
Self-Organized Task

Allocation to

Sequentially

Interdependent Tasks

in Swarm Robotics

Jimmy Lee, Sawyer Jager, Brad Steiner

Team Amirite?

Arne Brutschy, Giovanni Pini, Carlo Pinciroli,

Mauro Birattari, and Marco Dorigo (2014).

Self-Organized Task Allocation to

Sequentially Interdependent Tasks in Swarm

Robotics, Autonomous Agents and

Multiagent Systems, 28(1):290-336.

(Brutschyetal2014.pdf)

How can a swarm of robots allocate

themselves to efficiently complete sequentially

interdependent tasks?

Sequentially interdependent tasks:

A set of subtasks that must be completed

one after the other to complete the overall

task

Overview

Setup - Harvesting and Storing

Proposal

● Goal: Maximize number of objects retrieved per time unit

● Robots independently assign themselves to subtasks based on

how long they must wait for a robot from the other task to arrive at

the task interface.

● Increasing probability of a robot switching from one subtask to

another one while waiting at the interface

● Intuitively, a relatively longer wait at the interface indicates that the

other subtask is understaffed.

● End result: rates of arrival at the interface are equalized

Proposal

● Does not rely on global knowledge or

centralized components

● Does not use any communication

● Self organized

Formal Definitions

Formal Definitions - Tasks/Subtasks

● A task T is composed of subtasks τ1 ... τn

● Sequential interdependence means τ1 ... τn

must be completed in a given order

o T can also be called a “task sequence”

● τ1 > τ2 : τ1 must be completed before τ2

o τ1 is a predecessor

o τ2 is a successor

Formal Definitions - Allocation

● gi : A group of robots working on τi

● Ni : Number of robots in gi

● N1 + N2 + … + Nn = N : total number of

robots

o There are no idle robots

Formal Definitions - Process

A robot allocated to τi waiting at the interface for a robot

from τj experiences interface delay denoted dij

(seconds)

Robots keep track of how long they’ve waited at either

end of the interface. Average wait time of dij denoted dˆij

Probability of a robot switching from τi to τj before dij

seconds have elapsed: Pij(dij)

● 1 - Pij(dij) : Probability a robot will wait dij seconds

● Formally, Pij(dij ; dˆij , dˆji)

Probability Function

Sigmoid Curve

Time Waited at Interface

P
ro

b
a

b
il

it
y
 o

f
S

w
it

c
h

in
g

Probability Function

Designed so that robots tend to switch to the

subtask with a longer wait time quicker

subtask j is understaffed

subtask i is understaffed

Probability Function

Function is independent of absolute values of

subtask duration and delays

Probability curve

automatically calibrates

itself

If wait times are generally

longer, the probability of

switching doesn’t increase

until more time has passed

Probability Function Formal Def.

Robots evaluate probability function at discrete

points in time (dictated by control cycles).

At each control cycle, the robot switches from

one task to another with a probability of pij

(switching probability, not the same as Pij)

Probability Function Formal Def.

Probability that the robot does not switch subtasks within

the first dij control cycles.

Pij(dij ; dˆij , dˆji) = 1 - Π(1 - pij(q ; dˆij , dˆji))
q=1

dij

Probability Function Formal Def.

k = steepness parameter

lower k => steeper curve

m = shift parameter

higher m => delay longer

Steepness and Shift

Probability Function Formal Def.

asdfasdfasdf

asdfasdfasdf

Relates the average interface times

Ensures robots tend to switch to the

understaffed group and not the other way

around.

subtask j is understaffed

subtask i is understaffed

Experiment

Experimental Framework

Shown:

Asymmetric environment (arena ratio = .33)

Experimental Framework

Two subtasks: harvesting and storing

Two environments: symmetric and asymmetric (.67)

Resources must be harvested before they can be stored

Resources cannot be cached at interface area (direct

handoffs only)

Robots that switch subtasks experience a switching cost, cs

Task switching only occurs at the task interface

Metrics

P : Swarm Performance = # of objects

collected by the swarm

R : allocation ratio = fraction of robots allocated

to storage subtask

Stot = total number of switches performed by

robots in a run of the simulation.

Experiments

1. Optimal Allocation

2. Task Switching Cost

3. Parameter Study

4. Scalability

5. Adaptivity

1. Optimal Allocation

Brute force search for the optimal ratio of

allocation (Ropt) for various numbers of robots

Robots are not allowed to switch subtasks

Symmetric Environment

Asymmetric Environment

2. Task switching cost

Examine influence of task switching cost

Experiment with two groups:

Group 1: Each robot required to complete

both subtasks

Group 2: Robots switch using the proposed

method

Proposed method unaffected

by switching costs

N = 18

3. Parameter Study

Explore the effects of m (shift parameter) and

k (steepness parameter) on performance

4. Scalability

Examine how increasing the number of robots

affects performance

Physical space is considered though this is a

virtual simulation

Diminishing returns

due to congestion

5. Adaptivity

Test flexibility of the proposed method

Change the environment halfway through the

simulation

@ t = 30, symmetric => asymmetric

Quick adaptation

Real Simulation

http://iridia.ulb.ac.be/supp/IridiaSupp2011-

002/sbot_experiment_run1_30x.ogv

http://iridia.ulb.ac.be/supp/IridiaSupp2011-002/sbot_experiment_run1_30x.ogv

Conclusions

● Proposed method allows for self-

organization

● Does not require communication

● Achieves near-optimal allocation

● Environment specific factors have very little

influence

● Adaptive

Questions?

Then we have questions for you!

Kidding.

No questions?

