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Introduction 
Michael Hollman 



The Premise 

u  Use network of sensors to observe large environment 

u  Examples: 

u  Animal tracking 

u  Environmental phenomena monitoring 

u  This paper: automobile traffic monitoring 

u  Devices’ characteristics and environment impose some constraints 



Limitations 

u  Sensor location/distribution not guaranteed 

u  Sensor and communication reliability not guaranteed 

u  Primitive nature of sensor devices 

u  Devices cannot be active 100% of the time 

u  They use energy faster than they can harvest it 

u  Overcome this with duty cycles (sense/sleep schedules) 



The Problem from 10,000 Feet 

How can a network of sensor-laden devices optimally 
schedule their own duty cycles to maximize the system’s 

effectiveness at observing their environment? 



Modelling the Problem 

u  Represent each sensor as an autonomous agent 

u  Learn interactions with neighbors 

u  Coordinate sense/sleep schedules 

u  One model: Markov decision problem variations (Dec-MDP, POMDP)  

u  Collaborate with peers to learn a joint action policy 

u  Methods don't scale when agents have many neighbors 



Modelling the Problem 

u  Constraint Networks 

u  Nodes represent agents 

u  Edges represent constraints that arise between the agents 

u  Hard Constraints à Constraint Satisfaction Problem (DCSP) 

u  Soft Constraints à Constraint Optimization Problem (DCOP) 



Distributed Constraint Optimization 
Problems 

u  Finding an exact solution to DCOP is an NP-hard problem 

u  Algorithm grows exponentially 

u  Require a holistic understanding of the environment and/or network  

u  Requires preprocessing, so the system is not flexible to changes 

u  Too computationally complex for extremely low-powered devices 

u  Approximate algorithms often converge to poor-quality solutions 

u  Thus, there is a need for an efficient, decentralized coordination algorithm 



The Max-Sum Algorithm 

u  A generalized distributive law (GDL) framework algorithm 

u  Used in information theory, AI, statistical physics 

u  Can be exploited to find good approximate solutions to DCOPs 

u  Was tweaked to be used by communicative agents to converge to 
neighborhood maximums 



The Max-Sum Approach  
To Coordination 
Ryan Erdmann 



The Max-Sum Algorithm 

u  Max-Sum decomposes complex calculations by “factorizing” it 

u  Uses a combination of the best features of both the optimal and stochastic 
algorithms 

u  Built on previous work 

u  Factoring agent interactions (action selection) into a coordination graph 

u  Max-Sum has been previously used for agent coordination, operating on the 
coordination graph 



Contribution to the State of the Art 

u  Using the factor graph to 

u  Model agent interactions 

u  Provide an operational framework for the max-sum algorithm that defines the 
message passing protocol 

u  Provides a distributed, near-optimal solution to DCOP 



DCOP Formalization 

u  𝐷𝐶𝑂𝑃=    <𝐴,  𝑋,  𝐷,  𝐹> 

u  𝐴  =  { 𝑎↓1 , 𝑎↓2 ,…𝑎↓𝑚 }     set of agents 

u  𝑋  =  { 𝑥↓1 , 𝑥↓2 ,…𝑥↓𝑠 }      set of variables 

u  𝐷  =  { 𝐷↓1 , 𝐷↓2   ,…𝐷↓𝑠 }        set of domains 

u  𝐹  =  { 𝐹↓1 , 𝐹↓2 ,…𝐹↓𝑛 }  set of constraints 

u  Goal: arg max┬𝑥 ∑𝑖↑▒𝐹↓𝑖 ( 𝒙↓𝒊 )    
 

u  Recall that this is an NP-hard problem 



Factor Graph Representation 

u  Bipartite graph comprised of 

u  Variable nodes 

u  Function nodes 

u  Function choice depends on system decomposition 

u  Explicitly models a k-ary relationship between agents 









Factor Graph Decomposition 

u  Interaction-based 

u  Functions represent interactions of neighboring agents 

u  One function node per constraint 

u  Agents must negotiate for ownership of shared functions 

u  Utility-based 

u  Each agent's function represents their own utility, and the sum of all agents' 
functions is equal to the objective function 

u  Agents can negotiate continuously - dynamic 

u  Creates cycles, which impacts optimality of max-sum 



Interaction-Based Utility-Based 



The Max-Sum Algorithm 

u  The algorithm iteratively passes messages back and forth between connected 
variables and functions 

u  These messages are functions that estimate the total utility of the network 
for a possible variable assignment 

u  Each agent makes local decisions to maximize the sum over all agents' 
utilities. 



The Max-Sum Algorithm 

u  Message: From Variable i to Function j 

u  Message: From Function j to Variable i 

u  Local Decision to maximize: 

arg max┬𝑥↓𝑖   
𝑧↓𝑖 ( 𝑥↓𝑖 )   



Message Update Scheduling 

u  There is no need for a strict ordering or synchronization of messages 

u  Agents update their variable assignment when they receive new messages.   

u  Note: the variable assignment does not impact message computation 

u  So, agents are asynchronous & continuously updating	  



Algorithm Termination 

u  Three possible outcomes: 

u  Variable assignment and messages converge 

u  Assignment converges, but messages do not 

u  Neither assignment nor messages converge 

u  Termination Rules: 

u  Continue to propagate messages until they converge 

u  Propagate messages for a fixed number of iterations 



Max-Sum Solution Quality 

u  When cycles exist, it's impossible to guarantee convergence or quality of the 
resulting solution 

u  Empirical evidence suggests that max-sum will converge and provide near-
optimal variable assignments 

u  Quality is dependent on the structure of the factor graph; future work may 
look at transforming areas of the graph with many cycles 



Coordination Overhead 

u  For each iteration, the agent broadcasts messages to all connected variables 
and functions 

u  Alternative DCOP methods optimize who to broadcast to 

u  Benefits: 

u  It's possible to add or remove agents to the system 

u  The multiagent system is resilient to message transmission failures 



The Wide Area Surveillance Problem 
Michael Hollman 



Problem Formalization 

u  M sensors 

u  Each sensor has a set of possible 
schedules xi 

u  Agent interaction produces a set of 
functions that depend on a subset 
of sensors xi 

u  We want to find x*, the subset of 
sensors that maximizes utility 
(social welfare) 



Problem Formalization 

u  Sensors and event distribution are both assumed to be Poisson 

u  λs – sensors expected in a unit area 

u  λd – event duration 

u  λde−λdt – probability of an event lasting time t 

u  Sensors follow a schedule defined by the set si 

u  L – length of si (same for all sensors) 

u  All schedules are discrete and “tick” together 



Coordination 

u  System goal is to maximize the 
probability that any given event is 
detected by a sensor 

u  Smells like a combinatorial 
optimization problem 

u  Similar to graph coloring 

u  Key difference: multiple (>2) 
sensors can communicate together 



Theoretical Analysis 

1.  Continuously powered sensors 

u  Represents absolute upper bound. 

2.  Synchronized sensors 

u  All sensors sense in the same one time slot; no adaptation. 

3.  Randomly coordinated sensors 

u  Each sensors senses in one random time slot; no coordination. 

4.  Optimally coordinated sensors 

u  Each sensor senses in one coordinated time slot 

 

For each case, calculate the probability of event detection (PED) 



Theoretical Analysis 

1.  Continuously powered sensors 

2.  Synchronized sensors 



Theoretical Analysis 

3.   Randomly coordinated sensors 4.  Optimally coordinated sensors 



Enough of that… 

u  Bottom line is that optimally 
coordinated sensors are… optimal! 

u  E.g.: when L = 4, λs > 35 

u  Optimal schedule will detect 50% 
of what the random schedule 
missed 

u  Optimal schedule can perform as 
well as random schedule with 40% 
fewer sensors 



Decentralized Coordination for the 
Wide Area Surveillance Problem 
Scott Johnson 



Application 

u  The authors tested the theoretical findings using the RoboCup simulation 
environment. 

u  Energy-constrained sensors are placed randomly throughout the environment 
to detect vehicles. 

u  Sensors have no knowledge of their location or of the road layout. 

u  The radius of each sensor's field is independently assigned and comes from a 
uniform distribution between 0.05 and 0.15 times the maximum dimension of 
the environment. 



Utility 

u  Must transition from the theoretical global goal 
of maximizing event detection to individual 
utility functions. 

u  Basic premise behind a practical utility function: 

u  Sum over all subsections of the sensors range the 
product of the area of the region and the 
probability of detecting an event in that region 
given the schedule divided by the total number of 
sensors overlapping in that region. 



Utility Revisited 

u  Previous utility formula is still not general enough for practical application:  

u  Sensors may not know the exact location of the other sensors. 

u  Sensors may not know where the overlap exists. 

u  Some regions may have a higher probability of an event occurring.  

u  Sensing regions may be irregular. 

u  Solution: additional calibration phase. 



Calibration Phase 

u  Occurs before any coordination is done. 

u  All sensors follow the same sense/sleep schedule and 
record the number of vehicles it sees and the 
number of vehicles it and some subset of its 
neighbors see. 

u  Uses times of appearance and disappearance of cars to 
determine when neighboring sensors have sensed the 
same vehicle.  



Coordination Phase 

u  Uses the results from the calibration phase to run the max-sum algorithm. 

u  The previous utility function is revised so that instead of using area, the 
utility function substitutes in the number of vehicles that crossed the section 
in the calibration phase. 



Operational Phase 

u  The sensors follow the sense/sleep schedule that results from the 
coordination phase. 

u  The results from this stage form the basis of comparison for the various 
methods. 





Experimentation 

u  Four different approaches were tested in order to compare the effectiveness 
of each approach: 

u  Randomly Coordinated Sensors 

u  Distributed Stochastic Algorithm (DSA) Coordinated Sensors	  

u  Max-sum Coordinated Sensors	  

u  Simulated Annealing Coordinated Sensors	  

u  Each method was also compared with an upper bound scenario of having the 
sensors be continuously on.	  



Randomly Coordinated Sensors 

u  Each sensor randomly selects its sense/sleep schedule 

u  This method does not involve any coordination 



DSA Coordinated Sensors 

u  Each node repeats the following until a termination condition is met: 

u  In each iteration the node has a probability P (in this case 0.6) of executing the 
following optimization. 

u  Find the variable value that results in the sensors maximum utility. 

u  If this value is different than the previous computed value, send the new value out 
to all neighbors. 

u  At the end of each iteration receive the values sent by other nodes. 



Simulated Annealing Coordinated 
Sensors 

u  A centralized algorithm to compute an optimal or almost optimal global 
solution. 

u  Not practical because it assumes full knowledge of the sensor network. 

u  Used as a benchmark for judging the other methods. 



Neighbor Reduction 

u  In order to reduce the computational complexity, the authors put a cap on the 
maximum number of neighbors the coordination algorithm would consider. 

u  Each neighbor would rank its neighbors based on the amount of overlap it had 
in the calibration phase. 

u  For the coordination algorithm, each sensor only considered the n neighbors 
with the most overlap. 

u  In the experiments, the authors used 4 as the maximum number of neighbors 
for both the max-sum and DSA algorithms. 



Results: Calibration 

u  The first experiment tested the effect of varying the number of vehicles paths 
that occurred during the calibration phase.	  

u  The more paths in the calibration phase, the better the results.	  
u  For all coordination mechanisms, the added benefit from extra paths was 

similar.	  
u  The authors decided to use 1000 paths in the calibration phase of the rest of 

the experiments.	  



Results: Length of Sensing Schedule 

u  The authors varied the length of the sensing schedule (L) while keeping the 
average number of sensors in each schedule unit constant. 

u  The more periods/sensors, the better the performance of the network. 

u  Coordination has a higher impact on the system as the length of the sensing 
schedule increases 



Results: DSA vs. Max-Sum 

u  In the experiments, Max-Sum generally performed slightly better than DSA 
coordination, but the two methods were generally comparable. 

u  However, as the sensing schedule length (L) and the number of sensors (N) 
went up, max-sum became significantly better than DSA. 

u  In some experiments, max-sum beat DSA by 35%. 

u  Although max-sum provided slightly better performance, it also requires more 
computational overhead. 



Results: Message Reliability 

u  Measured the affect of a non-perfect messaging system between the sensors. 

u  The experiments showed that as the messages became less reliable, the 
performance of the DSA coordination went down significantly while the 
performance of the max-sum coordination stayed relatively constant. 



Conclusions and Insights 
Ryan Erdmann 



Key Conclusions 

u  The max-sum algorithm can be applied to the factor graph to find near-
optimal solutions to the DCOP problem 

u  Coordination can yield significant gains in system-wide performance 

u  Max-Sum has comparable performance to DSA, but is superior when sensor 
overlap is large or transmission probability decreases 



Key Insights 

u  There is a tradeoff between the performance of the algorithm and the 
coordination overhead.   

u  Future work can be done to transform the factor graph and use intelligent 
clustering to overcome this tradeoff 

u  The current algorithm requires 3 distinct phases, which prevents the 
multiagent system from being truly dynamic 

u  Relax the calibration phase by using collaborative and reinforcement learning 
protocols to train the system online 

u  A Bayesian Reinforcement Learning approach would remove all 3 phases, and 
sensors would truly self organize and adapt 



Questions? 




