

A Fault-tolerant Real-time Scheduling Algor ithm

for Precedence-Constrained Tasks in
Distr ibuted Heterogeneous Systems

Xiao Qin, Hong Jiang and David R. Swanson

Department of Computer Science and Engineering
University of Nebraska-Lincoln

{ xqin, jiang, dswanson} @cse.unl.edu

Technical Repor t No. TR-UNL -CSE 2001-1003
September 2001

University of Nebraska-L incoln
L incoln, NE 68588-0115

A Fault-tolerant Real-time Scheduling Algor ithm for
Precedence-Constrained Tasks in Distr ibuted Heter ogeneous Systems∗∗∗∗

Xiao Qin Hong Jiang David R. Swanson

Department of Computer Science and Engineering
University of Nebraska-Lincoln

Lincoln, NE 68588-0115, {xqin, jiang, dswanson}@cse.unl.edu

∗ This work was partially supported by an NSF grant (EPS-0091900) and a Nebraska University Foundation grant (26-0511-0019)

Abstract

In this paper, we propose and evaluate a fault-tolerant real-time scheduling algorithm that can
tolerate one processor's permanent fault in a heterogeneous distributed system. Workload in this
study consists of a stream of real-time jobs where each job contains multiple precedence-constrained
tasks with individual deadlines. A Primary Backup (PB) model is employed, where each real-time
task has two copies, i.e. a primary one and a backup one, that are allocated to two different
processors. The backup copy executes only if the primary copy fails due to the failure of its assigned
processor. The proposed scheduling algorithm also takes the reliability measure into account, in
order to further enhance the reliability of the heterogeneous system. In addition, the detection time
for permanent fault is incorporated into the scheduling scheme so as to make the scheduling result
more realistic and accurate. Simulation results show that the proposed algorithm provides
significantly improved reliability and schedulability.

K eywords: Real-time scheduling, fault-tolerance, heterogeneous system, reliability cost

1. Introduction

Scheduling algorithms, be they at the job-level [7] or at the instruction-level [8], play an important
role in obtaining high performance in parallel and distributed systems [6]. As a result, a wide variety
of scheduling algorithms have been proposed and studied in the literature. The objective of
scheduling algorithms is to map tasks onto processors and order their execution so that overall
performance goals are achieved.

In general, a scheduling algorithm is designed to operate in the presence (or absence) of a number
of operational conditions, depending on the workload, operational environment, complexity and cost
constraints. These operational conditions include (but not limited to): (1) whether the operation is
static [13] or dynamic [7] (i.e. off-line vs. on-line), (2) whether the workload has real-time constraints
[30], (3) whether fault-tolerance [9] is considered, (4) whether the underlying system is heterogenous
[25] or homogeneous, and (5) whether precedence constraints exist among tasks to be scheduled [3].
Unfortunately, most scheudling algorithms in the literature only consider one or two such conditions
in isolation from others, thus limiting their power and applicability. Due to the ever increasing
complexity and diversity of parallel and distributed systems in terms of workload, systems and
operational characteristics, it has become increasingly desirable and necessary to design scheduling
algorithms that can operate in the presence of all necessary conditions so as to satisfy any specific
parallel/distributed computing requirement.

3

Thus, we are motivated in this study to investigate the possibility of designing scheduling
algorithms that take the above five conditions into consideration simultaneously, superseding
conditions set for most existing algorithms. More specifically, to make the scheduling algorithm more
powerful and practical, we propose a scheduling scheme with which real-time tasks with precedence
constraints can be statically scheduled to tolerate the failure of one processor in a heterogeneous
parallel and distributed environment. While extending the proposed algorithm to incorporate on-line
(dynamic) scheduling is possible (and is currently being developed), it should also be noted that the
proposed algorithm can be easily "downgraded" to relax one or more of the imposed operational
conditions. The purpose of this paper is to present and analyse such a scheduling algorithm.

The issue of scheduling on heterogeneous systems has been studied in many papers [25][21].
Ranaweera and Agrawal present a task-duplication based scheduling scheme (TDS) to schedule tasks
of a directed acyclic graph (DAG) onto a heterogeneous system. A scalable scheduling scheme called
STDS for heterogeneous systems is devised in [24]. In [5] and [29], reliability cost is incorporated
into scheduling algorithms for tasks with precedence constraints. However, these algorithms either do
not support fault-tolerance or assume that tasks in the system are not real-time.

Previous work has been done to facilitate real-time computing in heterogeneous systems. A
solution for the dynamic resource management problem in real-time heterogeneous systems is
proposed in [10]. In [27], a probabilistic model for a clients/server heterogeneous multimedia system
is presented. In our previous work, both static [22] and dynamic [21] real-time scheduling schemes
for heterogeneous systems were developed. The above algorithms, however, are not able to tolerate
any permanent processor failure.

Since occurrences of faults are often unpredictable, fault-tolerance must be considered in the
design of real-time scheduling algorithms to make systems more reliable [14][17]. Liberato et al.
proposed a necessary and sufficient feasibility-check algorithm for fault-tolerant scheduling,
assuming an earliest-deadline-first policy for aperiodic preemptive tasks [15]. A delayed scheduling
algorithm using a passive replica method was developed in [2]. This scheme has a relatively small
overhead for backup processes. However, the above algorithms share the same assumption that the
underlying system is homogeneous with identical processors and uniform interconnection networks.

Algorithms proposed in [1][4][16][19][20][23][29] are the closest to the proposed algorithms in
this paper in terms of operational conditions. The main difference between Abdelzaher and Shin's
work and this study is that the algorithm studied in [1] assumes that there is no failure in processors,
and thus does not support fault-tolerance. The proposed algorithm, however, is able to tolerate any
one processor's failure, thus making the system more dependable. Dima et al. devised an offline real-
time and fault-tolerant scheduling algorithm using replication of operations and data communications
[4]. The difference between Dima et al.'s work and our proposed algorithm is that, while the former
[4] must execute the backup copy simultaneously with the primary copy, ours schedules the backup
copy after its primary copy, thus avoiding the unnecessary execution (and processor resource
consumption) if the primary copy completes successfully. Manimaran et al. [16] and Mosse et al.
[18][19] proposed dynamic algorithms to schedule real-time tasks with resource and fault-tolerance
requirements on multiprocessor systems. There main differences between their work and ours lies in
the workload where tasks considered in their algorithms are independent among one another and are
scheduled on-line, whereas tasks considered in our algorithm are confined by precedence constraints
and scheduled off-line. Oh and Son studied a real-time and fault-tolerant scheduling algorithm that
statically schedules a set of independent tasks, and can tolerate one processor failure [20]. The major
difference between Oh and Son's work [20] and ours is that their algorithm assumes no message
communication among tasks, whereas our algorithm allows real-time tasks to communicate with one

4

other by passing messages. Furthermore, the above algorithms [1][4][16][18][19][20] are devised for
homogeneous systems, thus limiting their applicability. Although Srinivasan and Jha's algorithm [29]
and ours are both designed for heterogeneous systems, there are two main differences between them.
Unlike our algorithm, theirs does not consider fault-tolerance, and tasks considered are non-real-time.

To the best of our knowledge, most scheduling algorithms do not consider fault-tolerance and
reliability issues, only consider homogeneous systems, or assume independent tasks. In this paper, we
attempt to address all these issues in a unified algorithm. The rest of the paper is organized as follows.
Section 2 presents the system model and assumptions. Section 3 describes some scheduling principles
behind the fault-tolerant real-time scheduling algorithm proposed in Section 4. Performance analysis
is presented in Section 5. Section 6 concludes the paper by summarizing the main contributions of
this paper and by commenting on future directions for this work. Finally, the appendix contains
proofs for all the theorems and presents a simple example to elucidate the proposed algorithm.

2. The System M odel

In this study, we consider non-pre-emptive real-time tasks running on a heterogeneous system,

where processors may operate at different speeds and communication channels may have different
bandwidths. Tasks are related to one another by their precedence constraints. Thus, these real-time
tasks are modelled by Directed Acyclic Graphs (DAGs). When one processor fails, it takes extra,
non-negligible time to detect and handle the fault, and we assume that the fault detection time is dt.
Most scheduling models in the literature assume dt to be zero. To make the real-time scheduling more
precise and realistic, we have incorporated the detection time into the scheduling algorithm.

To achieve the tolerance of permanent faults in one processor, multiple versions of tasks on
different processors may be used. The Primary Backup (PB) model is one of many schemes. In this
model, two copies of each task are executed serially on two different processors. For simplicity of
presentation, we assume that primary and backup copies of a task are identical. This implies that two
copies have the same execution times. It should be noted that our approach can also be applied when
primary and backup copies of a task have different execution times. Since the focus of this work is to
investigate a scheduling scheme that tolerates permanent failures in any one processor, failures of
communication links connecting processors are not considered in this model. Therefore, we assume
that the proposed scheduling scheme is based on reliable communication channels. Real-time and
fault-tolerant communication protocols [11] can be applied to guarantee that messages arrive from
one processor to another even in the presence of channel failures. Since the issue of fault-tolerant
communication is beyond the scope of the current study, we will not discuss it further in this paper.

A real-time DAG is defined as a pair T = {V, E}, where V = {v1, v2,...,vn} represents the set of real-
time tasks, and the set of weighted and directed edges E represents communication between pairs of
real-time tasks. ei j = (vi, vj) ∈ E indicates a message sent from task vi to vj, and |ei j| denotes the
volume of data sent between these tasks. In order to support fault-tolerance, each task has a primary
and a backup copy, denoted vP and vB. Fig. 11 in Appendix E shows an example DAG which we will
use throughout the paper.

The heterogeneous system is modeled by a set of processors P = {p1, p2,..., pm}, where pi is a
processor with local memory. Processors in the system are connected with one other by a high-speed
interconnection network. A processor communicates with other processors through message passing,
and the communication time between two tasks assigned to the same processor is assumed to be zero.

A measure of computational heterogeneity is modeled by a function, C: V × P → R, which
represents the execution time of each task on each available processor in the distributed system. cj(vi)

5

denotes the execution time of task vi on processor pj. Since we assume that for each task vi, its
primary copy vi

P and backup copy vi
B have the same version, we get cj(vi

P) = cj(vi
B) = cj(vi). A

measure of communicational heterogeneity is modeled by a function M: E × P × P → R. That is, the
communication time for sending a message e from task vs on processor pi to task vr on processor pj is
determined by wi j* |e|. wi j is the weight on the edge between processors pi and pj , representing the
delay involved in transmitting a message of unit length between the two processors.

For each task v ∈ V, d(v), s(v) and f(v) denote the deadline, scheduled start time, and finish time,
respectively. p(v) denotes the processor to which task v is allocated. These parameters are subject to
constraints: f(v) = s(v) + ci(v) and s(v) ≤ d(v) - ci(v), where p(v) = i. A parallel job has a feasible
schedule if for each real-time task v ∈ V, it satisfies constraints s(vP) ≤ d(v) - ci(v), and s(vB) ≤ d(v) -
cj(v), where p(vP) = i, p(vB) = j.

To make the system more reliable without any extra hardware cost, we also introduce a reliability
model, which is similar to those proposed by Srinivasan et al. [29] and Qin et al. [21][22]. In this
model, processor failures are assumed to be independent, and follow a Poisson Process with a
constant failure rate. The reliability cost of a task vi on a processor pj is the product of pj's failure rate
λj and vi's execution time on pj. It should be noted that the notion of reliability heterogeneity is
implied in the reliability cost by virtue of heterogeneity in cj(vi) and λj. Thus, the reliability cost of a
task schedule is the summation over all tasks' reliability costs based on the given schedule. Given a
heterogeneous system P, the reliability cost is defined below. RC0(T), which denotes the reliability
cost with no failure in the system, is defined as:

��
==

=
j

P
ivp

ijj

m

j

vcTRC
)(1

0)()(λ (1)

Here reliability is represented by e-RCo(T). To achive a high overall reliability, it is intuitive to schedule
a task with a longer execution time to a more reliable processor.

3. The Scheduling Principles

The algorithm to be presented in Section 4 relies heavily on the knowledge and understanding of
relationships among the primary and backup copies, and predecessors and successors of tasks. In
order to qualify or quantify some of these relationships, thus facilitating the development of the
algorithm, in the subsections that follow we will present the necessary definitions, assumptions,
theorems and corollaries.
3.1 Definitions and Assumptions

To facilitate the presentation of the proposed scheduling principles, additional definitions and
assumptions are introduced.
DEFINITION 1. Given a processor pi∈ P, @(pi, t) denotes that the processor has no failures at time
t′≤ t, whereas ~@(pi, t) represents a processor with software or hardware failures at time t′ > t.
DEFINITION 2. Given a task v∈ V, ΘΘΘΘv signifies that task v successfully executes on processor p(v),
whereas ~ΘΘΘΘv signifies that v does not work.
DEFINTION 3. Given two tasks vi and vj, vi is schedule-preceding vj, denoted vi � vj, if and only if
s(vj) ≥ f(vi).
DEFINITION 4. Given two tasks vi and vj, vi is message-preceding vj, denoted vi � vj, if and only if
(vi, vj)∈ E, and vi sends a message to vj.
DEFINITION 5. Given two tasks vi and vj, there is an execution-precedence relationship between vi
and vj, denoted vi � vj, if and only if (vi, vj) ∈ E, Θvi, Θvj, vi � vj and vi � vj.

6

DEFINITION 6. D(v) ⊂ V denotes the set of predecessors of task v, D(v) = { vi ∈ V | (vi, v) ∈ E }.
That is, v cannot start until it receives messages from all tasks in D(v) due to precedence constraints.
S(v) ⊂ V denotes the set of successors of task v, S(v) = { vi ∈ V | (v, vi) ∈ E }.

From the above definitions, it is clear that, given three tasks vi, vj and vk, if vi � vj and vj � vk, then
vi � vk. It is noted that the execution-precedence relationship " � " and message-precedence
relationship " � " are different from schedule-precedence relationship " � ". The last is transitive,
whereas none of the first two is transitive. The execution-precedence relationship is the strongest in
that it can imply the other two. The schedule-precedence relationship, on the other hand, is the
weakest. This is described in Property 1 as follows.
Property 1. Given two tasks vi and vj, if vi is execution-preceding vj, then vi is message-preceding vj.
If vi is message-preceding vj, then vi is schedule preceding vj. Thus, (vi � vj) →→→→ (vi � vj) →→→→ (vi � vj).
 If task vi is a predecessor of task vj, then the primary copy of vi must send a message to the primary
copy of vj. This is described formally in the following property.
Property 2. Given two tasks vi and vj, if vi is a predecessor of vj, then vi

P must be message-preceding
vj

P, that is, ∀∀∀∀vi, vj ∈∈∈∈ V: (vi, vj) ∈∈∈∈ E →→→→ vi
P � vj

P.
Given a task v, the backup copy of v executes if the primary copy does not work. There are two

cases in which vP could not work. (1) Before time f(vP), processor p(vP) fails. In other words, ∃ t <
f(vP): ~@(p(vP), t)→ ~ΘvP. (2) Processor p(vP) has no failures before time f(vP), but vP can not
receive messages from all its predecessors. Case (2) is illustrated by a simple example in Fig. 1 where
dotted lines denote messages sent from predecessors to successors. Let vj be a predecessor of v, and
p(v) ≠ p(vj). Suppose at time t < f(vj

P), processor p(vj
P) fails, then vj

B should execute. Since vj
B is not

schedule-preceding vP, vP can not receive any message from vj
B. Hence, even if p(vP) does not fail, vP

still can not execute.
The primary copy of a task that never encounters case (2) is referred to as a strong primary copy,

as formally defined below.
DEFINITION 7. Given a task v, vP is a strong primary copy, if and only if the execution of vB implies
the failure of p(vP) before time f(vP)), thus, ΘvB → ~@(p(vP), f(vP). Alternatively, given a task v, vP is
a strong primary copy, if and only if that no failures of p(vP) at time f(vP)) imply the execution of vP,
i.e. @(p(vP), f(vP)) → ΘvP.

3.2 The Principles
 We use the primary/backup approach to satisfy the fault-tolerance requirement. In this approach, it
should be obvious that the primary and backup copies of each task must be scheduled on two
different processors.

The backup copy of a task executes only when the primary copy could not be finished. This
requires that the start time of the backup copy be later than the finish time of the primary copy. This
requirement is described in the following proposition and its proof can be found in [18].
Proposition 1. One processor's failure is tolerable, only if for each task v, there is no overlapping
time between vP and vB, and the start time of vB is greater than or equal to the sum of the finish time of
vP and the fault detection time. Thus, (One processor's failure is tolerable)→∀∀∀∀v∈∈∈∈V: s(vB)≥≥≥≥ f(vP) + dt.

Suppose that the scheduling result can tolerate one processor's failure, one essential precondition is
that, for each task v, the sum of the execution times of v's primary/backup copies and the fault
detection time is less than or equal to its deadline. It is given as the proposition below. The proof of
proposition 2 is straightforward, and it is omitted in this section.

7

Proposition 2. One processor failure is tolerable, only if (a) primary and backup copies are allocated
to different processors, and (b) the sum of execution times for vP and vB and fault detection time is
less than or equal to the deadline, that is,

(One processor's failure is tolerable) →→→→∀∀∀∀v ∈∈∈∈V: (p(vP) = i ≠≠≠≠ p(vB) = j) ∧∧∧∧ ci(v
P) + cj(v

B) + dt ≤≤≤≤ d(v).
Given two tasks vi and vj, (vi, vj)∈ E. The relationships among vi

P, vj
P, vi

B, and vj
B are the key issues

to be considered in the scheduling algorithm. Our main task is to determine the execution-precedence
and the message-precedence relationships among these copies. Suppose the primary copy of task vj
has successfully executed, either vi

P is execution-preceding vj
P or vi

B is execution-preceding vj
P. We

observe that, in some special cases, vi
B will never be execution-preceding vj

P. This statement is
described and proved in Theorem 1. This case is also illustrated in Fig 2.
Theorem 1. Given two tasks vi and vj, (vi, vj)∈ E, if the primary copies of vi and vj are allocated to the
same processor and vi

P is a strong primary copy, then vi
B is not execution-preceding vj

P. That is, vj∈V,
(vi, vj) ∈ E: p(vi

P) = p(vj
P) = p ∧ (vi

P is the strong primary copy) → ~(vi
B � vj

P).
Proof: See Appendix. �

The result of Theorem 1 is very interesting and useful for the scheduling algorithm. It suggests that
if a task vj is allocated to the same processor as its predecessor vi, and vi

P is a strong primary copy,
then the backup copy of vi only needs to send messages to the backup copy of vj.

Given a task v, it is observed that under some special circumstance, vB cannot be scheduled on the
processor where the primary copy of v's predecessor vi

P is scheduled. Fig. 3 illustrates this scenario.
Theorem 2. Given two tasks vi and vj, (vi, vj)∈ E, if vi

B is not schedule-preceding vj
P, and vi

P is a
strong primary copy, then vj

B and vi
P can not be allocated to the same processor. Thus, ∀vi, vj∈V, (vi,

vj) ∈ E: ~(vi
B � vj

P) ∧ vi
P is a strong primary copy → p(vi

P) ≠ p(vj
B).

Proof: See Appendix. �
 Since the proposed primary/backup model tolerates single-processor failures only, we assume that

p1

p2

p3

Fig. 3 (vi, vj) ∈ E, vi
B,is not schedule-preceding vj

P

and vi
P is a strong primary copy. vj

B can not be
scheduled on the processor on which vi

P is
scheduled.

Fig. 4 (vi, vj) ∈ E, vi
P and vj

P are both strong
primary copies, and vi

P and vj
P are scheduled

on two different processors. vi
B is not

execution-preceding vj
B.

p1

p4

p2

p3

vi
B

vj
P

vj
B

vi
P

Fig. 2 vi is the predecessor of vj, vi
P and vj

P are
scheduled on the same processor, and vi

P is the
strong primary copy. In this case, vi

B is not
execution-preceding vj

P.

p1

p2

p3

vi
B

vj
P

vj
B

vi
P

Fig. 1 Since processor p1 fails, vi
B executes.

Becuase vj
P can not receive message from vi

B, vj
B

must execute instead of vj
P.

p1

p4

p2

p3

vi
P

vi
B vj

P

vj
B

vj
B vi

P

vj
P

vi
B

vj
B

time

time

time

time

Primary copy of vi

Backup copy of vi Backup copy of vj

Primary copy of vj
Predecessor Successor

8

only one processor in the system will encounter a permanent failure. Based on this assumption, we
observe that if task vi is a predecessor of task vj, and the primary copies of both tasks are strong
primary copies, then the backup copy of vi is not execution-preceding the backup copy of vj. Fig. 4
illustrates a scenario of the case, which is presented formally in the theorem below.
Theorem 3. Given two tasks vi and vj, vi is a predecessor of vj. If vi

P and vj
P are both strong primary

copies, and p(vi
P) ≠ p(vj

P), then vi
B is not execution-preceding vj

B. In other words,∀vi, vj∈V, (vi, vj) ∈
E: (vi

P and vj
P are two strong primary copies) ∧ p(vi

P) ≠ p(vj
P) → ~(vi

B � vj
B).

Proof: See Appendix. �
Theorem 3 suggests that if task vi is a predecessor of task vj, and the primary copies of both tasks

are strong primary copies, then the backup copy of vi
B

 does not need to send messages to vj
B.

The notion of strong primary copy appears in Theorems 1, 2, and 3, it is therefore necessary to be
able to determine whether a task has a strong primary copy. It is straightforward to prove that a task
without any predecessor has a strong primary copy. Base on this fact, Theorem 4, below, suggests an
approach to determining whether a task with predecessors has a strong primary copy. In this
approach, we assume that we already know if all the predecessors have strong primary copies or not.
By using this approach recursively, starting from tasks with no predecessors, we are able to determine
whether a given task has a strong primary copy.
Theorem 4. (a) A task with no predecessors has a strong primary copy. (b) Given a task vi and any of
its predecessors vj , if they are allocated to the same processor and vj has a strong primary copy, or, if
they are allocated on two different processors and the backup copy of vj is schedule-preceding the
primary copy of vi , then vi has a strong primary copy. That is, ∀vj∈V, (vj, vi) ∈ E: ((p(vi

P) = p(vj
P) ∧

(vj
P

 is a strong primary copy)) ∨ (p(vi
P) ≠ p(vj

P) ∧ (vj
B � vi

P)) → (vi
P is a strong primary copy).

Proof: See Appendix. �

4 The Scheduling Algorithm

 The propositions, theorems and corollaries provided in section 3 help us establish important
qualitative relationships among primary and backup copies of tasks, as well as among predecessors
and descendents of tasks. In this section, we will use these relationships to determine necessary
quantitative relationships in order to calculate essential values for the proposed algorithm. These
values include the earliest available time and the earliest start time of primary and backup copies, the
earliest available time and the earliest start time of messages.
4.1 Notations

To help present the algorithm clearly, we define the following notations.
EATi(v, vj) denotes the earliest available time for the primary/backup copy of task v if message e sent
from vj∈ D(v) represents the only precedence constraint.

The primary copy of a task v must receive messages from all primary copies of the tasks in set
D(v). Hence, the earliest available time of vP on processor pi is determined by the primary copies of
its predecessors and messages sent from D(v).
EATi

P(v) denotes the maximum (or the latest) of EATi(v
P, vj

P) at processor pi, for all messages sent
from the primary copies of the tasks in D(v). Thus,
)},({)()(

P
j

P
ivDv

P
i vvEATMAXvEAT

j ∈= (2)

 Suppose we have a pair of tasks vi and vj, (vi, vj)∈ E. Based on Theorem 3, we know that if vi
P and

vj
P are both strong primary copies and p(vi

P) ≠ p(vj
P), then vi

B is not execution-preceding vj
B.

9

U(v) ⊂⊂⊂⊂ V denotes the set of v's predecessor tasks allocated on different processors and with strong
primary copies, namely, U(v) = {vi | { (vi , v)∈ E, vi

P and vP are both strong primary copies and p(vi
P)

≠ p(vP)}. In other words, the backup copy of vi∈ U(v) does not need to send message to the backup
copy of v, based on Theorem 3.
B(v) ⊂⊂⊂⊂ V denotes the set of v's predecessor tasks that are not in U(v), namely, B(v) = D(v) - U(v).
Thus, B(v) = { (vi , v)∈ E | vi

P is not a strong primary copy ∨ vP is not a strong primary copy ∨ p(vi
P)

= p(vP)}. This means that the backup copy of vi∈ B(v) must send message to the backup copy of v,
based on Theorem 3. It is straightforward to note that if vP is not a strong primary copy, all v's
predecessor tasks are in B(v). In other words, B(v) = D(v).

According to the proposed scheduling algorithm, the primary copy of a task is allocated before its
corresponding backup copy is scheduled. Therefore, given two tasks v and vi∈ D(v), the primary and
backup copies of vi should have been allocated when the algorithm starts scheduling vB. Obviously,
vB must receive message from vi

P. In addition, vB also needs to receive message from vi
B, for vi∈ B(v).

Therefore, the maximum earliest available time of vB on processor pi is determined by the primary
copies of its predecessors, the backup copies of tasks in B(v) and messages sent from these tasks. The
maximum earliest available time of vB is given below.
EATi

B(v) denotes the maximum (or the latest) of earliest available time on processor pi, where i ≠
p(vP). It is determined as,
 ,)({)(δ+= PB

i vfMAXvEAT))},(()),,(()()(
B

j
B

ivBv
P

j
B

ivDv vvEATMAXvvEATMAX
jj ∈∈

 ,)({)(),(δ+= ∈∈
p

vBvvDv vfMAX
kj

)},(),,(B
j

B
i

P
j

B
i vvEATvvEAT (3)

VQi = { v1, v2, …, vq } is the task queue of which all tasks are scheduled to processor pi. The
subscripts indicate the increasing order in time in which these tasks are scheduled on the processor.
ESTi

P(v) and ESTP(v) represent, respectively, the earliest start time for the primary copy of v on
processor pi, and the earliest start time for the primary copy of task v on any processor. Thus,

)}({)(vESTMINvEST P
iPp

P

i ∈
= (4)

ESTi
B(v) and ESTB(v), similarly represent, respectively, the earliest start time for the backup copy of

v on processor pi, and the earliest start time for the backup copy of task v on any processor. That is,
)}({)()(vESTMINvEST B

ivFp
B

i ∈
= (5)

In (5), F(v) denotes a set of feasible processors to which the backup copy of v can be allocated.
Proposition 2 suggests that p(vp) ∉ F(v). Set F(v) is easily determined based on both Proposition 2
and Theorem 2. The primary copy of a task v can be scheduled to a processor pi if processor pi has an
idle time slot, defined to be the idle time period between any two consecutively scheduled tasks on pi ,
that satisfies the following two conditions: (a) it starts later than vP's earliest available time EATi

P(v),
(b) it is large enough to accommodate the task's execution.

Similarly, the backup copy of a task v can be scheduled to a processor pi if processor pi has an idle
time slot that satisfies the following conditions: (a) it starts later than vB's earliest available time
EATi

B(v), (b) it is large enough to accommodate the task's execution.
EPTi

P(v) and EPTi
B(v) denote, respectively, two sets of scheduled tasks whose separating time

gaps constitute all idle time slots that meet the conditions for scheduling primary and backup copies
of tasks. Thus, EPTi

P(v)={vk∈ VQi |s(vk+1)-MAX[f(vk),EATi
P(v)]≥ ci(v)} (6)

EPTi
B(v)={vk∈VQi |s(vk+1)-MAX[f(vk),EATi

B(v)]≥ ci(v)} (7)
The earliest start time for the primary and backup copies of v on processor pi are determined by the

following expressions.

10

))}((),({)(
)(kvEPTv

P
i

P
i vfMINvEATMAXvEST

i
P

k∈
= (8)

))}((),({)(
)(kvEPTv

B
i

B
i vfMINvEATMAXvEST

i
B

k∈= (9)

 In equations (8) and (9), both EATi
P(v) and EATi

B(v) can be derived from EATi(v, vj) using
expressions (2) and (3). EATi(v, vj) is determined by task vj 's finish time and the arrival time of
message e = (vj, v) ∈ E. If vj and v are allocated to the same processor, the communication time of
message e is assumed to be zero. If vj and v are allocated to two different processors, the message
arrival time will be determined by the finish time of the parent task and the volume of data being
transmitted. Thus, we have the following expressions for message start time and message arrival time.

Given a message e= (vj, v)∈ E, MSTki(e) and MATki(e) represent the message start time and the
message arrival time, respectively, where

MATi(e)= MSTki(vj,v) + wi j |(vj,v)| if p(vj)= k ≠ i (10)
 f(vj) otherwise

A message e can be scheduled to the communication channel between two processors if the
channel has an idle time slot that: (a) starts later than the sender's finish time, and (b) is large enough
to accommodate e's transmission.
Given a message e = (va,vb), MPTij(e) is a set of messages between processor pi and pj (i ≠ j) whose
separating time gaps constitute all the idle time slots that satisfy conditions (a) and (b) above. In other
words, ek∈ MPTij(e), then the time interval ms(ek+1) - mf(ek) is an idle slot time satisfying the two
conditions. Thus, MPTij(e)={ek∈MQj| MST(ek+1) - MAX[f(va), MATj(ek)]≥|e|} (11)
Then, MSTij(e) can be defined as follows,),({)(aij vfMAXeMST =))}(()(ki jeMPTe emfMIN

ijk ∈ (12)

The objectives of the algorithm, presented below, are to minimize the schedule length (and thus
maximize guarantee ratio) and maximize the reliability. For each primary copy vi

P, it is allocated on
the processor with the minimum reliability cost. However, if the schedule length Lp for primary
copies on a processor is too long, it may result in the possibility that some backup copies can not meet
their deadlines.

For each backup copy vi
B, it should satisfy four conditions, namely, (1) it is allocated on the

processor that is different than the one assigned for its primary copy, (2) it is allocated on the
processor that leads to the minimum increase in reliability cost, (3) vi

B can finish before deadline, and
(4) vi

b can receive messages from all its predecessors.

4.2 Reliability Cost Driven Scheduling
Reliability cost driven (RCD) schemes were studied in [22], [23], [28] and [29] to maximize

system reliability. It must be noted that the tasks considered in [23] and [28] do not have any
precedence constraints. In [29] and [22], RCD-based scheduling algorithms for tasks with precedence
constraints are proposed for non-real-time and real-time, respectively. However, algorithms in [22]
and [29] do not take fault-tolerance into account, neither do algorithms in [23] and [28]. We have
adapted the basic idea of RCD scheme to accommodate these differences. The objectives of the
algorithm are twofold: to minimize the schedule length, thus maximizing the schedulability, and to
maximize the reliability by incorporating reliability cost and fault-tolerance in the scheduling. The
basic idea of the proposed algorithm follows below.

First, real-time tasks are sorted in non-decreasing order of their deadlines, and are processed for
scheduling in that order. Hence, the tasks with earlier deadline will be given a higher priority to be
scheduled. The primary copies of tasks are allocated first, followed by their backup copies. For each
given copy, primary or backup, of a task, the candidate processor for allocation is chosen following a

11

greedy process, thus resulting in the processor that leads to the smallest reliability cost being chosen.
In the case that two processors lead to the same smallest reliability cost, selecting the processor that
gives rise to the earlier EST breaks the tie. The fault-tolerant RCD scheduling algorithm is formally
described below. An example to illustrate how the proposed algorithm works is given in Appendix.
FTRCD Algorithm:
1. if ∃∃∃∃v:)}({2 1 vcMIN imi≤≤ > d(v) then return(FAIL); /* Pre-check the deadlines based on proposition 2 * /

2. Sor t tasks in V by their deadlines in non-decreasing order, subject to precedence constraints of the DAG, and
put them into an ordered list OL;

3. for each task v in OL do /* Schedule primary copies * /
4. s(vP) ←←←← ∞∞∞∞; find ←←←← NO; rc ←←←← ∞∞∞∞; /* Initialize start time, reliability cost (rc) for vP * /
5. for each processor pi do /* Determine reliability cost of vP on each processor * /
6. rci ←←←← λλλλi ×××× ci(v); /* Calculate the reliability cost of vP on pi */
7. if (ESTP

i(v) + ci(v) ≤≤≤≤ d(v)) then /* Calculate the EST of vP on pi using Equation (8), and check deadline */
8. find ←←←← YES; /* Indicate that there is a possible schedule * /
9. if ((rci<rc) or (rci=rc and ESTP

i(v)< s(vP))) /* Find the minimum reliability cost * /
10. then s(vP) ←←←← ESTP

i(v); p←←←← pi; rc ←←←← rci; /* Assign start time and rc * /
11. end if
12. end for
13. if find = NO then return (FA IL) /* If no possible schedule is available for vP, algorithm terminates */

 14. p(vP) ←←←← p; f(vP) ←←←← s(vP) + ci(v), where pi = p; /* Determine the finish time * /
15. Dispatch vP to processor p(vP);
16. Update information of message in the MQ;
17. end for /* Finish scheduling the primary copies * /
18. for each task v in OL do /* Schedule the backup copies * /
19. s(vB) ←←←← ∞∞∞∞; find ←←←← NO; rc ←←←← ∞∞∞∞; /* Initialize start time, reliability cost for vP * /
20. for each possible processor pi ∈∈∈∈F(v) , subject to Proposition 2 and Theorem 2, do
21. Determine whether vP is a strong pr imary copy (using Theorem 4);
22. ci ←←←← λλλλi ×××× ci(v); /* Calculate the reliability cost of vP on pi * /
23. if (ESTB

i(v) + ci(v) ≤≤≤≤ d(v)) then /* Calculate the EST of vB on pi using Equation (9), and check deadline * /
24. find ←←←← YES; /* Indicate that there is a possible schedule * /
25. if ((rci<rc) or (rci=rc and ESTB

i(v)< s(vB))) then /* Find the minimum reliability cost * /
26. s(vB) ←←←← ESTB

i(v); p←←←← pi; rc ←←←← rci; /* Assign start time and rc * /
27. end if
28. end for
29. if find = NO then return (FAIL); /* If no possible schedule is available, algorithm terminates * /
30. p(vB) ←←←← p; f(vB) ←←←← s(vB) + ci(v), where pi = p; /* Determine the finish time * /
31. Dispatch vB to processor p(vB);
32. Update information of each message in MQ;
33. for each task vj ∈∈∈∈ U(v) (using Theorem 3) do /* Determine messages based on U(v) obtained by Theorem 3 */
34. if p(vP)≠≠≠≠p(vj

P) or vP is not a strong pr imary copy then
35. vj

B sends message to vP if possible (based on Theorem 1);
36. end for /* Finish scheduling the backup copies * /
37. return (SUCCEED);

5. Per formance Evaluation

This section presents results from our extensive simulation experiments that evaluate the
performance of the proposed algorithm. For the purpose of comparison, we modified the FTRCD
algorithm to form a non-reliability-driven algorithm, called FTAEAP (fault-tolerant, schedule as early
as possible), by eliminating the consideration of reliability cost in scheduling. More specifically, we
change lines 8 and 24 in the FTRCD algorithm so that the EST values now become the only criteria

12

for selecting candidate processors. Therefore, the FTAEAP algorithm, greedy in nature, tolerates
permanent failures in any one processor, but does not consider reliability cost.

We run the two algorithms on a variety of task graphs that are generated randomly. Since binary
tree and lattice are two typical DAGs, representative of many real-life parallel and real-time
programs, we consider them in the simulations. In addition, DAGs with random precedence
constraints are also considered to stress-test the proposed algorithm. All these DAGs are randomly
generated. Random graphs have been widely used by several researchers in the past [22][28][29].

In addition to the DAGS, input parameters for the simulation include: (1) number of real-time
tasks in each DAG, (2) number of processors and their failure rates, (3) fault detection time, (4) a
randomly generated computational heterogeneity vectors C(v) = {c1(v), c2(v), …, cm(v)} for each real-
time task, and (5) communicational heterogeneity vectors. Together, they represent the system model
and workload precisely.

The performance measures used in this study are: reliability cost (RC), defined in Equation (1),
and schedule guarantee ratio (GR), defined to be the percentage of real-time jobs (DAGs) that are
schedulable. While the former gives a measure of system reliability as a result of a particular
schedule, the latter quantifies the effectiveness and scheduling power of a scheduling algorithm. For
each of the two scheduling algorithms, it is invoked with the above inputs and, if the task set is
schedulable, then RC0(Ω) is calculated based on the resultant schedule.

In this simulation study, 100,000 task sets were generated independently for scheduling algorithm.
Workload parameters are chosen in such a way that they are either based on those used in the
literature or represent reasonably realistic workload and provide some stress tests for the algorithms.
Table 1 Parameters for simulation experiments

The parameters used in the
simulation studies are summarized
in Table 1 [22][29]. Real-time
DAGs for the simulation are
generated as follows:
(1) For each real-time task, the
computation time in the execution
time vector is randomly chosen,
uniformly from the range E. The
scale of this range approximates the

level of computational heterogeneity.
(2) Given vi ∈V, if vi is on pk and vj is on pl, then vi’ s deadline is chosen as follows: d(vi) =
md*{max(d(vj) + 1 + |eij| × wlk + max{ck(vi)} + δ}, where eij = (vj, vi) ∈E(J), k∈[1, m], md is a factor
for defining deadlines. δ is the fault detection time that is randomly computed according to a uniform
distribution,. When md is set to a high value, real-time tasks will have loose deadlines, whereas md
with a low value results in tight deadlines for tasks.

Data communication among real-time tasks is simulated as follows:
(1) Communication weight (wi j) is chosen uniformly from the range W. The scale of this range
approximates the level of communicational heterogeneity.
(2) Communication volume between two real-time tasks is uniformly selected from the range V. This
range reflects the variance in message size.
 A random DAG is generated in four steps as below:
(1) The number of tasks N and the number of messages U are chosen. In this simulation study, it is
assumed that U = 4N. (2) The execution time for each task is chosen randomly. (3) The

Parameter Explanation Value (Fixed) (Varied)
 FR Failure rate of processors -
 C Range of execution time 5 - 50 5-50,5-100,5-120

 D Range for generating the deadline
 1- 10 1-100,1-300,…,

1-1100
 W Range of communication weight 0.5 - 1.5
 V Range of communication volume 1 - 10
 M Number of processor 8 7, 8

 N Number of tasks in a DAG

Btree/Random
10,20,…,70
Lattice:
9,16,…,81

 δ Fault Detection time 5 5, 10 , 15, …,35

13

�

���

���

���

���

�����

���	���	
���������	���	���

FTRCD
Btree

FTAEAP
Btree

FTRCD
Random

FTAEAP
Random

�������������������

������������������ ����"!�#%$

Fig. 7 Guarantee ratio of FTRCD and
FTAEAP for Btree and random graph

&

'�(

(�&

)�(

*�&�&

+,*.-/'�(10�-32�+-�2546*

798;:=<?>A@=B=C

798=D;EFD;GA@=B?C

798;:=<?>A@=B;H

798=D;EFD;GA@=BIH

J�K�L.MON�P�Q�R�S�T

U�P�K�T�K�V�W�S�SOX�K�W�Y[Z]\

Fig. 8 Guarantee ratio of FTRCD and
FTAEAP. Task graph is lattice

communication time for each message is generated randomly and its sender and receiver selected
randomly, subject to the condition that such selection does not generate any circle in the graph. (4) A
deadline for each task is generated randomly.

5.1 Reliability Cost
RC is used as one of the objective functions for scheduling tasks. RC results of the simulation

running FTAEAP and FTRCD are presented in this subsection. Since the purpose of this experiment
is to study the impact of RC, schedulability (i.e. GR) is not considered here. Therefore, deadlines of
real-time tasks are assumed to be so large that all tasks’ deadlines can be guaranteed. To satisfy this
assumption, the md factor is set to be arbitrarily large. The number of processors is set to 8, and
maximum execution time is chosen to be 50 and 100, respectively, other parameters are selected as
shown in Table 1.

RC is computed according to Equation (1). Simulation results of binary trees and random DAGs
are shown in Fig. 5, and results of lattice DAGs are plotted in Fig. 6. We observe that FTRCD
outperforms FTAEAP consistently and significantly in the RC measure. As the number of tasks
increases, the advantage of FTRCD over FTAEAP becomes more significant. This is because
FTAEAP does not consider RC in its scheduling scheme while FTRCD makes efforts to allocate tasks
to processors on which their execution times are minimum, since it is the execution time that
dominates the RC product.

5.2 Schedulability
The guarantee ratio, formally defined to be: GR = Number of task sets that are schedulable *

100 / Total task sets, is used in this subsection to measure the scheduling power of the proposed
algorithm. In this experiment, the maximum execution time is fixed to 50, the number of processors is
selected to be 8 and 10 for binary trees, and is chosen as 7 and 8 for lattices. Other parameters are
chosen as shown in Table 1.

�

���

���

���

���

���^���	
��_���	���^���	���

`9a;b?c=dAe;fFg;h=h

`9a=iIj9i;kAeIf9g;h=h

`9a;b?c=dAb;lFm;n9o9p

`9a=iIj9i;k
b;l9mIn9o9p

�������������������

 ��"q�![���6!�q�!���rts�#����u���.vxw

Fig. 5 Reliability costs of FTRCD and
FTAEAP. The C range for Btree and for
Random Graph is [5,50] and [5,120]

y

z�{

|�y

}�{

~�y

��{

��z�~���{�|�~�}��5~�}���z

�F�;�=�=�
�F�;�9�;�=�?�=�

�F�=�;�9�;�
�F�;�9�;�=�?�=�

�F�;�=�=�
�F�;�9�;�=���x�=�

�F�=�;�9�;�
�F�;�9�;�=�.�x�=�

���������������� �¡

¢� "£�¤[���6¤�£�¤�¥�¦¨§�©���¥
z�y�ªx«

Fig. 6 Reliability costs of FTRCD and
FTAEAP. Task graph is lattice

14

�

���

���

���

���

���
	��
����	������	���

FTRCD
N=30
FTAEAP
N=30
FTRCD
N=20
FTAEAP
N=20

Detecting Time

�������������������������
���

Fig. 9 Impact of detection time on guarantee
ratio.Task graph is binary tree

�

�

!

"
#

"
$

"&%

$'"
��"&$�#���#�$�������$

FTRCD
N=50
FTRCD
N=40
FTAEAP
N=30
FTAEAP
N=20

Detecting Time

(�)�*�+&,�-.+�*�+
/1032�4�5�/6"
� -3

Fig. 10 Impact of detecting time on reliability
cost.Task graph is binary tree

Fig. 7 and Fig. 8 illustrate the impact of the job size on GR for binary trees, random graphs and
lattices, respectively. As the number of tasks in a job increases, GR decreases. This is intuitive,
because under a fixed computing resource, the more tasks there are in the system, the fewer of them
can be guaranteed to satisfy their deadlines. It is very interesting that this impact is more significant
for binary trees than for both random graphs and lattices. We conclude from this result that the
schedulability of the system does not only depend on the scheduling algorithm, but also on the
structure of the DAG. Again, FTRCD gives rise to a relatively higher guarantee ratio compared with
that of the FTAEAP. This is because FTRCD tends to allocate tasks to processors that would execute
tasks the fastest, or equivalently, fastest processors tend to be picked.

5.3 Impact of The Fault Detection Time
In the simulation experiment, the fault detection time is increased from 5 to 35 in steps of 5. Other

parameters assume the default values given in Table 1. To make the results more discernable, the N
value is chosen for the two algorithms in such a way that performance curves are evenly spread in the
plots while the proposed algorithm (FTRCD) is stress-tested. Thus, for algorithm FTRCD, N is set to
be 50 and 40, respectively, whereas for algorithm FTAEAP, N is chosen to be 20 and 30. Notice that
FTRCD is loaded almost twice as much as FTAEAP. In this experiment, we only present the result
for binary tree since other DAGs behave similarly. Figs. 9 and 10 illustrate the impact of fault
detection time on GR and RC, respectively.

Fig. 9 shows the impact of the fault detection time on GR for different values of N. As fault
detection time increases, GR decreases significantly. It clearly suggests that decreasing fault detection
time can significantly improve GR of the system. This result strongly supports the intuition that using
a high-speed network to detect fault in a short amount of time can substantially enhance the system
performance. From Fig. 10, we observe that RC remains roughly the same with increasing detection
time. It is clear that fault detection time has no significant impact on RC. This is because a larger fault
detection time only delays the earliest start time of the tasks. This means that fault detection time does
not play any role in local RC calculation, which in turn determines to which processor a task should
be allocated.

6 Conclusion

In this paper, we present a fault-tolerant scheduling algorithm for a heterogeneous distributed
system executing real-time tasks with precedence constraints. To provide the system with fault-
tolerance, each task is associated with a primary and backup copy so that, if the primary copy of the
task does not work due to the permanent failure of one processor, its backup copy can continue the
task’s execution. In the proposed approach, it is required that both primary and backup copies be
scheduled to complete before their deadlines. In addition, conditions under which the primary and

15

backup copies of a task should send message to the primary and backup copies of its successors are
investigated.

When a processor fails, it takes an extra amount of time to handle fault and fault detection.
Nevertheless, most related research work in the literature assumes that fault detection time is zero.
The proposed approach, however, takes fault detection time into account, and studies how fault
detection time affects scheduling performance quantitatively. The experimental result suggests that
shortening fault detection time improves the schedulability of the algorithm.

Another contribution of this paper is that the proposed algorithm is devised for heterogenous
distributed systems that are increasingly being used for real-time applications. We adopt the notion of
reliability cost, which is a good metric to evaluate the reliability of a heterogenous system. The
proposed algorithm employs a reliability-driven scheme to minimize the reliability cost without any
extra hardware cost. To evaluate the performance of the reliability-driven, fault-tolerant scheme, we
compare the proposed algorithm with one of its variations that does not consider reliability cost when
scheduling tasks. The result shows that the reliability-driven algorithm not only generates the
schedule with a minimized reliability cost, but also has superior schedulability compared with non-
reliability-driven algorithms.

As an extension of this work, it would be interesting to study more DAG types that represent more
applications. We are planning to find out whether DAG types make significant impact on the
performance of the algorithm. Devising a dynamic fault-tolerant scheduling algorithm based on
FTRCD algorithm will also be a challenging task. In the proposed scheduling model, it is assumed
that backup copies are not allowed to be overlapped with one another. One possible extension of the
current work would be to study the possibility of allowing backup copies to be overlapped in some
fashion.

References
[1] T.F. Abdelzaher and K.G. Shin., “Combined Task and Message Scheduling in Distributed Real-Time Systems,” IEEE Transaction
on Parallel and Distributed Systems, Vol. 10, No. 11, Nov. 1999.
[2] K. Ahn, J. Kim, S. Hong, “ Fault-Tolerant Real-Time Scheduling using Passive Replicas,” In Proc. Of the 1997 Pacific Rim
International Symposium on Fault-Tolerant Systems, Taipei, TAIWAN, December 15-16, 1997.
[3] N.M. Amato, P. An, “Task Scheduling and Parallel Mesh-Sweeps in Transport Computations,” Technical Report TR00-009,
Department of Computer Science, Texas A&M University, January 2000.
[4] C. Dima, A. Girault, C. Lavarenne, and Y. Sorel, “Off-Line Real-Time Fault-Tolerant Scheduling,” In Proc. Of the Euromicro
Workshop on Parallel and Distributed Processing, pp. 410—417, Mantova, Italy, February, 2001.
[5] A. Dogan,F. Ozguner, “Reliable matching and scheduling of precedence-constrained tasks in heterogeneous distributed
computing,” In Proc. Of the 29th International Conference on Parallel Processing, pp. 307-314, 2000.
[6] D.G. Feitelson, “Scheduling Parallel Jobs on Clusters,” In High Performance Cluster Computing, Vol 1: Architectures and Systems,
pp. 519-533, Prentice-Hall, 1999.
[7] D.G. Feitelson and A. W. Mu’alem, “On the Definition of ``On-Line’ ’ in Job Scheduling Problems,” Technical Report 2000-32,
Hebrew University of Jerusalem, Mar 2000.
[8]R. Govindrarajan, Narasimba Rao, E.R. Altman and Guang R. Gao, An Enhanced Co-Scheduling Method using Reduced MS-State
Diagrams, In the Proceedings of the International Parallel Processing Symposium, pp 168-175, Orlando, Florida, April 1998.
[9] K. Hashimoto, T. Tsuchiya, and T. Kikuno, “ A New Approach to Realizing Fault-Tolerant Multiprocessor Scheduling by
Exploiting Implicit Redundancy,” In Proc. Of the 27th Intl Symposium on Fault-Tolerant Computing, Seattle, WA, June 25-27, 1997.
[10] E.N. Huh, L.R. Welch, B.A. Shirazi and C.D. Cavanaugh, “Heterogeneous Resource Management for Dynamic Real-Time
Systems,” In Proc. Of the 9th Heterogeneous Computing Workshop, 287-296, 2000.
[11] W. Jia, Wei Zhao, D. Xuan, and G. Xu, “An Efficient Fault-Tolerant Multicast Routing Protocol with Core-Based Tree
Techniques,” IEEE Transactions on Parallel and Distributed Systems, 10(10), pp 984 – 1000, Oct. 1999.
[12] D. Kebbal, E.G Talbi, and J.M Geib, “Building and scheduling parallel adaptive applications in heterogeneous environments,” In
Proc. Of the 1st IEEE Computer Society International Workshop on Cluster Computing, pp.195-201, Melbourne, Australia, 1999.
[13] Y.K. Kwok and I. Ahmad, Static scheduling algorithms for allocating directed task graphs to multiprocessors ACM Computing
Surveys Vol.31 , No. 4, 1999, pp.406-471.

16

[14] F. Liberato, S. Lauzac, R. Melhem and D. Mosse, “Fault Tolerant Real-Time Global Scheduling on Multiprocessors,” Proc.of
Euromicro Workshop in Real-Time Systems, 1999.
[15] F. Liberato, R. Melhem, and D. Mossé, “Tolerance to Multiple Transient Faults for Aperiodic Tasks in Hard Real-Time Systems,”
IEEE Transactions on Computers, Vol. 49, No. 9, September 2000.
[16] G. Manimaran and C. Siva Ram Murthy, “ A Fault-Tolerant Dynamic Scheduling Algorithm for Multiprocessor Real-Time
Systems and Its Analysis,” IEEE Transactions on Parallel and Distributed Systems, 9(11), November 1998.
[17] P. Mejia Alvarez and D. Mosse, “A Responsiveness Approach for Scheduling Fault Recovery in Real-Time Systems,”
Proceedings of Fifth IEEE Real-Time Technology and Applications Symposium, Canada, pp.1-10, June 1999.
[18] D. Mosse, R. Melhem and S.Ghosh, “Analysis of a Fault-Tolerant Multiprocessor Scheduling Algorithm,” In Proc. Of the 24th
Fault-tolerant Computing Symposium. Austin, TX, 1994.
[19] S. Ghosh, R. Melhem and D. Mosse, “Fault-Tolerance through Scheduling of Aperiodic Tasks in Hard Real-Time Multiprocessor
Systems”, IEEE Trans. On Parallel and Distributed Systems. Vol 8, no 3, pp. 272-284, 1997
[20] Y.Oh and S.H.Son, “An algorithm for real-time fault-tolerant scheduling in multiprocessor systems,” 4th Euromicro Workshop on
Real-Time Systems, Greece, 1992, pp.190-195.
[21] Xiao Qin, and Hong Jiang, “Dynamic, Reliability-driven Scheduling of Parallel Real-time Jobs in Heterogeneous Systems,” In
Proc. Of the 30th International Conference on Parallel Processing, Valencia, Spain, pp.113-122, 2001.
[22] Xiao Qin, Hong Jiang, C.S. Xie, and Z.F. Han, “Reliability-driven scheduling for real-time tasks with precedence constraints in
heterogeneous distributed systems,” In Proc. Of the 12th International Conference Parallel and Distributed Computing and Systems,
pp.617-623, November 2000.
[23] Xiao Qin, Z.F. Han, H. Jin, L.P. Pang and S.L. Li., “Real-time Fault-tolerant Scheduling in Heterogeneous Distributed Systems,”
in Proceedings of the 2000 International Conference on Parallel and Distributed Processing Techniques and Applications, Las Vegas,
USA, June 26-29, 2000. Vol. I, pp.421-427.
[24] S. Ranaweera, D.P. Agrawal, “A scalable task duplication based scheduling algorithm for heterogeneous systems,” In Proc. Of the
29th International Conference on Parallel Processing, pp. 383 –390, 2000.
[25] S. Ranaweera, and D.P. Agrawal, “Scheduling of Periodic Time Critical Applications for Pipelined Execution on Heterogeneous
Systems,” In Proc. Of the 2001 International Conference on Parallel Processing, Valencia, Spain, Sept 4-7, 2001, pp. 131-138.
[26] S. Ranaweera and D.P. Agrawal, “A Task Duplication Based Scheduling Algorithm for Heterogeneous Systems,” in 14th
International Parallel and Distributed Processing Symposium (IPDPS’00), 1 – 5 May 2000, Cancun, Mexico.
[27] R.M. Santos, J. Santos, and J. Orozco, “Scheduling heterogeneous multimedia servers: different QoS for hard, soft and non real-
time clients,” In Proc. Of the 12th Euromicro Conference on Real-Time Systems, pp.247-253, 2000.
[28]S.M. Shatz, J.P. Wang, and M. Goto, “Task Allocation for Maximizing Reliability of Distributed Computer Systems,” IEEE Trans.
Computers, vol.41, no.9, pp.1156-1168, Sept. 1992.
[29] S. Srinivasan, and N.K. Jha, “Safty and Reliability Driven Task Allocation in Distributed Systems,” IEEE Trans. Parallel and
Distributed Systems, 10(3), pp. 238-251, 1999.
[30] J. Stankovic, M. Spuri, K. Ramamritham and G.C. Buttazzo, “Deadline Scheduling for Real-time systems: EDF and Related
Algorithms,” Kluwer Academic Publishers, 1998

Appendix.

Please Note: The proofs of the theorems and the scheduling example used in this paper are
provided in this appendix for the convenience of the reviewers. We understand that the
conference has a page limit and do not intend to publish all the material presented here in te
proceedings if the paper is accepted. The materials will, however, be made available as a
technical report.

A. Proof of Theorem 1.
Proof: By contradiction: Assume vi

B is execution-preceding vj
P, thus, vj

P must execute (Def.5). Since
vi

P is a strong primary copy, processor p(vi
P) must have failures by time f(vi

P) (Def.7). But vi
P and vj

P
are allocated to the same processor and vi

P is schedule-preceding vj
P, implying that vj

P also could not
execute. A contradiction.

�

B. Proof of Theorem 2.
Proof: Assume that vi

B executes instead of vi
P . This, combined with the fact that vi

P is a strong
primary copy, implies that p(vi

P) does not work at time f(vi
P) (Def. 7). Since f(vi

P)< f(vj
B), it also

17

implies that p(vi
P) does not work at time f(vj

B). Thus, we have ~@(p(vi
P), f(vj

B)). Since vi
B executes,

either vi
B is execution-preceding vj

P or vi
B is execution-preceding vj

B. But ~(vi
B � vj

P), vi
B cannot be

execution-preceding vj
P. Hence, we only have vi

B � vj
B. This implies that vj

B executes (Def. 7), which
means @(p(vj

B), f(vj
B)), a contradiction. Thus, we have proven that p(vj

B) ≠ p(vi
B).

�

C. Proof of Theorem 3.
Proof: By contradiction: Suppose vi

B � vj
B. We have Θvi

B and Θvj
B (Def. 5), which implies

~@(p(vi
P), f(vi

P)) (Def.7) and ~@(p(vj
P), f(vj

P)) (Def.7). Since vi
P is schedule-preceding vj

P, thus f(vi
P)

< f(vj
P), implying ~@(p(vi

P), f(vj
P)). This means that at time t > f(vj

P), two processors in the system
have failed. A contradiction.

�

D. Proof of Theorem 4.
Proof: As the proof of (a) is straightforward from the definition, it is omitted here. We only prove
(b). Suppose before time f(vi

P), processor p(vi
P) does not fail, we have @(p(vi

P), f(vi
P)). Let vj be a

predecessor of vi. There are two possibilities:
(1) p(vi

P) = p(vj
P), we have f(vj

P) < f(vi
P), implying that processor p(vj

P) does not fail before f(vj
P).

Because vj
P is a strong primary copy, vj

P must execute.
(2) p(vi

P) ≠ p(vj
P) and vj

B � vi
P , implying that even if one processor fails, vi

P can still receive message
from task vj (recall that vj

P � vi
P).

Based on (1) and (2), we have proven that vi
P can receive messages from all its predecessors. In other

words, vi
P must execute since p(vj

P) has not failed by time f(vi
P). Therefore, according to Definition 7,

vi
P is a strong primary copy.

�

E. Scheduling Example

We use an example to illustrate how the proposed algorithm, FTRCD, works, by scheduling the
task graph (DAG) of Fig. 11 on a three-processor system. The scheduling result is depicted in Fig. 12.

After sorting tasks by their deadlines in non-decreasing order, subject to their precedence
constraints, the task sequence in the list OL is, OL = (v1, v3, v2, v5, v4, v6). From step 3 to 17, primary
copies of the six tasks are scheduled. For each primary copy, its reliability costs on three processors
are calculated (see step 5-12), and the processor which gives rise to the minimum reliability cost is
determined in step 9 and 10. For example, the primary copy of v1 is allocated to p2, because the
reliability cost of v1 on p2 is the smallest among the three processors, namely, 0.95×10-6, compared to
2×10-5 and 1.05×10-5 on p1 and p3 , respectively. Step 13 terminates the algorithm if one primary
copy’s deadline cannot be guaranteed. The six backup copies are scheduled following steps 18
through 35 of the algorithm. RCs of each backup copy on all feasible candidate processors are
generated following steps 20 through 28. All candidate processors for the backup copy of v are stored
in F(v). For example, F(v2) = {p3}. In this particular example, p3 happens to be the only suitable
candidate for v2 . This is because, on the one hand, the primary and backup copies of v2 are allocated
to different processors, due to Proposition 2. Hence, p(v2

P)= p1∉ F(v2). On the other hand, v1 has a
strong primary copy and v1

B is not schedule-preceding v2
P, which, according to Theorem 2, implies

that v1
P and v2

B cannot be allocated to the same processor, thus p(v1
P)=p2∉F(v2).

Before calculating RCs of each backup copy, step 20 determines whether a task has a primary copy
based on Theorem 4. For example, v1

P is a strong primary copy (Theorem 4(a)), and v2
P

 is not a strong
primary copy due to the fact that p(v1

P) ≠ p(v2
P) ∧ ~(v2

B � v1
P) (Theorem 4(b)). Like step 13, step 29

terminates the algorithm if one backup copy’s deadline cannot be satisfied. The last step after

18

scheduling each backup copy of task v is to schedule messages from vj
B (vj ∈ U(v)) to vP, if

applicable, based on Theorem 1 (See step 33-35).
Finally, the reliability cost and schedule length generated by the FTRCD algorithm are 1.11×10-3

and 87, respectively.

time

v3
P

v1
P

v2
P

v3

B

v1
B

v5
P

v6
B

Processor1

Processor2

Processor 3
v2

B

v4
P

v6
P

v4

B

v5
B

95 10

57

61

12 31 41

Fig.12 Schedule Produced by the FTRCD algorithm. Reliability cost = 1.1×10-4, schedule
length = 95 λ1 = 1*10-6, λ2=0.95*10-6, λ3 = 1.05*10-6

Messages between
primary copies

Messages from a primary copy
to a backup copy

Messages between
backup copies

Fig. 11 DAG task graph. Assume a 3-processor system and each real-time task is denoted
by vi = ((ci1, ci2, ci3,), di), where cij is the execution time of vi on pj, and di is the deadline. i =
[1, 6], j = [1, 3]. Communication weights are: w12 = w21 = 1, w13 = w31 = 3, w23 = w32 = 3.

1

2

((20,8,10),55)

((10,22,7),70)
((6,18,8),72)

((9,12,10),80)

((12,24,10),95)

2 2

2

1

1

1

1

2 3

4 5

6

((12,8,10),75)

