

- First column shows number of high-bidders and in parentheses number of games simulated
- Main section shows difference between ATTac's score and average score of all high-bidders (left) and lowbidders (right)

Authors Conclusion

- While it was a successful event, some minor improvements would increase its interest from a multiagent learning perspective.
 - No incentive to buy airline tickets until the end of the game.
 - Impossible to observe the bidding patterns of individual agents
- ATTac plans to participate in future TACs

Our Critique - The Good

- ATTac's bidding strategy proved to be most dominant
- Potentially could use ATTac's strategy for real life travel agents
- Their integer linear programming approach was more reliable than the greedy methods of other agents.
- They had a greedy algorithm to fall back on if the linear programming approach was taking too long.

Our Critique - The Bad

- Strategies were tailored to the TAC, it might be difficult to apply them to other situations.
- Some threshold values were chosen arbitrarily.
 - Could have adjusted them during the rounds or done more pregame experiments.

Questions?