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Abstract 
 
In this paper, we propose and evaluate a fault-tolerant real-time scheduling algorithm that can 
tolerate one processor's permanent fault in a heterogeneous distributed system. Workload in this 
study consists of a stream of real-time jobs where each job contains multiple precedence-constrained 
tasks with individual deadlines. A Primary Backup (PB) model is employed, where each real-time 
task has two copies, i.e. a primary one and a backup one, that are allocated to two different 
processors. The backup copy executes only if the primary copy fails due to the failure of its assigned 
processor. The proposed scheduling algorithm also takes the reliability measure into account, in 
order to further enhance the reliability of the heterogeneous system. In addition, the detection time 
for permanent fault is incorporated into the scheduling scheme so as to make the scheduling result 
more realistic and accurate. Simulation results show that the proposed algorithm provides 
significantly improved reliability and schedulability. 
 
K eywords: Real-time scheduling, fault-tolerance, heterogeneous system, reliability cost 
  
1. Introduction 
 

Scheduling algorithms, be they at the job-level [7] or at the instruction-level [8], play an important 
role in obtaining high performance in parallel and distributed systems [6]. As a result, a wide variety 
of scheduling algorithms have been proposed and studied in the literature. The objective of 
scheduling algorithms is to map tasks onto processors and order their execution so that overall 
performance goals are achieved.  

In general, a scheduling algorithm is designed to operate in the presence (or absence) of a number 
of operational conditions, depending on the workload, operational environment, complexity and cost 
constraints. These operational conditions include (but not limited to): (1) whether the operation is 
static [13] or dynamic [7] (i.e. off-line vs. on-line), (2) whether the workload has real-time constraints 
[30], (3) whether fault-tolerance [9] is considered, (4) whether the underlying system is heterogenous 
[25] or homogeneous, and (5) whether precedence constraints exist among tasks to be scheduled [3]. 
Unfortunately, most scheudling algorithms in the literature only consider one or two such conditions 
in isolation from others, thus limiting their power and applicability. Due to the ever increasing 
complexity and diversity of parallel and distributed systems in terms of workload, systems and 
operational characteristics, it has become increasingly desirable and necessary to design scheduling 
algorithms that can operate in the presence of all necessary conditions so as to satisfy any specific 
parallel/distributed computing requirement. 
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Thus, we are motivated in this study to investigate the possibility of designing scheduling 
algorithms that take the above five conditions into consideration simultaneously, superseding 
conditions set for most existing algorithms. More specifically, to make the scheduling algorithm more 
powerful and practical, we propose a scheduling scheme with which real-time tasks with precedence 
constraints can be statically scheduled to tolerate the failure of one processor in a heterogeneous 
parallel and distributed environment. While extending the proposed algorithm to incorporate on-line 
(dynamic) scheduling is possible (and is currently being developed), it should also be noted that the 
proposed algorithm can be easily "downgraded" to relax one or more of the imposed operational 
conditions. The purpose of this paper is to present and analyse such a scheduling algorithm. 

The issue of scheduling on heterogeneous systems has been studied in many papers [25][21]. 
Ranaweera and Agrawal present a task-duplication based scheduling scheme (TDS) to schedule tasks 
of a directed acyclic graph (DAG) onto a heterogeneous system. A scalable scheduling scheme called 
STDS for heterogeneous systems is devised in [24]. In [5] and [29], reliability cost is incorporated 
into scheduling algorithms for tasks with precedence constraints. However, these algorithms either do 
not support fault-tolerance or assume that tasks in the system are not real-time. 

Previous work has been done to facilitate real-time computing in heterogeneous systems. A 
solution for the dynamic resource management problem in real-time heterogeneous systems is 
proposed in [10]. In [27], a probabilistic model for a clients/server heterogeneous multimedia system 
is presented. In our previous work, both static [22] and dynamic [21] real-time scheduling schemes 
for heterogeneous systems were developed. The above algorithms, however, are not able to tolerate 
any permanent processor failure. 

Since occurrences of faults are often unpredictable, fault-tolerance must be considered in the 
design of real-time scheduling algorithms to make systems more reliable [14][17]. Liberato et al. 
proposed a necessary and sufficient feasibility-check algorithm for fault-tolerant scheduling, 
assuming an earliest-deadline-first policy for aperiodic preemptive tasks [15]. A delayed scheduling 
algorithm using a passive replica method was developed in [2]. This scheme has a relatively small 
overhead for backup processes. However, the above algorithms share the same assumption that the 
underlying system is homogeneous with identical processors and uniform interconnection networks. 

Algorithms proposed in [1][4][16][19][20][23][29] are the closest to the proposed algorithms in 
this paper in terms of operational conditions. The main difference between Abdelzaher and Shin's 
work and this study is that the algorithm studied in [1] assumes that there is no failure in processors, 
and thus does not support fault-tolerance. The proposed algorithm, however, is able to tolerate any 
one processor's failure, thus making the system more dependable. Dima et al. devised an offline real-
time and fault-tolerant scheduling algorithm using replication of operations and data communications 
[4]. The difference between Dima et al.'s work and our proposed algorithm is that, while the former 
[4] must execute the backup copy simultaneously with the primary copy, ours schedules the backup 
copy after its primary copy, thus avoiding the unnecessary execution (and processor resource 
consumption) if the primary copy completes successfully. Manimaran et al. [16] and Mosse et al. 
[18][19] proposed dynamic algorithms to schedule real-time tasks with resource and fault-tolerance 
requirements on multiprocessor systems. There main differences between their work and ours lies in 
the workload where tasks considered in their algorithms are independent among one another and are 
scheduled on-line, whereas tasks considered in our algorithm are confined by precedence constraints 
and scheduled off-line. Oh and Son studied a real-time and fault-tolerant scheduling algorithm that 
statically schedules a set of independent tasks, and can tolerate one processor failure [20]. The major 
difference between Oh and Son's work [20] and ours is that their algorithm assumes no message 
communication among tasks, whereas our algorithm allows real-time tasks to communicate with one 
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other by passing messages. Furthermore, the above algorithms [1][4][16][18][19][20] are devised for 
homogeneous systems, thus limiting their applicability. Although Srinivasan and Jha's algorithm [29] 
and ours are both designed for heterogeneous systems, there are two main differences between them. 
Unlike our algorithm, theirs does not consider fault-tolerance, and tasks considered are non-real-time.  

To the best of our knowledge, most scheduling algorithms do not consider fault-tolerance and 
reliability issues, only consider homogeneous systems, or assume independent tasks. In this paper, we 
attempt to address all these issues in a unified algorithm. The rest of the paper is organized as follows. 
Section 2 presents the system model and assumptions. Section 3 describes some scheduling principles 
behind the fault-tolerant real-time scheduling algorithm proposed in Section 4. Performance analysis 
is presented in Section 5. Section 6 concludes the paper by summarizing the main contributions of 
this paper and by commenting on future directions for this work. Finally, the appendix contains 
proofs for all the theorems and presents a simple example to elucidate the proposed algorithm. 

 
2. The System M odel 

 
In this study, we consider non-pre-emptive real-time tasks running on a heterogeneous system, 

where processors may operate at different speeds and communication channels may have different 
bandwidths. Tasks are related to one another by their precedence constraints. Thus, these real-time 
tasks are modelled by Directed Acyclic Graphs (DAGs). When one processor fails, it takes extra, 
non-negligible time to detect and handle the fault, and we assume that the fault detection time is dt. 
Most scheduling models in the literature assume dt to be zero. To make the real-time scheduling more 
precise and realistic, we have incorporated the detection time into the scheduling algorithm. 

To achieve the tolerance of permanent faults in one processor, multiple versions of tasks on 
different processors may be used. The Primary Backup (PB) model is one of many schemes. In this 
model, two copies of each task are executed serially on two different processors. For simplicity of 
presentation, we assume that primary and backup copies of a task are identical. This implies that two 
copies have the same execution times. It should be noted that our approach can also be applied when 
primary and backup copies of a task have different execution times. Since the focus of this work is to 
investigate a scheduling scheme that tolerates permanent failures in any one processor, failures of 
communication links connecting processors are not considered in this model. Therefore, we assume 
that the proposed scheduling scheme is based on reliable communication channels. Real-time and 
fault-tolerant communication protocols [11] can be applied to guarantee that messages arrive from 
one processor to another even in the presence of channel failures. Since the issue of fault-tolerant 
communication is beyond the scope of the current study, we will not discuss it further in this paper. 

A real-time DAG is defined as a pair T = {V, E}, where V = {v1, v2,...,vn} represents the set of real-
time tasks, and the set of weighted and directed edges E represents communication between pairs of  
real-time tasks. ei j = (vi, vj) ∈ E indicates a message sent from task vi to vj, and |ei j| denotes the 
volume of data sent between these tasks. In order to support fault-tolerance, each task has a primary 
and a backup copy, denoted vP and vB. Fig. 11 in Appendix E shows an example DAG which we will 
use throughout the paper.  

The heterogeneous system is modeled by a set of processors P = {p1, p2,..., pm}, where pi is a 
processor with local memory. Processors in the system are connected with one other by a high-speed 
interconnection network. A processor communicates with other processors through message passing, 
and the communication time between two tasks assigned to the same processor is assumed to be zero.  

A measure of computational heterogeneity is modeled by a function, C: V × P → R, which 
represents the execution time of each task on each available processor in the distributed system. cj(vi) 
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denotes the execution time of task vi on processor pj. Since we assume that for each task vi, its 
primary copy vi

P and backup copy vi
B have the same version, we get cj(vi

P) = cj(vi
B) = cj(vi). A 

measure of communicational heterogeneity is modeled by a function M: E × P × P → R. That is, the 
communication time for sending a message e from task vs on processor pi to task vr on processor pj is 
determined by wi j* |e|. wi j is the weight on the edge between processors pi and pj , representing the 
delay involved in transmitting a message of unit length between the two processors.  

For each task v ∈ V, d(v), s(v) and f(v) denote the deadline, scheduled start time, and finish time, 
respectively. p(v) denotes the processor to which task v is allocated. These parameters are subject to 
constraints: f(v) = s(v) + ci(v) and s(v) ≤  d(v) - ci(v), where p(v) = i. A parallel job has a feasible 
schedule if for each real-time task v ∈ V, it satisfies constraints s(vP) ≤  d(v) - ci(v), and s(vB) ≤  d(v) - 
cj(v), where p(vP) = i, p(vB) = j. 

To make the system more reliable without any extra hardware cost, we also introduce a reliability 
model, which is similar to those proposed by Srinivasan et al. [29] and Qin et al. [21][22]. In this 
model, processor failures are assumed to be independent, and follow a Poisson Process with a 
constant failure rate. The reliability cost of a task vi on a processor pj is the product of pj's failure rate 
λj and vi's execution time on pj. It should be noted that the notion of reliability heterogeneity is 
implied in the reliability cost by virtue of heterogeneity in cj(vi) and λj. Thus, the reliability cost of a 
task schedule is the summation over all tasks' reliability costs based on the given schedule. Given a 
heterogeneous system P, the reliability cost is defined below. RC0(T), which denotes the reliability 
cost with no failure in the system, is defined as: 
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Here reliability is represented by e-RCo(T). To achive a high overall reliability, it is intuitive to schedule 
a task with a longer execution time to a more reliable processor.   

3. The Scheduling Principles 

The algorithm to be presented in Section 4 relies heavily on the knowledge and understanding of 
relationships among the primary and backup copies, and predecessors and successors of tasks. In 
order to qualify or quantify some of these relationships, thus facilitating the development of the 
algorithm, in the subsections that follow we will present the necessary definitions, assumptions, 
theorems and corollaries.  
3.1 Definitions and Assumptions 

To facilitate the presentation of the proposed scheduling principles, additional definitions and 
assumptions are introduced. 
DEFINITION 1. Given a processor pi∈ P, @(pi, t) denotes that the processor has no failures at time 
t′≤ t, whereas ~@(pi, t) represents a processor with software or hardware failures at time t′ > t. 
DEFINITION 2. Given a task v∈ V, ΘΘΘΘv signifies that task v successfully executes on processor p(v), 
whereas ~ΘΘΘΘv signifies that v does not work. 
DEFINTION 3. Given two tasks vi and vj, vi is schedule-preceding vj, denoted vi �  vj, if and only if 
s(vj) ≥ f(vi).  
DEFINITION 4. Given two tasks vi and vj, vi is message-preceding vj, denoted vi �  vj, if and only if 
(vi, vj)∈ E, and vi sends a message to vj. 
DEFINITION 5. Given two tasks vi and vj, there is an execution-precedence relationship between vi 
and vj, denoted vi �  vj, if and only if (vi, vj) ∈ E, Θvi, Θvj, vi �  vj and vi �  vj.   
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DEFINITION 6. D(v) ⊂ V denotes the set of predecessors of task v, D(v) = { vi ∈ V | (vi, v) ∈ E }. 
That is, v cannot start until it receives messages from all tasks in D(v) due to precedence constraints. 
S(v) ⊂ V denotes the set of successors of task v, S(v) = { vi ∈ V | (v, vi) ∈ E }. 

From the above definitions, it is clear that, given three tasks vi, vj and vk, if vi �  vj and vj �  vk, then 
vi �  vk. It is noted that the execution-precedence relationship " � " and message-precedence 
relationship " � " are different from schedule-precedence relationship " � ". The last is transitive, 
whereas none of the first two is transitive.  The execution-precedence relationship is the strongest in 
that it can imply the other two. The schedule-precedence relationship, on the other hand, is the 
weakest. This is described in Property 1 as follows. 
Property 1. Given two tasks vi and vj, if vi is execution-preceding vj, then vi is message-preceding vj. 
If vi is message-preceding vj, then vi is schedule preceding vj. Thus, (vi �  vj) →→→→ (vi �  vj) →→→→ (vi �  vj). 
 If task vi is a predecessor of task vj, then the primary copy of vi must send a message to the primary 
copy of vj. This is described formally in the following property. 
Property 2. Given two tasks vi and vj, if vi is a predecessor of vj, then vi

P must be message-preceding 
vj

P, that is, ∀∀∀∀vi, vj ∈∈∈∈ V: (vi, vj) ∈∈∈∈ E →→→→ vi
P  �   vj

P. 
Given a task v, the backup copy of v executes if the primary copy does not work. There are two 

cases in which vP could not work. (1) Before time f(vP), processor p(vP) fails. In other words, ∃ t <  
f(vP): ~@(p(vP), t)→ ~ΘvP. (2) Processor p(vP) has no failures before time f(vP), but vP  can not 
receive messages from all its predecessors. Case (2) is illustrated by a simple example in Fig. 1 where 
dotted lines denote messages sent from predecessors to successors. Let vj be a predecessor of v, and 
p(v) ≠ p(vj). Suppose at time t < f(vj

P), processor p(vj
P) fails, then vj

B should execute. Since vj
B is not 

schedule-preceding vP, vP can not receive any message from vj
B. Hence, even if p(vP) does not fail, vP 

still can not execute. 
The primary copy of a task that never encounters case (2) is referred to as a strong primary copy, 

as formally defined below.  
DEFINITION 7. Given a task v, vP is a strong primary copy, if and only if the execution of vB implies 
the failure of p(vP) before time f(vP)), thus, ΘvB → ~@(p(vP), f(vP). Alternatively, given a task v, vP is 
a strong primary copy, if and only if that no failures of p(vP) at time f(vP)) imply the execution of vP, 
i.e. @(p(vP), f(vP)) → ΘvP. 

3.2 The Principles 
 We use the primary/backup approach to satisfy the fault-tolerance requirement. In this approach, it 
should be obvious that the primary and backup copies of each task must be scheduled on two 
different processors.  

The backup copy of a task executes only when the primary copy could not be finished. This 
requires that the start time of the backup copy be later than the finish time of the primary copy. This 
requirement is described in the following proposition and its proof can be found in [18]. 
Proposition 1. One processor's failure is tolerable, only if for each task v, there is no overlapping 
time between vP and vB, and the start time of vB is greater than or equal to the sum of the finish time of 
vP and the fault detection time. Thus, (One processor's failure is tolerable)→∀∀∀∀v∈∈∈∈V: s(vB)≥≥≥≥ f(vP) + dt. 

Suppose that the scheduling result can tolerate one processor's failure, one essential precondition is 
that, for each task v, the sum of the execution times of v's primary/backup copies and the fault 
detection time is less than or equal to its deadline. It is given as the proposition below. The proof of 
proposition 2 is straightforward, and it is omitted in this section. 
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Proposition 2. One processor failure is tolerable, only if (a) primary and backup copies are allocated 
to different processors, and (b) the sum of execution times for vP and vB and fault detection time is 
less than or equal to the deadline, that is,  

(One processor's failure is tolerable) →→→→∀∀∀∀v ∈∈∈∈V: (p(vP) = i ≠≠≠≠ p(vB) = j) ∧∧∧∧ ci(v
P) + cj(v

B) + dt ≤≤≤≤ d(v). 
Given two tasks vi and vj, (vi, vj)∈ E. The relationships among vi

P, vj
P, vi

B, and vj
B are the key issues 

to be considered in the scheduling algorithm. Our main task is to determine the execution-precedence 
and the message-precedence relationships among these copies. Suppose the primary copy of task vj 
has successfully executed, either vi

P is execution-preceding vj
P or vi

B is execution-preceding vj
P. We 

observe that, in some special cases, vi
B will never be execution-preceding vj

P. This statement is 
described and proved in Theorem 1. This case is also illustrated in Fig 2. 
Theorem 1. Given two tasks vi and vj, (vi, vj)∈ E, if the primary copies of vi and vj are allocated to the 
same processor and vi

P is a strong primary copy, then vi
B is not execution-preceding vj

P. That is, vj∈V, 
(vi, vj) ∈ E: p(vi

P) = p(vj
P) = p ∧ (vi

P is the strong primary copy) → ~( vi
B �  vj

P). 
Proof: See Appendix.                               �  

The result of Theorem 1 is very interesting and useful for the scheduling algorithm. It suggests that 
if a task vj is allocated to the same processor as its predecessor vi, and vi

P is a strong primary copy, 
then the backup copy of vi  only needs to send messages to the backup copy of vj.  

Given a task v, it is observed that under some special circumstance, vB cannot be scheduled on the 
processor where the primary copy of v's predecessor vi

P is scheduled. Fig. 3 illustrates this scenario.  
Theorem 2. Given two tasks vi and vj, (vi, vj)∈ E, if vi

B is not schedule-preceding vj
P, and vi

P is a 
strong primary copy, then vj

B and vi
P can not be allocated to the same processor. Thus, ∀vi, vj∈V, (vi, 

vj) ∈ E: ~(vi
B �  vj

P) ∧ vi
P is a strong primary copy → p(vi

P) ≠ p(vj
B). 

Proof: See Appendix.                               �  
 Since the proposed primary/backup model tolerates single-processor failures only, we assume that 

p1 

p2 

p3 

Fig. 3 (vi, vj) ∈ E, vi
B,is not schedule-preceding vj

P

and vi
P is a strong primary copy. vj

B can not be 
scheduled on the processor on which vi

P is 
scheduled. 

Fig. 4 (vi, vj) ∈ E, vi
P and vj

P are both strong 
primary copies, and vi

P and vj
P are scheduled 

on two different processors. vi
B  is not 

execution-preceding vj
B. 

p1 

p4 

p2 

p3 

vi
B 

vj
P 

vj
B 

 

vi
P 

Fig. 2 vi is the predecessor of vj, vi
P and vj

P are 
scheduled on the same processor, and vi

P is the 
strong primary copy. In this case, vi

B is not 
execution-preceding vj

P. 

p1 

p2 

p3 

vi
B 

vj
P 

vj
B 

vi
P 

Fig. 1 Since processor p1 fails, vi
B  executes.

Becuase vj
P can not receive message from vi

B, vj
B

must execute instead of vj
P. 

p1 

p4 

p2 

p3 

vi
P 

vi
B vj

P 

vj
B 

vj
B vi

P 

vj
P 

vi
B 

vj
B 

time 

time 

time 

time 

Primary copy of vi 

Backup copy of vi Backup copy of vj 

Primary copy of vj 
Predecessor Successor 
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only one processor in the system will encounter a permanent failure. Based on this assumption, we 
observe that if task vi is a predecessor of task vj, and the primary copies of both tasks are strong 
primary copies, then the backup copy of vi is not execution-preceding the backup copy of vj. Fig. 4 
illustrates a scenario of the case, which is presented formally in the theorem below. 
Theorem 3.  Given two tasks vi and vj, vi is a predecessor of vj. If vi

P and vj
P are both strong primary 

copies, and p(vi
P) ≠ p(vj

P), then vi
B is not execution-preceding vj

B. In other words,∀vi, vj∈V, (vi, vj) ∈ 
E: (vi

P and vj
P are two strong primary copies) ∧ p(vi

P) ≠ p(vj
P) → ~(vi

B �   vj
B). 

Proof: See Appendix.                               �  
Theorem 3 suggests that if task vi is a predecessor of task vj, and the primary copies of both tasks 

are strong primary copies, then the backup copy of vi
B

 does not need to send messages to vj
B.  

The notion of strong primary copy appears in Theorems 1, 2, and 3, it is therefore necessary to be 
able to determine whether a task has a strong primary copy. It is straightforward to prove that a task 
without any predecessor has a strong primary copy. Base on this fact, Theorem 4, below, suggests an 
approach to determining whether a task with predecessors has a strong primary copy. In this 
approach, we assume that we already know if all the predecessors have strong primary copies or not. 
By using this approach recursively, starting from tasks with no predecessors, we are able to determine 
whether a given task has a strong primary copy. 
Theorem 4. (a) A task with no predecessors has a strong primary copy. (b) Given a task vi and any of 
its predecessors vj , if they are allocated to the same processor and vj has a strong primary copy, or, if 
they are allocated on two different processors and the backup copy of vj is schedule-preceding the 
primary copy of vi ,  then vi   has a strong primary copy. That is, ∀vj∈V, (vj, vi) ∈ E: ((p(vi

P) = p(vj
P) ∧ 

(vj
P

 is a strong primary copy)) ∨ (p(vi
P) ≠ p(vj

P) ∧ (vj
B  �   vi

P)) → (vi
P is a strong primary copy). 

Proof: See Appendix.                               �  
 
4 The Scheduling Algorithm 
 
 The propositions, theorems and corollaries provided in section 3 help us establish important 
qualitative relationships among primary and backup copies of tasks, as well as among predecessors 
and descendents of tasks. In this section, we will use these relationships to determine necessary 
quantitative relationships in order to calculate essential values for the proposed algorithm. These 
values include the earliest available time and the earliest start time of primary and backup copies, the 
earliest available time and the earliest start time of messages. 
4.1 Notations 

To help present the algorithm clearly, we define the following notations. 
EATi(v, vj) denotes the earliest available time for the primary/backup copy of task v if message e sent 
from vj∈ D(v) represents the only precedence constraint. 

The primary copy of a task v must receive messages from all primary copies of the tasks in set 
D(v). Hence, the earliest available time of vP on processor pi is determined by the primary copies of 
its predecessors and messages sent from D(v).  
EATi

P(v) denotes the maximum (or the latest) of  EATi(v
P, vj

P) at processor pi, for all messages sent 
from the primary copies of the tasks in D(v). Thus,  
             )},({)( )(

P
j

P
ivDv

P
i vvEATMAXvEAT

j ∈=               (2)        

 Suppose we have a pair of tasks vi and vj, (vi, vj)∈ E. Based on Theorem 3, we know that if vi
P and 

vj
P are both strong primary copies and p(vi

P) ≠  p(vj
P), then vi

B is not execution-preceding vj
B.  
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U(v) ⊂⊂⊂⊂ V denotes the set of v's predecessor tasks allocated on different processors and with strong 
primary copies, namely, U(v) = {vi | { (vi , v)∈ E, vi

P and vP are both strong primary copies and p(vi
P) 

≠ p(vP)}. In other words, the backup copy of vi∈ U(v) does not need to send message to the backup 
copy of v, based on Theorem 3. 
B(v) ⊂⊂⊂⊂ V denotes the set of v's predecessor tasks that are not in U(v), namely, B(v) = D(v) - U(v). 
Thus, B(v) = { (vi , v)∈ E | vi

P is not a strong primary copy ∨  vP is not a strong primary copy ∨  p(vi
P) 

= p(vP)}. This means that the backup copy of vi∈ B(v) must send message to the backup copy of v, 
based on Theorem 3. It is straightforward to note that if vP is not a strong primary copy, all v's 
predecessor tasks are in B(v). In other words, B(v) = D(v). 

According to the proposed scheduling algorithm, the primary copy of a task is allocated before its 
corresponding backup copy is scheduled. Therefore, given two tasks v and vi∈ D(v), the primary and 
backup copies of vi  should have been allocated when the algorithm starts scheduling vB. Obviously, 
vB must receive message from vi

P. In addition, vB also needs to receive message from vi
B, for vi∈ B(v). 

Therefore, the maximum earliest available time of vB on processor pi is determined by the primary 
copies of its predecessors, the backup copies of tasks in B(v) and messages sent from these tasks. The 
maximum earliest available time of vB is given below. 
EATi

B(v) denotes the maximum (or the latest) of earliest available time on processor pi, where i ≠  
p(vP). It is determined as, 
          ,)({)( δ+= PB

i vfMAXvEAT  ))},(()),,(( )()(
B

j
B

ivBv
P

j
B

ivDv vvEATMAXvvEATMAX
jj ∈∈        

                         ,)({)(),( δ+= ∈∈
p

vBvvDv vfMAX
kj

)},(),,( B
j

B
i

P
j

B
i vvEATvvEAT            (3) 

VQi = {  v1, v2, …, vq }  is the task queue of which all tasks are scheduled to processor pi. The 
subscripts indicate the increasing order in time in which these tasks are scheduled on the processor.  
ESTi

P(v) and ESTP(v) represent, respectively, the earliest start time for the primary copy of v on 
processor pi, and the earliest start time for the primary copy of task v on any processor. Thus,  

)}({)( vESTMINvEST P
iPp

P

i ∈
=                   (4) 

ESTi
B(v) and ESTB(v), similarly represent, respectively, the earliest start time for the backup copy of 

v on processor pi, and the earliest start time for the backup copy of task v on any processor. That is,    
      )}({)( )( vESTMINvEST B

ivFp
B

i ∈
=                     (5) 

In (5), F(v) denotes a set of feasible processors to which the backup copy of v can be allocated. 
Proposition 2 suggests that p(vp) ∉ F(v). Set F(v) is easily determined based on both Proposition 2 
and Theorem 2. The primary copy of a task v can be scheduled to a processor pi if processor pi has an 
idle time slot, defined to be the idle time period between any two consecutively scheduled tasks on pi , 
that satisfies the following two conditions: (a) it starts later than vP's earliest available time EATi

P(v),  
(b) it is large enough to accommodate the task's execution.  

Similarly, the backup copy of a task v can be scheduled to a processor pi if processor pi has an idle 
time slot that satisfies the following conditions: (a) it starts later than vB's earliest available time 
EATi

B(v),  (b) it is large enough to accommodate the task's execution.  
EPTi

P(v) and EPTi
B(v) denote, respectively, two sets of scheduled tasks whose separating time 

gaps constitute all idle time slots that meet the conditions for scheduling primary and backup copies 
of tasks. Thus,  EPTi

P(v)={vk∈ VQi |s(vk+1)-MAX[f(vk),EATi
P(v)]≥ ci(v)}                        (6) 

EPTi
B(v)={vk∈VQi |s(vk+1)-MAX[f(vk),EATi

B(v)]≥ ci(v)}            (7) 
The earliest start time for the primary and backup copies of v on processor pi are determined by the 

following expressions.  
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))}((),({)(
)( kvEPTv

P
i

P
i vfMINvEATMAXvEST

i
P

k∈
=               (8) 

))}((),({)(
)( kvEPTv

B
i

B
i vfMINvEATMAXvEST

i
B

k∈=                (9) 

 In equations (8) and (9), both EATi
P(v) and EATi

B(v) can be derived from EATi(v, vj) using 
expressions (2) and (3). EATi(v, vj) is determined by task vj 's finish time and the arrival time of 
message e = (vj, v) ∈ E. If vj and v are allocated to the same processor, the communication time of 
message e is assumed to be zero. If vj and v are allocated to two different processors, the message 
arrival time will be determined by the finish time of the parent task and the volume of data being 
transmitted. Thus, we have the following expressions for message start time and message arrival time. 

Given a message e= (vj, v)∈ E, MSTki(e) and MATki(e) represent the message start time and the 
message arrival time, respectively, where 

MATi(e)=     MSTki(vj,v) + wi j |(vj,v)|    if  p(vj)= k ≠  i                (10)      
                     f(vj)                                  otherwise  

A message e can be scheduled to the communication channel between two processors if the 
channel has an idle time slot that: (a) starts later than the sender's finish time, and (b) is large enough 
to accommodate e's transmission.  
Given a message e = (va,vb), MPTij(e) is a set of messages between processor pi and pj (i ≠ j) whose 
separating time gaps constitute all the idle time slots that satisfy conditions (a) and (b) above. In other 
words, ek∈ MPTij(e), then the time interval ms(ek+1) - mf(ek) is an idle slot time satisfying the two 
conditions. Thus,  MPTij(e)={ek∈MQj| MST(ek+1) - MAX[f(va), MATj(ek)]≥|e|}          (11) 
Then, MSTij(e) can be defined as follows, ),({)( aij vfMAXeMST = ))}(()( ki jeMPTe emfMIN

ijk ∈        (12) 

The objectives of the algorithm, presented below, are to minimize the schedule length (and thus 
maximize guarantee ratio) and maximize the reliability. For each primary copy vi

P, it is allocated on 
the processor with the minimum reliability cost. However, if the schedule length Lp for primary 
copies on a processor is too long, it may result in the possibility that some backup copies can not meet 
their deadlines. 

For each backup copy vi
B, it should satisfy four conditions, namely, (1) it is allocated on the 

processor that is different than the one assigned for its primary copy, (2) it is allocated on the 
processor that leads to the minimum increase in reliability cost, (3) vi

B can finish before deadline, and 
(4) vi

b can receive messages from all its predecessors.  

4.2 Reliability Cost Driven Scheduling 
Reliability cost driven (RCD) schemes were studied in [22], [23], [28] and [29] to maximize 

system reliability. It must be noted that the tasks considered in [23] and [28] do not have any 
precedence constraints. In [29] and [22], RCD-based scheduling algorithms for tasks with precedence 
constraints are proposed for non-real-time and real-time, respectively. However, algorithms in [22] 
and [29] do not take fault-tolerance into account, neither do algorithms in [23] and [28]. We have 
adapted the basic idea of RCD scheme to accommodate these differences. The objectives of the 
algorithm are twofold: to minimize the schedule length, thus maximizing the schedulability, and to 
maximize the reliability by incorporating reliability cost and fault-tolerance in the scheduling. The 
basic idea of the proposed algorithm follows below. 

First, real-time tasks are sorted in non-decreasing order of their deadlines, and are processed for 
scheduling in that order. Hence, the tasks with earlier deadline will be given a higher priority to be 
scheduled. The primary copies of tasks are allocated first, followed by their backup copies. For each 
given copy, primary or backup, of a task, the candidate processor for allocation is chosen following a 
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greedy process, thus resulting in the processor that leads to the smallest reliability cost being chosen. 
In the case that two processors lead to the same smallest reliability cost, selecting the processor that 
gives rise to the earlier EST breaks the tie. The fault-tolerant RCD scheduling algorithm is formally 
described below. An example to illustrate how the proposed algorithm works is given in Appendix. 
FTRCD Algorithm:  
1. if  ∃∃∃∃v: )}({2 1 vcMIN imi≤≤ > d(v) then return(FAIL);  /*  Pre-check the deadlines based on proposition 2 * / 

2. Sor t tasks in V by their  deadlines in non-decreasing order, subject to precedence constraints of the DAG, and 
put them into an ordered list OL; 

3.  for  each task v in OL do          /*  Schedule primary copies * / 
4.            s(vP) ←←←← ∞∞∞∞; find ←←←← NO; rc ←←←← ∞∞∞∞;      /*  Initialize start time, reliability cost (rc) for vP * / 
5.       for  each processor  pi do        /*  Determine reliability cost of vP on each processor * / 
6.             rci ←←←← λλλλi ×××× ci(v);           /* Calculate the reliability cost of vP on pi */ 
7.               if (ESTP

i(v) + ci(v) ≤≤≤≤ d(v)) then  /*  Calculate the EST of vP on pi using Equation (8), and check deadline */ 
8.                find ←←←← YES;                                                    /*  Indicate that there is a possible schedule * / 
9.               if ((rci<rc) or  (rci=rc and ESTP

i(v)< s(vP)))        /*  Find the minimum reliability cost * / 
10.                   then  s(vP) ←←←← ESTP

i(v); p←←←← pi; rc ←←←← rci;                  /* Assign start time and rc * / 
11.             end if 
12.         end for  
13.         if find = NO then return (FA IL)                 /*  If no possible schedule is available for vP, algorithm terminates */ 

  14.         p(vP) ←←←← p; f(vP) ←←←← s(vP) + ci(v), where pi = p;                    /*  Determine the finish time * / 
15.         Dispatch vP to processor  p(vP); 
16.         Update information of message in the MQ; 
17.  end for                                                                                   /* Finish scheduling the primary copies * / 
18.  for  each task v in OL do                                                            /* Schedule the backup copies * / 
19.      s(vB) ←←←← ∞∞∞∞; find ←←←← NO; rc ←←←← ∞∞∞∞;                                          /* Initialize start time, reliability cost for vP * / 
20.      for  each possible processor  pi ∈∈∈∈F(v) , subject to Proposition 2 and Theorem 2, do    
21.          Determine whether vP is a strong pr imary copy (using Theorem 4); 
22.          ci ←←←← λλλλi ×××× ci(v);                                                                     /* Calculate the reliability cost of vP on pi * / 
23.          if (ESTB

i(v) + ci(v) ≤≤≤≤ d(v)) then           /*  Calculate the EST of vB on pi  using Equation (9), and check deadline * /    
24.               find ←←←← YES;                                                                     /* Indicate that there is a possible schedule * / 
25.               if ((rci<rc) or  (rci=rc and ESTB

i(v)< s(vB))) then           /*  Find the minimum reliability cost * / 
26.                  s(vB) ←←←← ESTB

i(v); p←←←← pi; rc ←←←← rci;                             /*  Assign start time and rc * / 
27.          end if 
28.      end for  
29.      if find = NO then return (FAIL);                         /*  If no possible schedule is available, algorithm terminates * / 
30.      p(vB) ←←←← p; f(vB) ←←←← s(vB) + ci(v), where pi = p;                                /*  Determine the finish time * / 
31.     Dispatch vB to processor  p(vB); 
32.     Update information of each message in MQ; 
33.     for  each task vj ∈∈∈∈ U(v) (using Theorem 3) do   /*  Determine messages based on U(v) obtained by Theorem 3 */ 
34.         if  p(vP)≠≠≠≠p(vj

P) or   vP is not a strong pr imary copy then 
35.             vj

B sends message to vP if possible (based on Theorem 1); 
36. end for                                                                                            /* Finish scheduling the backup copies * / 
37. return (SUCCEED); 

5. Per formance Evaluation 

This section presents results from our extensive simulation experiments that evaluate the 
performance of the proposed algorithm. For the purpose of comparison, we modified the FTRCD 
algorithm to form a non-reliability-driven algorithm, called FTAEAP (fault-tolerant, schedule as early 
as possible), by eliminating the consideration of reliability cost in scheduling. More specifically, we 
change lines 8 and 24 in the FTRCD algorithm so that the EST values now become the only criteria 
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for selecting candidate processors. Therefore, the FTAEAP algorithm, greedy in nature, tolerates 
permanent failures in any one processor, but does not consider reliability cost. 

We run the two algorithms on a variety of task graphs that are generated randomly. Since binary 
tree and lattice are two typical DAGs, representative of many real-life parallel and real-time 
programs, we consider them in the simulations. In addition, DAGs with random precedence 
constraints are also considered to stress-test the proposed algorithm. All these DAGs are randomly 
generated. Random graphs have been widely used by several researchers in the past [22][28][29]. 

In addition to the DAGS, input parameters for the simulation include: (1) number of real-time 
tasks in each DAG, (2) number of processors and their failure rates, (3) fault detection time, (4) a 
randomly generated computational heterogeneity vectors C(v) = {c1(v), c2(v), …, cm(v)} for each real-
time task, and (5) communicational heterogeneity vectors. Together, they represent the system model 
and workload precisely.  

The performance measures used in this study are: reliability cost (RC), defined in Equation (1), 
and schedule guarantee ratio (GR), defined to be the percentage of real-time jobs (DAGs) that are 
schedulable. While the former gives a measure of system reliability as a result of a particular 
schedule, the latter quantifies the effectiveness and scheduling power of a scheduling algorithm. For 
each of the two scheduling algorithms, it is invoked with the above inputs and, if the task set is 
schedulable, then RC0(Ω) is calculated based on the resultant schedule. 

In this simulation study, 100,000 task sets were generated independently for scheduling algorithm.  
Workload parameters are chosen in such a way that they are either based on those used in the 
literature or represent reasonably realistic workload and provide some stress tests for the algorithms.                     
Table 1 Parameters for simulation experiments 

The parameters used in the 
simulation studies are summarized 
in Table 1 [22][29]. Real-time 
DAGs for the simulation are 
generated as follows: 
(1) For each real-time task, the 
computation time in the execution 
time vector is randomly chosen, 
uniformly from the range E. The 
scale of this range approximates the 

level of computational heterogeneity. 
(2) Given vi ∈V, if vi is on pk and vj is on pl, then vi’ s deadline is chosen as follows: d(vi) = 
md*{max(d(vj) + 1 + |eij| × wlk + max{ck(vi)} + δ}, where eij = (vj, vi) ∈E(J), k∈[1, m], md is a factor 
for defining deadlines. δ is the fault detection time that is randomly computed according to a uniform 
distribution,. When md is set to a high value, real-time tasks will have loose deadlines, whereas md 
with a low value results in tight deadlines for tasks.  

Data communication among real-time tasks is simulated as follows: 
(1) Communication weight (wi j) is chosen uniformly from the range W. The scale of this range 
approximates the level of communicational heterogeneity.  
(2) Communication volume between two real-time tasks is uniformly selected from the range V. This 
range reflects the variance in message size. 
 A random DAG is generated in four steps as below: 
(1)  The number of tasks N and the number of messages U are chosen. In this simulation study, it is 
assumed that U = 4N. (2) The execution time for each task is chosen randomly. (3) The 

Parameter          Explanation Value (Fixed) (Varied) 
   FR Failure rate of processors -  
    C Range of execution time   5 - 50 5-50,5-100,5-120 

    D Range for generating the deadline 
  1- 10  1-100,1-300,…, 

1-1100 
   W Range of communication weight 0.5 - 1.5  
   V Range of communication volume 1 - 10  
   M Number of processor  8  7, 8 

    N Number of tasks in a DAG 

Btree/Random 
10,20,…,70 
Lattice: 
9,16,…,81  

 

     δ Fault Detection time 5 5, 10 , 15, …,35 
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Fig. 8 Guarantee ratio of FTRCD and 
FTAEAP. Task graph is lattice

communication time for each message is generated randomly and its sender and receiver selected 
randomly, subject to the condition that such selection does not generate any circle in the graph. (4) A 
deadline for each task is generated randomly. 

5.1 Reliability Cost 
RC is used as one of the objective functions for scheduling tasks. RC results of the simulation 

running FTAEAP and FTRCD are presented in this subsection. Since the purpose of this experiment 
is to study the impact of RC, schedulability (i.e. GR) is not considered here. Therefore, deadlines of 
real-time tasks are assumed to be so large that all tasks’  deadlines can be guaranteed. To satisfy this 
assumption, the md factor is set to be arbitrarily large. The number of processors is set to 8, and 
maximum execution time is chosen to be 50 and 100, respectively, other parameters are selected as 
shown in Table 1. 

RC is computed according to Equation (1). Simulation results of binary trees and random DAGs 
are shown in Fig. 5, and results of lattice DAGs are plotted in Fig. 6. We observe that FTRCD 
outperforms FTAEAP consistently and significantly in the RC measure. As the number of tasks 
increases, the advantage of FTRCD over FTAEAP becomes more significant. This is because 
FTAEAP does not consider RC in its scheduling scheme while FTRCD makes efforts to allocate tasks 
to processors on which their execution times are minimum, since it is the execution time that 
dominates the RC product.  

 

 

 

 

 

 

 

5.2 Schedulability 
The guarantee ratio, formally defined to be: GR = Number of task sets that are schedulable  *  

100 / Total task sets, is used in this subsection to measure the scheduling power of the proposed 
algorithm. In this experiment, the maximum execution time is fixed to 50, the number of processors is 
selected to be 8 and 10 for binary trees, and is chosen as 7 and 8 for lattices. Other parameters are 
chosen as shown in Table 1.  
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Fig. 7 and Fig. 8 illustrate the impact of the job size on GR for binary trees, random graphs and 
lattices, respectively. As the number of tasks in a job increases, GR decreases. This is intuitive, 
because under a fixed computing resource, the more tasks there are in the system, the fewer of them 
can be guaranteed to satisfy their deadlines. It is very interesting that this impact is more significant 
for binary trees than for both random graphs and lattices. We conclude from this result that the 
schedulability of the system does not only depend on the scheduling algorithm, but also on the 
structure of the DAG. Again, FTRCD gives rise to a relatively higher guarantee ratio compared with 
that of the FTAEAP. This is because FTRCD tends to allocate tasks to processors that would execute 
tasks the fastest, or equivalently, fastest processors tend to be picked. 

 

 

 

 

 

 

 

5.3 Impact of The Fault Detection Time 
In the simulation experiment, the fault detection time is increased from 5 to 35 in steps of 5. Other 

parameters assume the default values given in Table 1. To make the results more discernable, the N 
value is chosen for the two algorithms in such a way that performance curves are evenly spread in the 
plots while the proposed algorithm (FTRCD) is stress-tested. Thus, for algorithm FTRCD, N is set to 
be 50 and 40, respectively, whereas for algorithm FTAEAP, N is chosen to be 20 and 30. Notice that 
FTRCD is loaded almost twice as much as FTAEAP. In this experiment, we only present the result 
for binary tree since other DAGs behave similarly. Figs. 9 and 10 illustrate the impact of fault 
detection time on GR and RC, respectively. 

Fig. 9 shows the impact of the fault detection time on GR for different values of N. As fault 
detection time increases, GR decreases significantly. It clearly suggests that decreasing fault detection 
time can significantly improve GR of the system. This result strongly supports the intuition that using 
a high-speed network to detect fault in a short amount of time can substantially enhance the system 
performance. From Fig. 10, we observe that RC remains roughly the same with increasing detection 
time. It is clear that fault detection time has no significant impact on RC. This is because a larger fault 
detection time only delays the earliest start time of the tasks. This means that fault detection time does 
not play any role in local RC calculation, which in turn determines to which processor a task should 
be allocated. 

6 Conclusion 

In this paper, we present a fault-tolerant scheduling algorithm for a heterogeneous distributed 
system executing real-time tasks with precedence constraints. To provide the system with fault-
tolerance, each task is associated with a primary and backup copy so that, if the primary copy of the 
task does not work due to the permanent failure of one processor, its backup copy can continue the 
task’s execution. In the proposed approach, it is required that both primary and backup copies be 
scheduled to complete before their deadlines. In addition, conditions under which the primary and 
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backup copies of a task should send message to the primary and backup copies of its successors are 
investigated.  

When a processor fails, it takes an extra amount of time to handle fault and fault detection. 
Nevertheless, most related research work in the literature assumes that fault detection time is zero. 
The proposed approach, however, takes fault detection time into account, and studies how fault 
detection time affects scheduling performance quantitatively. The experimental result suggests that 
shortening fault detection time improves the schedulability of the algorithm. 

Another contribution of this paper is that the proposed algorithm is devised for heterogenous 
distributed systems that are increasingly being used for real-time applications. We adopt the notion of 
reliability cost, which is a good metric to evaluate the reliability of a heterogenous system. The 
proposed algorithm employs a reliability-driven scheme to minimize the reliability cost without any 
extra hardware cost. To evaluate the performance of the reliability-driven, fault-tolerant scheme, we 
compare the proposed algorithm with one of its variations that does not consider reliability cost when 
scheduling tasks. The result shows that the reliability-driven algorithm not only generates the 
schedule with a minimized reliability cost, but also has superior schedulability compared with non-
reliability-driven algorithms.  

As an extension of this work, it would be interesting to study more DAG types that represent more 
applications. We are planning to find out whether DAG types make significant impact on the 
performance of the algorithm. Devising a dynamic fault-tolerant scheduling algorithm based on 
FTRCD algorithm will also be a challenging task. In the proposed scheduling model, it is assumed 
that backup copies are not allowed to be overlapped with one another. One possible extension of the 
current work would be to study the possibility of allowing backup copies to be overlapped in some 
fashion.  
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Appendix. 
 
Please Note: The proofs of the theorems and the scheduling example used in this paper are 
provided in this appendix for the convenience of the reviewers. We understand that the 
conference has a page limit and do not intend to publish all the material presented here in te 
proceedings if the paper is accepted. The materials will, however, be made available as a 
technical report. 
 
A. Proof of Theorem 1. 
Proof: By contradiction: Assume vi

B is execution-preceding vj
P, thus, vj

P must execute (Def.5). Since 
vi

P is a strong primary copy, processor p(vi
P) must have failures by time f(vi

P) (Def.7). But vi
P and vj

P 
are allocated to the same processor and vi

P is schedule-preceding vj
P, implying that vj

P also could not 
execute. A contradiction.                                   

�
 

B. Proof of Theorem 2.  
Proof: Assume that vi

B executes instead of vi
P . This, combined with the fact that vi

P is a strong 
primary copy, implies that p(vi

P) does not work at time f(vi
P) (Def. 7). Since f(vi

P)< f(vj
B), it also 
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implies that p(vi
P) does not work at time f(vj

B). Thus, we have ~@(p(vi
P), f(vj

B)). Since vi
B executes, 

either vi
B is execution-preceding vj

P or vi
B is execution-preceding vj

B. But ~(vi
B �  vj

P), vi
B cannot be 

execution-preceding vj
P. Hence, we only have vi

B �  vj
B. This implies that vj

B executes (Def. 7), which 
means @(p(vj

B), f(vj
B)), a contradiction. Thus, we have proven that p(vj

B) ≠ p(vi
B).                 

�
 

 
C. Proof of Theorem 3.  
Proof: By contradiction: Suppose vi

B �   vj
B. We have Θvi

B and Θvj
B (Def. 5), which implies 

~@(p(vi
P), f(vi

P)) (Def.7) and ~@(p(vj
P), f(vj

P)) (Def.7). Since vi
P is schedule-preceding vj

P, thus f(vi
P) 

< f(vj
P), implying ~@(p(vi

P), f(vj
P)). This means that at time t > f(vj

P), two processors in the system 
have failed. A contradiction.                                                                 

�
 

 
D. Proof of Theorem 4. 
Proof: As the proof of (a) is straightforward from the definition, it is omitted here. We only prove 
(b). Suppose before time f(vi

P), processor p(vi
P) does not fail, we have @(p(vi

P), f(vi
P)). Let vj be a 

predecessor of vi. There are two possibilities: 
(1) p(vi

P) = p(vj
P), we have f(vj

P) < f(vi
P), implying that processor p(vj

P) does not fail before f(vj
P). 

Because vj
P is a strong primary copy, vj

P must execute. 
(2) p(vi

P) ≠ p(vj
P) and vj

B �  vi
P , implying that even if one processor fails, vi

P can still receive message 
from task vj (recall that vj

P �  vi
P ).               

Based on (1) and (2), we have proven that vi
P can receive messages from all its predecessors. In other 

words, vi
P must execute since p(vj

P) has not failed by time f(vi
P). Therefore, according to Definition 7, 

vi
P is a strong primary copy.                             

�
 

 
E. Scheduling Example 

We use an example to illustrate how the proposed algorithm, FTRCD, works, by scheduling the 
task graph (DAG) of Fig. 11 on a three-processor system. The scheduling result is depicted in Fig. 12.  

After sorting tasks by their deadlines in non-decreasing order, subject to their precedence 
constraints, the task sequence in the list OL is, OL = (v1, v3, v2, v5, v4, v6). From step 3 to 17, primary 
copies of the six tasks are scheduled. For each primary copy, its reliability costs on three processors 
are calculated (see step 5-12), and the processor which gives rise to the minimum reliability cost is 
determined in step 9 and 10. For example, the primary copy of v1 is allocated to p2, because the 
reliability cost of v1 on p2 is the smallest among the three processors, namely, 0.95×10-6, compared to 
2×10-5 and 1.05×10-5 on p1 and p3 , respectively. Step 13 terminates the algorithm if one primary 
copy’s deadline cannot be guaranteed. The six backup copies are scheduled following steps 18 
through 35 of the algorithm. RCs of each backup copy on all feasible candidate processors are 
generated following steps 20 through 28. All candidate processors for the backup copy of v are stored 
in F(v). For example, F(v2) = {p3}. In this particular example, p3  happens to be the only suitable 
candidate for v2 . This is because, on the one hand, the primary and backup copies of v2 are allocated 
to different processors, due to Proposition 2. Hence, p(v2

P)= p1∉ F(v2). On the other hand, v1 has a 
strong primary copy and v1

B is not schedule-preceding v2
P, which, according to Theorem 2, implies 

that v1
P and v2

B cannot be allocated to the same processor, thus p(v1
P)=p2∉F(v2).  

Before calculating RCs of each backup copy, step 20 determines whether a task has a primary copy 
based on Theorem 4. For example, v1

P is a strong primary copy (Theorem 4(a)), and v2
P

 is not a strong 
primary copy due to the fact that p(v1

P) ≠ p(v2
P) ∧ ~(v2

B  �   v1
P) (Theorem 4(b)). Like step 13, step 29 

terminates the algorithm if one backup copy’s deadline cannot be satisfied. The last step after 
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scheduling each backup copy of task v is to schedule messages from vj
B (vj ∈ U(v)) to vP, if 

applicable, based on Theorem 1 (See step 33-35).  
Finally, the reliability cost and schedule length generated by the FTRCD algorithm are 1.11×10-3 

and 87, respectively. 
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Fig.12 Schedule Produced by the FTRCD algorithm. Reliability cost = 1.1×10-4, schedule 
length = 95 λ1 = 1*10-6, λ2=0.95*10-6, λ3 = 1.05*10-6 

Messages between 
primary copies 

Messages from a primary copy 
to a backup copy 

Messages between 
backup copies 

Fig. 11 DAG task graph. Assume a 3-processor system and each real-time task is denoted 
by vi = ((ci1, ci2, ci3,), di), where cij is the execution time of vi on pj, and di is the deadline. i = 
[1, 6], j = [1, 3]. Communication weights are: w12 = w21 = 1, w13 = w31 = 3, w23 = w32 = 3. 
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