
Agent-Based Decentralized
Coordination for Sensor

Networks Using the
Max-Sum Algorithm

A. Farinelli | A. Rogers | N. R. Jennings

Ryan Erdmann | Michael Hollman | Scott Johnson

Citation
A. Farinelli, A. Rogers, and N. R. Jennings (2014). Agent-based
Decentralised Coordination for Sensor Networks Using the MaxSum
Algorithm, Autonomous Agents and Multiagent Systems, 28(3):337-380.

Introduction
Michael Hollman

The Premise

u  Use network of sensors to observe large environment

u  Examples:

u  Animal tracking

u  Environmental phenomena monitoring

u  This paper: automobile traffic monitoring

u  Devices’ characteristics and environment impose some constraints

Limitations

u  Sensor location/distribution not guaranteed

u  Sensor and communication reliability not guaranteed

u  Primitive nature of sensor devices

u  Devices cannot be active 100% of the time

u  They use energy faster than they can harvest it

u  Overcome this with duty cycles (sense/sleep schedules)

The Problem from 10,000 Feet

How can a network of sensor-laden devices optimally
schedule their own duty cycles to maximize the system’s

effectiveness at observing their environment?

Modelling the Problem

u  Represent each sensor as an autonomous agent

u  Learn interactions with neighbors

u  Coordinate sense/sleep schedules

u  One model: Markov decision problem variations (Dec-MDP, POMDP)

u  Collaborate with peers to learn a joint action policy

u  Methods don't scale when agents have many neighbors

Modelling the Problem

u  Constraint Networks

u  Nodes represent agents

u  Edges represent constraints that arise between the agents

u  Hard Constraints à Constraint Satisfaction Problem (DCSP)

u  Soft Constraints à Constraint Optimization Problem (DCOP)

Distributed Constraint Optimization
Problems

u  Finding an exact solution to DCOP is an NP-hard problem

u  Algorithm grows exponentially

u  Require a holistic understanding of the environment and/or network

u  Requires preprocessing, so the system is not flexible to changes

u  Too computationally complex for extremely low-powered devices

u  Approximate algorithms often converge to poor-quality solutions

u  Thus, there is a need for an efficient, decentralized coordination algorithm

The Max-Sum Algorithm

u  A generalized distributive law (GDL) framework algorithm

u  Used in information theory, AI, statistical physics

u  Can be exploited to find good approximate solutions to DCOPs

u  Was tweaked to be used by communicative agents to converge to
neighborhood maximums

The Max-Sum Approach
To Coordination
Ryan Erdmann

The Max-Sum Algorithm

u  Max-Sum decomposes complex calculations by “factorizing” it

u  Uses a combination of the best features of both the optimal and stochastic
algorithms

u  Built on previous work

u  Factoring agent interactions (action selection) into a coordination graph

u  Max-Sum has been previously used for agent coordination, operating on the
coordination graph

Contribution to the State of the Art

u  Using the factor graph to

u  Model agent interactions

u  Provide an operational framework for the max-sum algorithm that defines the
message passing protocol

u  Provides a distributed, near-optimal solution to DCOP

DCOP Formalization

u  𝐷𝐶𝑂𝑃= <𝐴, 𝑋, 𝐷, 𝐹>

u  𝐴 = { 𝑎↓1 , 𝑎↓2 ,…𝑎↓𝑚 } set of agents

u  𝑋 = { 𝑥↓1 , 𝑥↓2 ,…𝑥↓𝑠 } set of variables

u  𝐷 = { 𝐷↓1 , 𝐷↓2  ,…𝐷↓𝑠 } set of domains

u  𝐹 = { 𝐹↓1 , 𝐹↓2 ,…𝐹↓𝑛 } set of constraints

u  Goal: arg max┬𝑥 ∑𝑖↑▒𝐹↓𝑖 (𝒙↓𝒊 )   

u  Recall that this is an NP-hard problem

Factor Graph Representation

u  Bipartite graph comprised of

u  Variable nodes

u  Function nodes

u  Function choice depends on system decomposition

u  Explicitly models a k-ary relationship between agents

Factor Graph Decomposition

u  Interaction-based

u  Functions represent interactions of neighboring agents

u  One function node per constraint

u  Agents must negotiate for ownership of shared functions

u  Utility-based

u  Each agent's function represents their own utility, and the sum of all agents'
functions is equal to the objective function

u  Agents can negotiate continuously - dynamic

u  Creates cycles, which impacts optimality of max-sum

Interaction-Based Utility-Based

The Max-Sum Algorithm

u  The algorithm iteratively passes messages back and forth between connected
variables and functions

u  These messages are functions that estimate the total utility of the network
for a possible variable assignment

u  Each agent makes local decisions to maximize the sum over all agents'
utilities.

The Max-Sum Algorithm

u  Message: From Variable i to Function j

u  Message: From Function j to Variable i

u  Local Decision to maximize:

arg max┬𝑥↓𝑖  
𝑧↓𝑖 (𝑥↓𝑖 )  

Message Update Scheduling

u  There is no need for a strict ordering or synchronization of messages

u  Agents update their variable assignment when they receive new messages.

u  Note: the variable assignment does not impact message computation

u  So, agents are asynchronous & continuously updating	

Algorithm Termination

u  Three possible outcomes:

u  Variable assignment and messages converge

u  Assignment converges, but messages do not

u  Neither assignment nor messages converge

u  Termination Rules:

u  Continue to propagate messages until they converge

u  Propagate messages for a fixed number of iterations

Max-Sum Solution Quality

u  When cycles exist, it's impossible to guarantee convergence or quality of the
resulting solution

u  Empirical evidence suggests that max-sum will converge and provide near-
optimal variable assignments

u  Quality is dependent on the structure of the factor graph; future work may
look at transforming areas of the graph with many cycles

Coordination Overhead

u  For each iteration, the agent broadcasts messages to all connected variables
and functions

u  Alternative DCOP methods optimize who to broadcast to

u  Benefits:

u  It's possible to add or remove agents to the system

u  The multiagent system is resilient to message transmission failures

The Wide Area Surveillance Problem
Michael Hollman

Problem Formalization

u  M sensors

u  Each sensor has a set of possible
schedules xi

u  Agent interaction produces a set of
functions that depend on a subset
of sensors xi

u  We want to find x*, the subset of
sensors that maximizes utility
(social welfare)

Problem Formalization

u  Sensors and event distribution are both assumed to be Poisson

u  λs – sensors expected in a unit area

u  λd – event duration

u  λde−λdt – probability of an event lasting time t

u  Sensors follow a schedule defined by the set si

u  L – length of si (same for all sensors)

u  All schedules are discrete and “tick” together

Coordination

u  System goal is to maximize the
probability that any given event is
detected by a sensor

u  Smells like a combinatorial
optimization problem

u  Similar to graph coloring

u  Key difference: multiple (>2)
sensors can communicate together

Theoretical Analysis

1.  Continuously powered sensors

u  Represents absolute upper bound.

2.  Synchronized sensors

u  All sensors sense in the same one time slot; no adaptation.

3.  Randomly coordinated sensors

u  Each sensors senses in one random time slot; no coordination.

4.  Optimally coordinated sensors

u  Each sensor senses in one coordinated time slot

For each case, calculate the probability of event detection (PED)

Theoretical Analysis

1.  Continuously powered sensors

2.  Synchronized sensors

Theoretical Analysis

3.  Randomly coordinated sensors 4.  Optimally coordinated sensors

Enough of that…

u  Bottom line is that optimally
coordinated sensors are… optimal!

u  E.g.: when L = 4, λs > 35

u  Optimal schedule will detect 50%
of what the random schedule
missed

u  Optimal schedule can perform as
well as random schedule with 40%
fewer sensors

Decentralized Coordination for the
Wide Area Surveillance Problem
Scott Johnson

Application

u  The authors tested the theoretical findings using the RoboCup simulation
environment.

u  Energy-constrained sensors are placed randomly throughout the environment
to detect vehicles.

u  Sensors have no knowledge of their location or of the road layout.

u  The radius of each sensor's field is independently assigned and comes from a
uniform distribution between 0.05 and 0.15 times the maximum dimension of
the environment.

Utility

u  Must transition from the theoretical global goal
of maximizing event detection to individual
utility functions.

u  Basic premise behind a practical utility function:

u  Sum over all subsections of the sensors range the
product of the area of the region and the
probability of detecting an event in that region
given the schedule divided by the total number of
sensors overlapping in that region.

Utility Revisited

u  Previous utility formula is still not general enough for practical application:

u  Sensors may not know the exact location of the other sensors.

u  Sensors may not know where the overlap exists.

u  Some regions may have a higher probability of an event occurring.

u  Sensing regions may be irregular.

u  Solution: additional calibration phase.

Calibration Phase

u  Occurs before any coordination is done.

u  All sensors follow the same sense/sleep schedule and
record the number of vehicles it sees and the
number of vehicles it and some subset of its
neighbors see.

u  Uses times of appearance and disappearance of cars to
determine when neighboring sensors have sensed the
same vehicle.

Coordination Phase

u  Uses the results from the calibration phase to run the max-sum algorithm.

u  The previous utility function is revised so that instead of using area, the
utility function substitutes in the number of vehicles that crossed the section
in the calibration phase.

Operational Phase

u  The sensors follow the sense/sleep schedule that results from the
coordination phase.

u  The results from this stage form the basis of comparison for the various
methods.

Experimentation

u  Four different approaches were tested in order to compare the effectiveness
of each approach:

u  Randomly Coordinated Sensors

u  Distributed Stochastic Algorithm (DSA) Coordinated Sensors	

u  Max-sum Coordinated Sensors	

u  Simulated Annealing Coordinated Sensors	

u  Each method was also compared with an upper bound scenario of having the
sensors be continuously on.	

Randomly Coordinated Sensors

u  Each sensor randomly selects its sense/sleep schedule

u  This method does not involve any coordination

DSA Coordinated Sensors

u  Each node repeats the following until a termination condition is met:

u  In each iteration the node has a probability P (in this case 0.6) of executing the
following optimization.

u  Find the variable value that results in the sensors maximum utility.

u  If this value is different than the previous computed value, send the new value out
to all neighbors.

u  At the end of each iteration receive the values sent by other nodes.

Simulated Annealing Coordinated
Sensors

u  A centralized algorithm to compute an optimal or almost optimal global
solution.

u  Not practical because it assumes full knowledge of the sensor network.

u  Used as a benchmark for judging the other methods.

Neighbor Reduction

u  In order to reduce the computational complexity, the authors put a cap on the
maximum number of neighbors the coordination algorithm would consider.

u  Each neighbor would rank its neighbors based on the amount of overlap it had
in the calibration phase.

u  For the coordination algorithm, each sensor only considered the n neighbors
with the most overlap.

u  In the experiments, the authors used 4 as the maximum number of neighbors
for both the max-sum and DSA algorithms.

Results: Calibration

u  The first experiment tested the effect of varying the number of vehicles paths
that occurred during the calibration phase.	

u  The more paths in the calibration phase, the better the results.	
u  For all coordination mechanisms, the added benefit from extra paths was

similar.	
u  The authors decided to use 1000 paths in the calibration phase of the rest of

the experiments.	

Results: Length of Sensing Schedule

u  The authors varied the length of the sensing schedule (L) while keeping the
average number of sensors in each schedule unit constant.

u  The more periods/sensors, the better the performance of the network.

u  Coordination has a higher impact on the system as the length of the sensing
schedule increases

Results: DSA vs. Max-Sum

u  In the experiments, Max-Sum generally performed slightly better than DSA
coordination, but the two methods were generally comparable.

u  However, as the sensing schedule length (L) and the number of sensors (N)
went up, max-sum became significantly better than DSA.

u  In some experiments, max-sum beat DSA by 35%.

u  Although max-sum provided slightly better performance, it also requires more
computational overhead.

Results: Message Reliability

u  Measured the affect of a non-perfect messaging system between the sensors.

u  The experiments showed that as the messages became less reliable, the
performance of the DSA coordination went down significantly while the
performance of the max-sum coordination stayed relatively constant.

Conclusions and Insights
Ryan Erdmann

Key Conclusions

u  The max-sum algorithm can be applied to the factor graph to find near-
optimal solutions to the DCOP problem

u  Coordination can yield significant gains in system-wide performance

u  Max-Sum has comparable performance to DSA, but is superior when sensor
overlap is large or transmission probability decreases

Key Insights

u  There is a tradeoff between the performance of the algorithm and the
coordination overhead.

u  Future work can be done to transform the factor graph and use intelligent
clustering to overcome this tradeoff

u  The current algorithm requires 3 distinct phases, which prevents the
multiagent system from being truly dynamic

u  Relax the calibration phase by using collaborative and reinforcement learning
protocols to train the system online

u  A Bayesian Reinforcement Learning approach would remove all 3 phases, and
sensors would truly self organize and adapt

Questions?

