
Computational	Thinking
Informatics
Chutes	and	Ladders

http://img2.wikia.nocookie.net/__cb20130510160248/despicableme/images/e/e9/Despicable-Me-Minions_thumb10.jpg

Professor	Leen-Kiat Soh
Department	of	Computer	Science	and	Engineering
University	of	Nebraska,	Lincoln,	NE
E-mail:		lksoh@cse.unl.edu



What	is	Computational	Thinking?

• A way	of	thinking	for	logically and	methodically
solving	problems
– E.g.,	purposeful,	describable,	replicable

• Includes	skills such	as	
– Decomposition
– Pattern	Recognition
– Abstraction
– Generalization
– Algorithm	Design
– Evaluation



3

What	is	Informatics?
• “the	collection,	classification,	storage,	retrieval,	and	
dissemination	of	recorded	knowledge”	–Merriam-
Webster

• “Informatics is	the	study	of	the	structure,	behaviour,	
and	interactions	of	natural	and	engineered	
computational	systems.	Informatics studies	the	
representation,	processing,	and	communication	of	
information	in	natural	and	engineered	systems.	It	has	
computational,	cognitive	and	social	aspects.”	–
University	of	Edinburgh

• …
• …



4

Informatics	Minor	@	UNL
• The	Informatics	minor	is	an	interdisciplinary	program	that	prepares	students	

with	core	computational	skill	sets	and	competencies	that	allow	them	to	solve	
problems	within	their	chosen	discipline	or	field.	

• The	program	also	builds	interdisciplinary	problem	solving	skills	that	are	
applicable	and	advantageous	across	academia	and	within	industry.	

• The	minor’s	objectives	are	anchored	around	a	set	of	core	outcomes,	such	that	
students	completing	the	minor	will	be	able	to:
– Apply	computational	thinking	to	solve	problems	effectively	and	implement	it	

using	a	programming	language;
– Apply	statistical	techniques	to	assess	outcomes	of	empirical	studies	or	

experiments,	and	set	up	research	designs	to	evaluate	tools,	techniques	or	
hypotheses	effectively;

– Interact,	use	and	manage	data	or	databases	and	solve	data-centric	
problems;	or	organize,	visualize,	and	communicate	digital	data	effectively	
and	efficiently;	or	use	creative	competencies	to	generate	creative	solutions;	
and

– Contribute	one’s	expertise	to	the	solution	of	interdisciplinary	problems	by	
effectively	collaborating	and	communicating	with	those	from	other	
disciplines.



5

Chutes	&	Ladders
• If	you	have	never	played	Chutes	and	Ladders,	it's	a	simple	game	

involving	1-4	players,	a	spinner	with	numbers	1-6	and	a	game	
board	that	is	divided	into	100	squares.	

• On	the	board	are	squares	that	have	ladders	to	advance	you	
forward	and	chutes,	or	slides,	to	take	you	backwards.	

• A	player	spins	the	spinner	and	moves	the	number	of	spaces	
indicated.

• If	that	square	has	a	chute	or	ladder,	the	player	must	go	to	the	
square	it	leads	to.	

• A	player	must	get	to	square	100	exactly,	meaning	if	they	go	
over	100,	they	must	spin	again.



6

Chutes	&	Ladders

http://www.rpi.edu/dept/eng/otherweb/GK12/indexb30c.html



7

Chutes	&	Ladders:	Decomposition

• Components:	
– Spinner,	Players,	Chutes,	Ladders

• How	are	all	these	components	related?		
– Square	(i.e.,	Location)

• How	to	move?	
– 1.	spin,	2.		if	past	square	100,	stay	put,	3.	move	player,	4.	if	
chute	move	accordingly,	and	5.	if	ladder	move	accordingly.

• How	to	determine	a	winner?	
– Check	each	player’s	current	square	every	time	after	a	player	
has	moved



8

Chutes	&	Ladders:	Algorithm	Design

• A	loop:	
– Loop	until	there	is	a	winner

• 1.		Player	i spins
• 2.		Move	player	i
• 3.		Check	winner

• Conditional	for	moving	a	player:
– If	current	square	+	spin	num >	100,	no	change	to	current	
square;	otherwise,	current	square	ß current	square	+	spin	
num

– If	current	square	has	a	chute,	then	current	square	ß chute’s	
bottom_square;	otherwise,	if	current	square	has	a	ladder,	
then	current	square	ß ladder’s	upper_square



9

Chutes	&	Ladders:	Evaluation

• Conditional	for	moving	a	player:
– If	current	square	+	spin	num >	100,	no	change	to	current	
square;	otherwise,	current	square	ß current	square	+	spin	
num

– If	current	square	has	a	chute,	then	current	square	ß chute’s	
bottom_square;	otherwise,	if	current	square	has	a	ladder,	
then	current	square	ß ladder’s	upper_square

– If	current	square	+	spin	num >	100,	will	the	second	
conditional	still	get	executed?

Is	there	anything	wrong	with	the	above	algorithm?



10

Chutes	&	Ladders:	Abstraction
• Do	we	need	to	consider	

the	colors	of	the	
squares?

• Do	we	need	to	consider	
the	cartoons	on	the	
board?

• Do	we	need	to	consider	
the	creases	on	the	
board?

• Do	we	need	to	consider	
the	dimensions	of	the	
board?

• Etc.



11

Chutes	&	Ladders:	Generalization
• Well,	Snakes	&	Ladders	

game	…
• Anything	else?
• How	about	…

http://www.fun-free-party-games.com/traditional-games/traditional-board-games-snakes-
and-ladders.html



12

Chutes	&	Ladders:	Generalization	2
• How	about	…

– Maze	traversal?
• Think	about	conditionals	

when	selecting	the	next	
location	to	move	to	…

http://www.uefap.com/speaking/exercise/mazes/mazes.htm



13

Chutes	&	Ladders:	Generalization	3
• How	about	…

– Maze	traversal?
– Monopoly?

• Think	about	the	chance	
factor

• Think	about	the	movement
• Think	about	the	get-out-of-

jail	card

http://legionofleia.com/2015/07/monopoly-movie-lionsgate-and-hasbro-team-up-to-pass-go/



14

Chutes	&	Ladders:	Generalization	4
• How	about	…

– Maze	traversal?
– Monopoly?
– Pacman?

• Think	about	getting	eaten	
by	the	monsters	…

• Think	about	the	monsters	
chasing	the	pacman ….

• Thinking	about	selecting	the	
next	location	to	move	to	…

http://xmedia.ex.ac.uk/wp/wordpress/loading-new-game-i-hate-pac-man/



15

Chutes	&	Ladders:	Generalization	5
• How	about	…

– Maze	traversal?
– Monopoly?
– Pacman?
– Chess	playing???

• Think	about	conditionals	to	
decide	which	piece	to	move	
next	…

http://stanford.edu/~cpiech/cs221/apps/deepBlue.html



16

Chutes	&	Ladders:	Pattern	Recognition
• What	if	now	we	wanted	

to	allow	players	to	
generate	new	
“configuration”	of	the	
game?
– How	would	you	make	the	

game	really	boring?
– How	would	you	make	the	

game	really	challenging?
– How	would	you	make	the	

game	really	exciting?
– …
– Is	it	possible	to	make	the	

game	impossible	for	any	
player	to	win?

PATTERNS!			



References

• http://www.google.com/edu/computational-thinking
• Paul	Curzon’s	“So	What	is	Computational	Thinking”
• Jeannette	M.	Wing’s	“Computational	Thinking”,	
Communications	of	the	ACM,	March	2006,	pp.	33-35

• https://en.wikipedia.org/wiki/Computer_science


