
J. Parallel Distrib. Comput. 65 (2005) 885–900
www.elsevier.com/locate/jpdc

A dynamic and reliability-driven scheduling algorithm for parallel
real-time jobs executing on heterogeneous clusters

Xiao Qina,∗, Hong Jiangb

aDepartment of Computer Science, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801-4796, USA
bDepartment of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0115, USA

Received 21 February 2003; received in revised form 27 September 2004; accepted 10 February 2005
Available online 17 May 2005

Abstract

In this paper, a heuristic dynamic scheduling scheme for parallel real-time jobs executing on a heterogeneous cluster is presented. In
our system model, parallel real-time jobs, which are modeled by directed acyclic graphs, arrive at a heterogeneous cluster following a
Poisson process. A job is said to be feasible if all its tasks meet their respective deadlines. The scheduling algorithm proposed in this
paper takes reliability measures into account, thereby enhancing the reliability of heterogeneous clusters without any additional hardware
cost. To make scheduling results more realistic and precise, we incorporate scheduling and dispatching times into the proposed scheduling
approach. An admission control mechanism is in place so that parallel real-time jobs whose deadlines cannot be guaranteed are rejected by
the system. For experimental performance study, we have considered a real world application as well as synthetic workloads. Simulation
results show that compared with existing scheduling algorithms in the literature, our scheduling algorithm reduces reliability cost by up
to 71.4% (with an average of 63.7%) while improving schedulability over a spectrum of workload and system parameters. Furthermore,
results suggest that shortening scheduling times leads to a higher guarantee ratio. Hence, if parallel scheduling algorithms are applied to
shorten scheduling times, the performance of heterogeneous clusters will be further enhanced.
© 2005 Elsevier Inc. All rights reserved.

Keywords:Dynamic scheduling; Real-time; Parallel processing; Heterogeneous clusters; Cluster computing; Reliability cost; Performance evaluation

1. Introduction

Heterogeneous clusters have become widely used for sci-
entific and commercial applications. These systems require a
mixture of general-purpose machines, programmable digital
machines, and application specific integrated circuits [33].
A heterogeneous cluster involves multiple heterogeneous
modules that interact with one another to solve a problem
[34,41]. In a heterogeneous cluster, applications comprise
multiple subtasks that have diverse execution requirements.
The subtasks must be assigned to machines and ordered for
execution in such a way that the overall application execu-
tion time is minimized [18].
∗ Corresponding author. Fax: +1 505 835 5587.
E-mail addresses:xqin@cs.nmt.edu(X. Qin), jiang@cse.unl.edu

(H. Jiang).

0743-7315/$ - see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2005.02.003

Recently, heterogeneous clusters have also been em-
ployed in real-time applications[43], in which the sys-
tems depend not only on results of computation, but also
on time instants at which these results become available.
The consequences of missing deadlines ofhard real-time
systems may be catastrophic, whereas such consequences
for soft real-time systems are relatively less damaging.
Examples of hard real-time applications include aircraft
control, radar for tracking missiles, and medical electron-
ics. On-line transaction processing systems are examples
of soft real-time applications. In real-time applications,
reliability is one of the most important issues. Due to the
critical nature of jobs executed in many real-time sys-
tems, high reliability becomes an inherent requirement of
such systems, and this is especially true for hard real-time
applications.

http://www.elsevier.com/locate/jpdc
mailto:xqin@cs.nmt.edu
mailto:jiang@cse.unl.edu

886 X. Qin, H. Jiang / J. Parallel Distrib. Comput. 65 (2005) 885–900

Growing evidence shows that scheduling is a key factor
in obtaining high reliability and performance in heteroge-
neous clusters supporting real-time applications. The objec-
tive of real-time scheduling is to map tasks onto machines
and order their execution so that task precedence require-
ments are satisfied and a minimum schedule length, when
attainable, is given. Besides achieving this conventional ob-
jective, the dynamic scheduling strategy proposed in this
paper provides high reliability for non-preemptive, aperi-
odic, real-time jobs without any additional hardware cost.
In particular, we have developed a framework of real-time
scheduling by which parallel jobs are scheduled dynami-
cally, as they arrive at a heterogeneous cluster. In this frame-
work, a designated machine, calledscheduler, is responsi-
ble for dynamically scheduling real-time jobs as they arrive,
and dispatching them to other machines, calledprocessing
elements, to execute. The proposed algorithm takes into ac-
count dispatching and scheduling times in addition to relia-
bility costs, and these factors have been neglected by most
scheduling schemes that deal with real-time heterogeneous
clusters. This approach is shown by our simulation studies
to not only make real-time jobs more predictable and reli-
able, but also make the scheduling more realistic.

The paper is organized as follows. In Section2, work re-
ported in the literature that is the most relevant to our work
is briefly described. The system and reliability models are
presented in Section 3. Section 4 proposes a novel dynamic
scheduling algorithm. Performance evaluation is presented
in Section 5. Finally, Section 6 concludes the paper by sum-
marizing the main contributions of this paper and comment-
ing on future directions of this work.

2. Related work

Many scheduling algorithms have been proposed in the
literature to support real-time systems. Real-time schedul-
ing algorithms are classified into two categories: static
(off-line) [1,15,21,24,27,29,32] and dynamic (on-line)
[13,17,19,22,31,36]. Very recently, Palis addressed task-
scheduling problems in the context of reservation-based
real-time systems that provide quality of service guarantees
[22]. Real-time tasks in Palis’s scheduling framework are
preemptive [22], whereas it is assumed in our scheduling
model that real-time tasks are non-preemptive. Moreover,
the algorithm proposed by Palis [22] as well as many other
algorithms presented in [21,36] were designed for indepen-
dent real-time tasks. In contrast, our proposed algorithm, like
those described in [15,24,27,29], can schedule tasks with
precedence constraints, which are represented by directed
acyclic graphs (DAG). We recently extended non-real-time
DAGs into real-time DAGs to study real-time scheduling
of tasks with precedence constraints [24]. However, these
algorithms, while considering precedence constraints, be-
long to the static category, limiting their applications to of-
fline scheduling only. Furthermore, most of these real-time

scheduling algorithms are designed for homogeneous sys-
tems, making them unsuitable for heterogeneous systems.

In the literature, parallel jobs have often been represented
by DAGs [4,7,15,29,41]. Wu et al. proposed a runtime par-
allel incremental DAG scheduling approach [41]. Cosnard
et al. developed a scheduling algorithm for a parameterized
DAG, which first derives symbolic linear clusters and then
assigns task clusters to machines [7]. As for distributed com-
puting, a typical model is the fork-join paradigm [30], where
main program thread runs on one processor and spawns a
number of tasks from time-to-time. Sahni and Vairaktarakis
addressed the scheduling problem in the fork-join paradigm,
and developed efficient heuristics to obtain minimum fin-
ish time schedules for single-master processor and multiple-
master systems [30]. The scheduling algorithms in these
three studies, however, were also designed for homogeneous
systems.

The studies in heterogeneous clusters reveal a number
of challenges, which include load balancing [3,42,25],
resource management [10] and scheduling [5,6,38]. The
issue of scheduling on heterogeneous systems has been
addressed in many papers [3,6,8,11,28,29,35,37]. It is sug-
gested that minimizing a task’s completion time leads to a
minimal start time of the task [18,37]. Topcuoglu et al. stud-
ied two efficient and low-complexity heuristics for DAGs:
the heterogeneous Earliest-Finish-Time (HEFT) algorithm
and the Critical-Path-on-a-Machine (CPOP) algorithm [37].
Iverson and Özgüner proposed a matching and scheduling
framework where multiple applications compete for com-
putational resources on networks [11]. Maheswaran and
Siegel investigated a dynamic matching and scheduling al-
gorithm for heterogeneous system [18], whereas Beaumont
proposed a static scheduling algorithm that based on a re-
alistic model for heterogeneous networks of workstations.
To consider reliability of different resources in a system
while making scheduling decisions, Doǧan and Özgüner
introduced two cost functions that were incorporated into
a matching and scheduling algorithm for tasks with prece-
dence constraints [8]. As computational Grids have emerged
as new platforms for high-performance computing, grids
have become a new frontier for research in the area of
scheduling and resource management. Arora et al. proposed
a new scheduling algorithm for a generalized heterogeneous
Grid environment [3]. Unfortunately, all these scheduling
algorithms assumed that tasks are non-real-time. Non-real-
time scheduling algorithms are unable to schedule real-time
jobs efficiently, simply because they are not designed to
meet the predictability requirement of real-time jobs.

Some work has been done to combine real-time com-
puting with heterogeneous systems [10,29,31,38]. Tracy et
al. addressed a real-time scheduling issue in heterogeneous
systems [38]. Huh et al. proposed a solution for dynamic
resource management problems in real-time heterogeneous
systems [10]. Ranaweera and Agrawal developed a scal-
able scheduling scheme on heterogeneous systems to reduce
the number of pipeline stages and the pipeline period of

X. Qin, H. Jiang / J. Parallel Distrib. Comput. 65 (2005) 885–900 887

Global
Scheduler

Schedule
Queue (SQ)

Dispatch
Queue (DQ)

p
1

p
2

p
m

Parallel real-time
jobs

Local Queue
 (LQ)

Fig. 1. The scheduler on model for dynamic scheduling of parallel
real-time jobs in a heterogeneous cluster.

time- critical applications[29]. Santos et al. introduced a
new real-time scheduling concept based on the hybrid de-
terministic/probabilistic analysis [31]. Although the above
algorithms took both the real-time and heterogeneous issues
into consideration, these algorithms did not consider relia-
bility. We have proposed a real-time scheduling in hetero-
geneous systems, which can minimize the reliability cost of
the systems [24]. While the scheduling algorithms devel-
oped in [24] were static in nature, algorithms studied in this
paper, on the other hand, are dynamic.

To the best of our knowledge, scheduling and dispatching
times are ignored by most dynamic non-real-time and real-
time scheduling algorithms. To make real-time scheduling
results more precise, scheduling and dispatching times have
to be incorporated in dynamic scheduling algorithms. There-
fore, our study takes a closer look at the impact of schedul-
ing and dispatching times on scheduling performance (see
Sections 5.4 and 5.5).

In this paper, we only focus on dynamic scheduling for
real-time systems. For this reason, we have not discussed
a diversity of scheduling strategies developed for non-real-
time applications. However, Kwok and Ahmad provided
classifications and detailed descriptions of various static
scheduling approaches [16], and many other scheduling
schemes have been introduced for parallel computing sys-
tems [9].

3. System and reliability models

In this section we describe a general system model for
parallel applications running on a heterogeneous cluster. We
then present a reliability model that captures the typical re-
liability characteristics of a cluster. Reliability cost in the
reliability model is an important performance metric used
throughout the rest of this study. This section ends by for-
mulating scheduling and dispatching times that are consid-
ered important for performance of real-time applications in
dynamic cluster-computing environments.

3.1. System model

Fig. 1 depicts the scheduler model in a heterogeneous
cluster environment. This model is similar to the one de-
scribed in [13,14,19,35], where aglobal schedulerworks in
concert with a Resource Manager. It is assumed that all par-
allel jobs, along with information provided by application

programmers, are submitted to the global scheduler by a
special user command. Aschedule queue(SQ) for arriving
jobs is maintained by the scheduler, which schedules real-
time tasks of each job in SQ and places an accepted job in a
dispatch queue(DQ) from which tasks of each accepted job
are transmitted to designated machines, also calledprocess-
ing elements(PEs), for execution. The scheduler executes
in parallel with PEs, each of which maintains alocal queue
(LQ) to which real-time tasks are transmitted from DQ. A
parallel job is considered acceptable if all tasks in this job
can be completed before their deadlines; otherwise, the job
is rejected by the scheduler.

In a distributed scheduling scheme, an alternative ap-
proach to dynamic scheduling, jobs arrive independently
at each local scheduler, which produces schedules in par-
allel with other schedulers. Compared with the distributed
scheme, the centralized scheduling model has two attractive
features. First, it is straightforward to provide the central-
ized scheduler with fault-tolerance, using a backup sched-
uler that concurrently executes with the primary scheduler.
The backup scheduler independently determines whether or
not the timing constraints of given jobs can be satisfied and
stores the tasks of accepted jobs into the backup scheduler’s
DQ. Tasks in the backup scheduler’s DQ will not be trans-
mitted to the processing elements until a failure of the pri-
mary scheduler is detected. Second, implementation of a
centralized scheduling model is simpler and easier than that
of a distributed scheduling model. If schedulers in the dis-
tributed model are dedicated to scheduling, the computing
power tends to be underutilized, especially when the sched-
ulers are idle. On the other hand, if the schedulers are able
to serve as processing elements when they have no job to
schedule, it is difficult (if it is not impossible) to predict
when the schedulers will be idle in a dynamic cluster envi-
ronment. Therefore, the centralized scheduler is employed
in our scheduler model. Nevertheless, and importantly, our
proposed scheduling approach can also be implemented in
a distributed scheduling scheme.

A parallel real-time job is modeled by a directed acyclic
graph (DAG) J = {V, E}, whereV = {v1, v2, . . . , vn}
represents a set of real-time tasks, andE represents a set of
weighted and directed edges among real-time tasks.eij =
(vi, vj) ∈ E denotes a message transmitted from taskvi to
vj , and|eij | is the volume of data transmitted between these
tasks.

A heterogeneous cluster is modeled by a setP =
{p1, p2, . . . , pm} of machines, wherepi is a machine with
local memory. Machines in the heterogeneous cluster are
connected with one other by a high-speed network. A
machine communicates with other machines through mes-
sage passing, and the communication time between two
tasks assigned to the same machine is assumed to be zero
[26,27,37].

One challenging issue in improving performance of clus-
ters lies in their heterogeneity. There are two essential rea-
sons that a homogeneous cluster will eventually become a

888 X. Qin, H. Jiang / J. Parallel Distrib. Comput. 65 (2005) 885–900

heterogeneous cluster. First, most of machines in a cluster
are commercially off-the-shelf products, which are likely to
become outdated. Before predecessors become unusable, re-
cently purchased machines will be added into the cluster.
As a result, a heterogeneous cluster may consist of differ-
ent types of machines with a broad range of both comput-
ing power and failure rate. Second, heterogeneous machines
tend to be connected with each other by different types of
high-speed networks, since a cluster will consist of outdated
network from previous installation and new network that
may have better communication performance.

Thecomputational heterogeneityof a job is expressed as
a function,C : V ×P → R, which represents the execution
time of each task on each available machine in a hetero-
geneous cluster[11,26,34], wherecij denotes the execution
time of taskvi on machinepj . Likewise, thecommunica-
tional heterogeneityof the job can be expressed by a function
[11,26,34],COM : E × P × P → R, in which the com-
munication time for transferring a messageesr from taskvs

on machinepi to taskvr on machinepj is determined by
w∗ij |esr | [6,26], wherewij , the weight on the edge between
pi and pj , represents the time for transmitting a message
of unit length between the two machines. Thus,wij can be
viewed as a measure ofcommunicational heterogeneity.

3.2. Reliability model

The reliability model, which is similar as the one de-
fined in [24,26,34], assumes that permanent failures occur
according to aPoissonprobability distribution and failures
are mutually independent. LetX be anm× n binary matrix
corresponding to a schedule, in whichn tasks of a job are
assigned tom processors. Elementxij equals 1 if and only
if vi has been assigned topj ; otherwisexij = 0.

A machine might fail during an idle time, but it is
assumed that machines’ failures during an idle time in-
terval are not considered in our reliability model. The
reason for this assumption is two-fold [24,34]. First, in-
stead of affecting the system reliability, failures during
an idle time merely make impact upon completion times
of tasks. Second, a machine’s failure during an idle pe-
riod can be fixed by replacing the failed machine with a
spare unit, meaning that such failures are not critical for
reliability analysis.

The reliability cost of a taskvi on pj is a product
of pj ’s failure rate �j and vi ’s execution time onpj .
Thus, the reliability cost of a machine is the summation
over reliability costs of all tasks assigned to that machine
based on a given schedule. Given a vector of failure rates
� = (�1, �2, . . . , �m), a specific scheduleX, and a job
J , the reliability cost of the machines of the cluster is
defined as

RCPN(�, X, J) =
m∑

j=1

n∑
i=1

(−�j xij cij). (1)

Before estimating reliability cost of links connecting
among machines, we introduce a setEkb, containing all
messages transmitted frompk to pb. Formally, Ekb is
defined as

Ekb = {(vi, vj)|eij > 0∧ xik = 1∧ xjb = 1},
∀1�k, b�m : k
= b.

Let �kb be the failure rate of the link betweenpk andpb.
The reliability cost of a messageeij ∈ Ekb is a product of�kb

andwkb|eij |. Therefore,eij ’s reliability cost can be calculated
as:−�kbxikxjbwkb|eij | = −�kbwkb|eij |. Based on the def-
inition of one message’s reliability cost, the reliability cost
of a link betweenpk and pb, denoted asRCkb(M, X, J),
can be computed as a cumulative reliability cost of all mes-
sages assigned to this link. More precisely,RCkb(M, X, J)

is obtained by the following equation, whereM is anm×m

matrix of failure rates for links.

RCkb(M, X, J) =
n∑

i=1

n∑
j=1,j
=i

[−�kbxikxjb(wkb|eij |)]. (2)

RCLINK (M, X, J), the reliability cost of links in the sys-
tem, can be derived from Eq. (2). Thus,RCLINK (M, X, J)

equals to the summation over all link’s reliability cost, and
therefore we have,

RCLINK (M, X, J) =
m∑

k=1

m∑
b=1,b
=k

Rkb(M, X, J). (3)

We are now in a position to determineRC(�, M, X, J),
the heterogeneous cluster’s reliability cost that is a summa-
tion of the reliability cost of machines and links. Hence, we
obtainRC(�, M, X, J) from Eqs. (1) and (3) as

RC(�, M, X, J)=RCPN(�, X, J)

+RCLINK (M, X, J). (4)

Given a cluster with the reliability cost asRC(�, M, X, J),
the reliability is given by Eq. (5):

Reliability(�, M, X, J)

= exp(−RC(�, M, X, J))

= exp(−RCPN(�, X, J))

exp(−RCLINK (M, X, J)). (5)

Therefore, scheduling a task with larger execution time to
a more reliable machine is a good approach to increase the
system’s overall reliability. For the convenience of reference
in the rest of the paper, we summarize the notation of the
system and reliability models in Table1.

X. Qin, H. Jiang / J. Parallel Distrib. Comput. 65 (2005) 885–900 889

Table 1
Model parameters

Parameter Explanation
cij execution time of taskvi on machinepj

eij a message transmitted from taskvi to vj
wij time for transmitting a message of unit length between

machinepi and pj

�i failure rate of machinepi

�ij failure rate of a link betweenpi and pj

xij xij = 1 if and only if taskvi has been assigned to machine
pj ; otherwisexij = 0

RC reliability cost of a heterogeneous cluster
RCPN reliability cost of machines in a cluster
RCLINK reliability cost of communication links in a cluster

3.3. Scheduling and dispatching times

In a dynamic scheduling environment, it takes a sched-
uler a certain amount of time to schedule a parallel job. This
time can be significant if the number of tasks in the job is
large. To the best of our knowledge, most dynamic real-time
scheduling algorithms either assumes zero scheduling time
or do not take scheduling time into account. In real clusters,
a dynamic real-time scheduling algorithm that does not con-
sider scheduling time may not be predictable. Therefore in
this study we will incorporate scheduling time into the pro-
posed scheme. To further improve the predictability of real-
time scheduling, we also take the so-called dispatch time—
the time it takes a scheduler to send real-time tasks of an
accepted job from the DQ to the processing elements—into
consideration.

Assume thatvi is a real-time task in jobJk, thus,
vi ∈ V (Jk). Let tdispatch(vi) and tschedule(Ji) denote the
time overhead of dispatching taskvi from the scheduler
to the processing element and the scheduling time for job
Ji , respectively. It is assumed that the underlying network
that connects the scheduler with the processing elements
affords real-time communications[12], which is able to
guarantee a given taskvi to be dispatched within time inter-
val tdispatch(vi). t

DQ
delay(vi) denotes the queuing delay in DQ

experienced by taskvi , and t
SQ
delay(Ji) represents the queu-

ing delay in SQ experienced by jobJi . Let t
job
interval(Jk) be

the inter-arrival interval between two consecutive jobsJk−1
and Jk. t task

interval(vi) denotes the time interval betweenJk ’s
arrival at the scheduler andvi ’s arrival at its target process-
ing element. The reason why the derivation oft task

interval(vi)

is important and indispensable in a practical heterogeneous
cluster is that a taskvi cannot start executing on a machine
pj until vi arrives atpj . Thus, the earliest start time ofvi

on any processing machine, determined in expression (10)
to be presented shortly, is less than or equal tot task

interval(vi).
The time intervalt task

interval(vi) consists of four time inter-
vals, namely, queuing delay experienced in SQ, scheduling
overhead incurred in jobJk, delay time experienced in
DQ and the dispatch time. Therefore,t task

interval(vi) can be

defined as

t task
interval(vi)= t

SQ
delay(Jk)+ tschedule(Jk)

+t
DQ
delay(vi)+ tdispatch(vi), (6)

wherevi ∈ V (Jk),

t
DQ
delay(vi)=

∑
vj∈DQ

tdispatch(vj) and t
SQ
delay(Jk)

=
∑

Jj∈SQ

tschedule(Jj)

=




0 if t
SQ
delay(Jk−1)

+tschedule(Jk−1)

� t
job
interval(Jk) with

probabilityps(Jk),

t
SQ
delay(Jk−1) otherwise with probability
+tschedule(Jk−1) 1− ps(Jk).

−t
job
interval(Jk),

Let ps(Jk) denote the probability that there is no task cur-
rently queued in the scheduling queue. Thus, the probability
of t

SQ
delay(Jk) being equal to 0 isps(Jk). For simplicity, we

assume that the event represented byps(Jk) is independent
of other submitted jobs. However, our approach to calcu-
lating t

SQ
delay(Jk) does not depend on this assumption. The

probabilityps(Jk) can be obtained either from experimental
data or through profiling.

From the above equation, the following recursive expres-
sion can be obtained fork�2.

t
SQ
delay(Jk)= (1− ps(Jk))(t

SQ
delay(Jk−1)

+tschedule(Jk−1)− t
job
interval(Jk)). (7)

Applying the above equation recursivelyk − 1 times, we
obtain

t
SQ
delay(Jk)=

k∑
j=1

k∏
i=j

{(1− ps(Jk))(tschedule(Jj−1)

−t
job
interval(Jj))}. (8)

For future reference, we sumarize the notation for
scheduling and dispatching times in Table2.

4. Scheduling algorithms

4.1. Definitions and assumptions

To facilitate the presentation of the proposed algorithm,
it is necessary to introduce some additional definitions

890 X. Qin, H. Jiang / J. Parallel Distrib. Comput. 65 (2005) 885–900

Table 2
Notation of scheduling and dispatching times

Notation Explanation
tschedule(Ji) scheduling time for jobJi

tdispatch(vi) time overhead of dispatching taskvi from the scheduler to
its processing element

t
DQ
delay(vi) queuing delay in aDispatch Queueexperienced by taskvi

t
SQ
delay(Ji) queuing delay in aSchedule Queueexperienced by jobJi

t
job
interval(Jk) inter-arrival interval between two consecutive jobsJk−1

and Jk

t task
interval(vi) time interval betweenJk ’s arrival at the scheduler andvi ’s

arrival at its processing element

and assumptions. Letst(vi), ft(vi) and dt(vi) be the start
time, finish time, and deadline of taskvi , respectively. Our
scheduling algorithms are devised to determinevi ’s start
time, which is subject to constraints:ft(vi) = st(vi) + cij
andft(vi)�dt(vi), wherevi is allocated topj .

Letestj (vr) bevr ’s earliest start time onpj . estj (vr) must
satisfy the following three conditions:

(4.1a) It is later than the time when all messages fromvi ’s
predecessors arrive atpj ,

(4.1b) It is later than the delay timet task
interval(vi), and

(4.1c) Machinepj has an idle time slot sufficient to accom-
modatevi .

Before estj (vr) is computed, it is assumed that,
without loss of generality, tasksvi1, vi2, . . . , viq have
been allocated topj . The idle time slots onpj are [0,

st(vi1)], [ft(vi1), st(vi2)], . . . , [ft(vi(q−1)), st(viq)], [ft(viq),

∞], and all idle time slots are scanned from left to right.
Consequently, the first idle time slot[ft(vik), st(vik+1)] that
satisfies the following inequality is chosen:

st(vi(k+1))−MAX{eatj (vi), t task
interval(vi), ft(vik)}�cij).

(9)

Thus, the earliest start time is determined as follows:

estj (vi) = MAX{eatj (vi), t task
interval(vi), ft(vik)}, (10)

whereeatj (vi) is the earliest available time when all mes-
sages sent fromvi ’s predecessors arrive atpj . The earliest
available timeeatj (vi) is computed as follows. Recall that
D(vi) is a set of messages fromvi ’s predecessors tovi ,
eatj (vi, e) denotes the earliest available time of taskvi if

messagee represents the only precedence constraint. Thus,
we have:

eatj (vi) = MAX
e∈D(vi)

{eatj (vi, e)}, (11)

whereeatj (vi, e) can be obtained from the earliest start time
of messagee, mst(e), which depends on how the message
is routed and scheduled on the links. Thus, a message is
allocated to a link if the link has an idle time slot that is
later than the sender’s finish time and is large enough to
accommodate the message. Before presenting the expression
to calculateeatj (vi, e), we outline below the algorithm to
determinemst(e).

mst(e):
Note:e = (vj , v), mst(er+1) = ∞, mst(e0) = 0, |e0| = 0, andMQi = {e1, e2, . . . , er} is the message queue
containing all messages scheduled to the link.
1. for (g = 0 to r + 1) do/∗ Check the idle time slots∗/
2. if mstik(eg+1)−MAX{mst(eg)+ w∗ik|eg|, ft(vj)}�w∗ik|e| then /∗ If the idle time slots∗/
3. return mst(eg)+ w∗ik|eg|, ft(vj); /∗ can accommodate v, return the value∗/
4. end for
5. return ∞; /∗ No such idle time slots is found,mst is set to be∞∗/

As mentioned earlier,eatj (vi, e), can be derived from
mst(e). More precisely,eatj (vi, e), given in expression (11),
is equal to the finish time of messagee if vi and its prede-
cessor that generatese are allocated to different machines,
otherwiseeatj (vi, e) is fixed to be the finish time of its pre-
decessor.

eatj (vi, e)

=




mst(e)+ |e| × wsj , if j
= s,

wherexij = 1 andxks = 1

ft(vk) otherwise.
(12)

4.2. Non-reliability-cost-driven scheduling algorithms

In this section we present two variations of the list-
scheduling family of algorithms, DASAP (scheduleAs
SoonAs P ossible) and DALAP (scheduleAs Late As
P ossible), in which system reliability is not consid-
ered. The DASAP algorithm is an extended version of
ASAP, a well-known static scheduling algorithm presented
in [23,39].

The DASAP algorithm, shown formally below, picks a
job J at the head ofSQ, if it is not empty, to schedule. The
real-time tasks inJ are sorted in the increasing order of
their deadlines. Thus, the task with the earliest deadline is
scheduled first. For each taskvi , the algorithm computes its
earliest start timeestj (vi) on eachpj , then the machine on
which vi has the earliest start time is chosen. If the deadline
is not guaranteed, all scheduled tasks that belong toJ are
rejected and deleted fromDQ, otherwisevi is moved to

X. Qin, H. Jiang / J. Parallel Distrib. Comput. 65 (2005) 885–900 891

the dispatch queue. Only when all the tasks inJ have been
moved into the dispatch queue, can these tasks be dispatched
to designated machines in the heterogeneous cluster.

The DASAP algorithm:
1. Get a jobJ from the head of the schedule queueSQ;
2. Sort tasks inJ by their deadlines in increasing order;
3. for each taskvi in J do
4. est ←∞;
5. for eachpj in P do
6. if (estj (vi) < est) then

est ← estj (vi); xij ← 1;xik ← 0 where
k
= j ;

7. end for
8. if est + cij �dt(vi), wherexij = 1 then
9. st(vi)← est ; ft(vi)← est + cij ;
10. Movevi into the dispatch queueDQ;
11. elseRejectvi and deleted the scheduled tasks in

J from the dispatch queueDQ;
12. Update information of each message;
13.end for
14. Goto 1. to schedule the next job;

The algorithm outlined below is a DALAP. In this algo-
rithm, tasks start as late as possible, subject to the constraint
that deadlines of all real-time tasks in a job are guaranteed.
Let lstj (vr) be the latest start time of taskvr onpj . lstj (vr)

is subject to four conditions, of which three are identical to
conditions 4.1a–4.1c presented in Section4.1, and the fourth
condition is described below. (4.2a) Taskvr has to be fin-
ished before deadlinedt(vr).

Again, before calculatinglstj (vr), we assume that, with-
out loss of generality, tasksvi1, vi2, . . . , viq have been
allocated to machinepj . The idle time slots on machinepj

are [0, st(vi1)], [ft(vi1), st(vi2)], . . . , [ft(viq),∞). To find
the latest idle time slot that satisfies above four conditions,
we scan idle time slots from right to left to select the first
idle time slot[ft(vik), st(vik+1)] that satisfies the following
inequality:

MIN{st(vik+1),dt(vi)}
−MAX{eatj (vi), t task

interval(vi), ft(vik)}�cj (vi).

(13)

Hence, the latest start time is computed as below:

lstj (vi) = MAX{eatj (vi), t task
intervald(vi), ft(vik)}. (14)

The DALAP algorithm is a modified version of the
ALAP algorithm (As Late As Possible), a static schedul-
ing algorithm described by Marwedel[20]. Since ALAP
belongs to the static scheduling category, its applica-
tions are limited to offline scheduling only. However,
DALAP is an online scheduling algorithm in the sense
that can dynamically schedule tasks with precedence
constraints. The DALAP picks a jobJ at the head of
SQ, if it is not empty, computeslstj (vi) of each task

vi in J on each machine in the cluster, then selects
the machine on whichvi has the latestlstj (vi). vi is
moved into DQ, if such proper machine is available.
Otherwise, jobJ is not schedulable, and all scheduled
tasks belonging toJ are deleted fromDQ. DALAP is
shown below.

The DALAP algorithm:
1. Get a jobJ from the head of the schedule queueSQ;
2. Sort tasks inJ by their deadlines in increasing order;
3. for each taskvi in job J do
4. lst ← 0; schedulable← no;
5. for each machinepj in P do
6. if lstj (vi) is availablethen
7. schedulable← yes;
8. if lstj (vi) > lst then

lst ← lstj (vi); xij ← 1; xik ← 0
wherek
= j ;

9. end if
10. end for
11. if (schedule = yes) then
12. st(vi)← est ; ft(vi)← est + cij , wherexij = 1;
13. Movevi into the dispatch queueDQ;
14. elseRejectvi and deleted the scheduled

tasks inJ from the dispatch queueDQ;
15. Update information of each message;
16.end for
17. Goto 1. to schedule the next job;

4.3. A dynamic reliability-cost-driven scheduling algorithm

To improve the performance of the above algorithms, we
make use of the following necessary condition to identify
jobs that are not feasible for any scheduling algorithm.
Necessary Condition1: Let vi be a task of jobJ running

on a cluster withm machines, then the deadline ofvi must
be greater than or equal to the minimum execution time of
vi . This argument is formalized in the following expression.
If job J has a feasible schedule, then:

∀vi ∈ J : dt(vi)�MINm
i=1{cij }.

Due to the fact that DASAP and DALAP do not take
reliability cost into account, we design in what follows a
dynamic reliability-cost-driven (DRCD) scheduling algo-
rithm. The DRCD algorithm improves the reliability of
the system with no extra hardware cost, by incorporat-
ing reliability cost into task scheduling and reducing the
overall reliability cost. The main objective of DRCD is
to minimize the system reliability cost, thereby increasing
the reliability that is inversely proportional to the reli-
ability cost. Each real- time task is allocated in such a
way that results in a minimal reliability cost. DRCD is
described below.

892 X. Qin, H. Jiang / J. Parallel Distrib. Comput. 65 (2005) 885–900

The DRCD algorithm:
1. Get a jobJ from the head of the schedule queueSQ;
2. If the job is not feasible for any scheduling algorithms (based onNecessary Condition 1) then
3. Goto 1. to schedule the next job;
4. Sort tasks inJ by their deadlines in increasing order;
5. for each taskvi in job J do
6. st ←∞; find← no; rc←∞; /∗Initialization∗/
7. for each machinepj in P do
8. est ← estj (vi); /∗ Calculate the earliest start time ofvi on pj ∗ /

9. if est + cij �dt(vi) then /∗ Check whether the deadline ofvi can be guaranteed∗/
10. find← yes;
11. x′ik ← xik, where 1�k�m; xij ← 1; xik ← 0 wherek
= j ; /∗ Backup the previous schedule∗/
12. rcPN← �j cij ; rcLINK ← ∑

vk∈D(vi)

m∑
a=1

m∑
b=1
{−�abxjaxib(wabeji)}; /∗ Calculate the reliability cost∗/

13. if (rcPN+ rcLINK < rc) or (rcPN+ rcLINK = rc and est < st) then
14. st ← est ; rc← rcPN+ rcLINK ; /∗ Update the schedule, minimizing the reliability cost∗/
15. elsexik ← x′ik, where 1�k�m; /∗ Rollback to the previous schedule∗/
16. end if
17. end for
18. if (find= yes) then
19. st(vi)← est ; ft(vi)← est + cij ;
20. Movevi into the dispatch queueDQ;
21. elseRejectvi and deleted the scheduled tasks inJ from the dispatch queueDQ;
22. Update information of each message;
23. end for
24. Goto 1. to schedule the next job;

The time complexity of DRCD is given in Theorem1 as
follows:

Theorem 1. Letn be the number of tasks, m be the number
of machines in a heterogeneous cluster, andu be the number
of messages in a job. The time complexity of the DRCD
algorithm isO(m× n2× u).

Proof. It takes DRCD O(log(n)) time to sort the real-time
tasks according to their deadlines. It takes O(u) time to com-
pute theeat, thus, the time complexity for calculatingestis
O(n× u). Since there arem machines in the heterogeneous
cluster andn real-time tasks in the job, thefor loop takes
O(m × n)O(n × u). Therefore, time complexity of this al-
gorithm is O(m× n2× u). �

5. Performance evaluation

To evaluate performance of the proposed scheduling ap-
proach, we present in this section several sets of experimen-
tal results obtained from extensive simulations. In Section
5.1, we describe the simulator, the workload parameters, and
the performance metrics of interest. Performance compar-
isons between our reliability-driven algorithm (DRCD) and
two existing scheduling algorithms (DASAP and DALAP)
are provided in Section 5.2. Section 5.3 presents results
showing how job arrival rates affect guarantee ratios. Sec-
tion 5.4 presents simulation results illustrating the impact of
scheduling times on guarantee ratio performance. A study

of the performance impact of dispatching times is presented
in Section5.5. In Section 5.6, we show how cluster sizes
affect the performance of DRCD. The effect of execution
time on reliability cost is illustrated in Section 5.7. Section
5.8 reports experimental results that show impacts of com-
putational heterogeneity on the guarantee ratio. Finally, to
validate the results generated from synthesized benchmarks,
to study the scalability and effectiveness of DRCD on real-
world applications, we applied DRCD to a benchmark repre-
senting digital signal processing (DSP) applications in Sec-
tion 5.9.

5.1. The experimental platform

In our simulation experiments, it is assumed that jobs ar-
rive at the heterogeneous cluster according to a Poisson Pro-
cess [3,35]. In addition to a real-world real-time application,
DSP [40], chosen as our benchmark for the experimental
study, we also conducted simulation studies on three dif-
ferent types of real-time task graphs that are representative
of many real-life parallel applications, namely, binary trees
[26,34], lattices [26,34] and random graphs [1,2,8]. Work-
load parameters are chosen in such a way that they are ei-
ther based on those used in the literature (see, for example,
[1,2,8,19,29,34]) or represent reasonably realistic workload
and provide some stress tests for our algorithm. For each
point in the performance curves, the number of jobs arriving
in the heterogeneous cluster is 20,000. The parameters used

X. Qin, H. Jiang / J. Parallel Distrib. Comput. 65 (2005) 885–900 893

Table 3
Parameters for simulation experiments

Parameter Explanation Value (Fixed) (Varied)
FRPN Failure rate of machines −(0.95, 0.96, . . . , 1.05)× 10− 6/h
FRLINK Failure rate of links Chosen uniformly from the range 7.5× 10−6 to 12.5× 10−6 /h
MIN_E Minimum execution time (5)–(15, 25, 35 s)
MAX_E Maximum execution time (200)–(100, 120, 140, 160, 180, 200) (170,180,190 s)
� Range for generating deadlines ([1, 10])–([1, 100), [1, 300],…, [1, 1100 s])
MIN_W,MAX_W Communication weights (0.5, 1.5)–
MIN_V,MAX_V Communication volumes (1, 10)–
M Number of machines in clusters (8)–(10,15,20,…,40)
N Number of tasks in a job (30, 50, 70) for Btree, (9, 25, 36, 49) for Lattice
� Job arrival rate −(5, 10, 15, 20, 25)× 10−4 No./s
MIN_D,MAX_D Minimum and maximum dispatch (1, 10)–(5, 10, 15, 20, 25 s)

Table 4
Scheduling time as a product ofm = 8, n2 and u

10 30 50 70 90
Btree 0.07 2.09 9.80 27.05 57.67
Random 0.04 1.08 5 13.72 29.16
N 9 25 49 64 81
Lattice 0.08 2.00 16.14 36.70 75.59

in the simulation studies are given in Table3. The hetero-
geneous cluster for the simulation experiments is described
as follows:

(1) The number of machines reflects the system size of a
cluster[4,18]. Its default value is 8.

(2) The Failure rate for each machine is uniformly dis-
tributed[8] in the range from 0.95× 10−6/h to 1.05×
10−6/h [26,34].

(3) The link failure rates are uniformly distributed in the
range from 0.75× 10−7 to 1.25× 10−7/h [34].

The computation and communication workloads for the
simulation are generated as follows:

(1) For each real-time task, the worst-case computation
time in the execution time vector is randomly chosen,
uniformly distributed betweenMIN_E and MAX_E

[18,19]. The scale of this range approximates the level
of computational heterogeneity.

(2) Givenvi ∈ V (J), if vi is onpk andvj is onpl , thenvi ’s
deadline is chosen as follows:dt(vi) = max{dt(vj)} +
1 + |eji | × wlk + max{cik} + �, whereeji ∈ E(J),
k ∈ [1, m], and� is randomly computed according to a
uniform distribution.

(3) The dispatch time of each task is chosen uniformly be-
tweenMIN_D and MAX_D. This range reflects the
variance in job’s size and parallelism.

(4) Since the time complexity of the scheduling algorithm
is O(m × n2 × u), given in Theorem1, we model the
scheduling time of a job as a function ofm, n, andu,
namely, 10−5× (m× n2× u). For random graphs, we
assume thatu = n/2. The scheduling time is given in
Table 4.

(5) Communication weight(wij) is chosen uniformly
betweenMIN_W and MAX_W . The scale of this
range approximates the level of communicational
heterogeneity.

(6) Communication volume between two real-time tasks is
uniformly selected[18] betweenMIN_V andMAX_V .
This range reflects the variance in message size.

The performance measures in our simulation study are
reliability cost (RC) that is defined in expression (4) and
guarantee ratio (GR) defined as follows [19,26].

GR

= Total number of jobs guaranteed to meet their deadlines

Total number of jobs arrived
×100%. (15)

While reliability cost gives a measure of system reliabil-
ity as a result of a particular schedule, guarantee ratio in-
dicates how many of the arriving jobs can be scheduled,
thus measuring the effectiveness and power of a scheduling
algorithm.

5.2. Reliability cost

To validate the DRCD algorithm and compare its perfor-
mance against two existing approaches, we have tested the
reliability cost performance of DRCD, DASAP, and DALAP.
The benchmark task graphs used for the evaluation include
random graphs, binary trees, and lattices. We have chosen
this collection of task graphs as a set of benchmarks because
they are representative of various applications modeled as
directed acyclic graphs. In Figs.2 and 3 we plot reliability
cost with increasing job size and job arrival rate. Since re-
sults for lattices and random graphs have similar patterns as
those for binary trees, we only show results of binary trees
in Fig. 2.

Fig. 2 shows that compared with the existing scheduling
approaches, DRCD reduces the reliability cost of DASAP
and DALAP by up to 71.4% and 66.8% (with average of
63.7% and 61.3%), respectively. The advantage of DRCD
over DASAP and DALAP becomes more pronounced as
the job size increases. This is expected because DASAP
and DALAP do not consider reliability cost as one of their

894 X. Qin, H. Jiang / J. Parallel Distrib. Comput. 65 (2005) 885–900

0

5

10

15

20

25

30

35

40

10 20 30 40 50

DRCD
DASAP
DALAP

Number of tasks

R
el

ia
bi

lit
y

co
st

 (
10

-4
)

Fig. 2. Impact of task load on RC, job arrival rate= 15× 10−4 No./s,
binary trees and used.

7

10

10 20 2515

13

16

19

5

n=25 lattice n=40 random n=50 btree

Arrival rate (10-4)

R
el

ia
bi

lit
y

C
os

t (
10

-4
)

Fig. 3. Impact of job arrival rate on reliability cost, binary tree, lattice,
and random graphs are used.

scheduling objectives. DRCD, however, tends to assign tasks
to machines on which their reliability cost are minimum.

Another interesting result from this experiment is that job
arrival rate seems to have no impact on reliability cost perfor-
mance. Since DRCD, DASAP and DALAP share the same
feature, we only ran DRCD algorithm on three benchmark
task graphs. The results shown in Fig.3 indicate that the
reliability cost performance depends on job size rather than
job arrival rate. This can be attributed to the fact that the
scheduling algorithms employ an admission control strategy,
which rejects jobs whose deadlines cannot be guaranteed.

5.3. Guarantee ratio

In this section we present some experimental results
with respect to guarantee ratios. We present two different
groups of experimental results based on a set of synthetic

0

20

40

60

80

100

DRCD DALAP DASAP

Arrival rate (10-3 No. / Sec.)

G
ua

ra
nt

ee
 r

at
io

 (
%

)

1 2 3 4 5 6 7

Fig. 4. Guarantee ratios of DRCD, DASAP, and DALAP, random graphs
are tested,n = 0.

50

60

70

80

90

100

5 1510 20 25

n=30 btree
n=70 btree
n=25 lattice
n=49 lattice

Arrival rate (10-4No./Sec.)

G
ua

ra
nt

ee
 r

at
io

 (
%

)

Fig. 5. Impact of job load and task load on guarantee ratio, binary trees
are tested.

benchmarks. First we present performance comparison of
the DRCD, DASAP, and DALAP algorithms on a heteroge-
neous cluster. Second, we illustrate the impact of workload
and job size on guarantee ratios.

Fig. 4 shows the results of the experiment where random
graphs are used as benchmarks. Results for binary trees and
lattices are omitted because they are expected to be similar to
those of random graphs. We set the job arrival rate from 1×
10−3 to 7×10−3 No./s in increments of 1×10−3 No./s. Fig.
4 shows that the guarantee ratio of DRCD is slightly higher
than that of the DALAP algorithm, and DRCD significantly
outperforms DASAP in terms of guarantee ratio. This is
mainly because the resource utilization of DRCD is less
than those of DASAP and DALAP. In general, this result
can be attributed to the fact that, in an effort to minimize
reliability cost, the DRCD approach constantly strives to
shorten execution times of each task in a job.

Fig. 5 shows the results of the second experiment on two
types of benchmark task graphs: binary trees and lattices.

X. Qin, H. Jiang / J. Parallel Distrib. Comput. 65 (2005) 885–900 895

20

40

60

80

100

10 30 50 70 90

btree (n=110) btree (n=70)

lattice (n=36) lattice (n=25)

random (n=20) random (n=10)

Scheduling time

G
ua

ra
nt

ee
 r

at
io

 (
%

)

Fig. 6. Impact of scheduling time on guarantee ratio, arrival rate is
2× 10−3 No./s.

For each curve in Fig.5, the number of tasks in each job is
fixed, whereas the job arrival rate is changed from 5×10−4

to 25×10−4 No./s. Figs. 4 and 5 show the drop in guarantee
ratio with increasing values of job arrival rate. Additionally,
Fig. 5 illustrates that guarantee ratio decreases as the number
of tasks increases. This is because increasing job arrival
rate and size results in increased scheduling and dispatching
times, which in turn give rise to lowered guarantee ratios.

5.4. Scheduling time

To study the impact of scheduling time on guarantee ra-
tios, we present in this section two sets of experimental re-
sults. First, we illustrate the results for the DRCD algorithm
in Fig. 6. Second, we compare DRCD against DASAP and
DALAP with respect to the impact of the scheduling time on
their guarantee ratios (See Fig. 7). Although the scheduling
time of each job can be estimated as a function ofm, n, and
u (see Section 5.1 item 4), the scheduling time in this exper-
iment varies from 10 to 90. This simplification deflates any
correlations between scheduling times and other workload
parameters, but the goal of this simulation is to examine the
impact of the scheduling time on system performance by
controlling the scheduling time as a parameter.

Both binary tree-, lattice- and random graph-based jobs
are considered. For each curve in Fig. 6, the job size is fixed
and the job arrival rate is set to be 2× 10−3 No./s. Fig. 6
shows guarantee ratio as a function of scheduling time. It
reveals that the scheduling time makes significant impact
on the performance of a dynamically scheduled real-time
heterogeneous cluster. Without considering scheduling time,

0

20

40

60

80

100

10 20 30 40 50 60 70

DRCD DALAP DASAP

Scheduling time

G
ua

ra
nt

ee
 r

at
io

 (
%

)

Fig. 7. Guarantee ratios of the three heuristics when scheduling time is
varied, random graphs are tested,N = 10, arrival rate is 2× 10−3 No./s.

the predictions on which scheduling is based cannot be ac-
curate, thus lowering GR. This impact is more pronounced
as job arrival rate increases. The result also suggests that,
under the same workload, shortening the scheduling time
can improve guarantee ratios, thus allowing more jobs to be
completed before their given deadlines. Ahmad and Kwok
have developed a parallel algorithm (referred to as PBSA)
that could perform scheduling using multiple processors[2].
Therefore, it is highly desirable to apply the parallel tech-
nique reported in [2] to our algorithm, thereby shortening
scheduling time to ultimately enhance the performance of
the heterogeneous cluster.

Fig. 7 compares the guarantee ratios of the three heuristics
when the scheduling time is varied in this experiment. We
find that DRCD can outperform the other alternatives in
terms of guarantee ratio, and this finding is consistent with
the results shown in Fig. 4. We also observe from Fig. 7 that
the guarantee ratios of the DASAP and DALAP algorithms
are more sensitive to changes in the scheduling time than
DRCD. The result reveals that the improvement in guarantee
ratio offered by DRCD becomes more pronounced when the
scheduling time is relatively large.

5.5. Dispatching time

Fig. 8 shows the impact of dispatching time of the DRCD
algorithm on guarantee ratio for different values ofn. Again,
the job arrival rate is fixed at 2× 10−3 No./s. Dispatching
time is increased from 5 to 25 with increments of 5 s. Job
size is set to 50 and 70 for binary trees, 25 for lattices, and
20 for random graphs, respectively. Fig. 8 clearly shows that
decreasing dispatching time can significantly improve guar-
antee ratios of the heterogeneous cluster. This result strongly
suggests that using a high-speed network to speed up the
dispatching of scheduled tasks can substantially enhance the
system performance.

896 X. Qin, H. Jiang / J. Parallel Distrib. Comput. 65 (2005) 885–900

30

40

50

60

70

80

90

100

5

n=70 (Btree)
n=50 (Btree)
n=25 (Lattice)
n=20 (Random)

Dispatching Time

G
ua

ra
nt

ee
 r

at
io

 (
%

)

10 20 2515

Fig. 8. Impact of dispatching time of DRCD algorithm on GR, arrival
rate is 2× 10−3 No./s.

0

5

10

15

20

25

30

35

40

45

20 40 60 80 100 120 140

btree, n=70
btree, n=30
lattice, n=49
lattice, n=36
random, n=70

Number of Nodes

T
im

e
C

om
pe

xi
ty

 (
10-4

)

Fig. 9. Impact of the number of nodes on time complexity of the DRCD
algorithm.

5.6. Heterogeneous cluster size

To study the impact of the heterogeneous cluster sizem

(number of nodes) on the performance of DRCD, we fixed
the job arrival rate at 10×10−4 No./s and increasedm from
10 up to 140. Fig.9 shows scheduling time as a function
of the heterogeneous cluster size, indicating a noticeable
impact of both the heterogeneous cluster size(m) and job
size(n) on scheduling time. When the job size is small, the
impact ofm on scheduling time is not very significant. But
this impact becomes increasingly noticeable as the job size
increases. This is because scheduling time is the product of
m, n andu (Theorem 1).

Fig. 10 illustrates the impact of the heterogeneous clus-
ter size on the reliability cost. It shows that under the same
workload, the performance with respect to reliability cost
improves as the heterogeneous cluster size increases. The
main reason behind this is that for a large heterogeneous
cluster, the DRCD algorithm has more choices for schedul-

2

6

10

14

18

22

10 20 30 40 60 80 100

btree, n=70

btree, n=30

lattice, n=49

lattice, n=25

random, n=40

Number of nodes (m)

R
el

ia
bi

lit
y

co
st

 (
10

-4
)

Fig. 10. Impact of the number of nodes on reliability cost of DRCD,
arrival rate is 1× 10−3 No./s.

40

50

60

70

80

90

100

10 20 30 40 50 60

btree, n=70
btree, n=30
lattice, n=49
lattice, n=25
random, n=30

Number of nodes

G
ua

ra
nt

ee
 R

at
io

 (
%

)

Fig. 11. Impact of the number of nodes on guarantee ratio of the DRCD
algorithm, arrival rate is 1× 10−3 No./s.

ing a real-time task. It is also observed from Fig.10 that
when the cluster size is more than 30 the improvement in
reliability cost starts to diminish. This is because a higher
value ofm can result in a longer scheduling time (see Fig.
9), especially when the value ofn is also high. This result
suggests that under the workload in this experiment, it may
not be cost-effective for the system to grow beyond 30 ma-
chines. An optimal value ofm for a particular workload may
be determined by experiments.

The impact of cluster size on guarantee ratio is shown in
Fig. 11, where the guarantee ratio is plotted as a function of
the number of nodes. The results indicate that the impact of
the cluster size on guarantee ratios is mixed. On the negative
side, a higher value ofm can lead to a longer scheduling time,
as illustrated in Fig. 9. On the positive side, increasing the
number of machines enhances the computational capability
of the system, which may in turn guarantee more jobs to be
completed before their deadlines. The final result depends
on which side makes more significant impact.

X. Qin, H. Jiang / J. Parallel Distrib. Comput. 65 (2005) 885–900 897

0

5

10

15

20

25

30

35

40

100 120 140 160 180 200

btree, n=70
btree, n=30
lattice, n=81
lattice, n=49
random, n=20

MAX_E

R
el

ia
bi

lit
y

co
st

 (
10

-4
)

Fig. 12. Effect of the execution time on reliability cost of DRCD, arrival
rate is 1× 10−3 No./s.

As shown in Fig.11, three curves illustrate the positive
side, and two other curves depict the negative side. We ob-
serve that whenn (job size) is comparatively low, the net
effect is positive (see the three curves in Fig. 11 withn =
25, 30); whereas, the negative effect emerges asn becomes
relatively high (see two curves in Fig. 10, withn = 49 and
70). This suggests that the number of machines is a criti-
cal parameter for scheduling parallel real-time jobs, which
must be determined carefully based on experiments.

5.7. Execution time

Fig. 12 shows the impact of execution time on reliability
cost. We only consider the DRCD algorithm, since DASAP
and DALAP have similar properties and are less relevant. In
this experiment, the job arrival rate is set at 10×10−4 No./s,
andMAX_E is varied from 100 to 200 s, with increments
of 20 s. For each value ofMAX_E, we ran the DRDC algo-
rithm on binary trees, lattices and random graphs. From the
simulation results shown in Fig. 12, we observe that the reli-
ability cost increases with the increase in the execution time.
This is due to the simple fact that when the execution time
in eachcij increases the task reliability cost of machines,
RCPN, also increases. We can conclude from this experi-
ment that as the execution time increases, the reliability cost
of the cluster also increases.

As shown in Fig. 13, execution time also has a noticeable
impact on guarantee ratios. When the value ofn is low (see
the curve withn = 30), execution time does not make a
significant impact on guarantee ratio, but whenn becomes
large (see the curve withn = 81), we observe that guarantee
ratios are affected noticeably by the execution time. Since
the deadline is assumed to be a function of the execution
time in our simulation model, the deadlines of tasks increase
accordingly when execution times increase. More real-time
tasks can be guaranteed if their deadlines are relaxed.

35

45

55

65

75

85

95

100 120 140 160 180 200

btree, n=70
btree, n=30
lattice, n=81
lattice, n=49
random, n=20

MAX_E

G
ua

ra
nt

ee
 R

at
io

 (
%

)

Fig. 13. Effect of the execution time on GR of DRCD, arrival rate is
1× 10−3 No./s.

80

85

90

95

100

2 4 6 8 10 12

[35, 170]
[25, 180]
[15, 190]
[5, 200]

Arrival rate (10-4No./Sec.)

G
ua

ra
nt

ee
 r

at
io

(%
)

Fig. 14. Impact of computational heterogeneity on guarantee ratios, task
graphs are btrees.

5.8. Computational heterogeneity

Fig. 14 shows the guarantee ratio as a function of job
arrival rates, with different variances in task execution time,
where job arrival rate increases from 2× 10−4 to 12×
10−4 No./s with increments of 2× 10−4 No./s. Again, we
only consider the DRCD algorithm and binary trees based
jobs in this experiment, since the other two types of jobs
behave similarly.

Computational heterogeneity is reflected by the variance
in execution times. In the experiment four sets of execution
times, all with the same average value, are selected uni-
formly from the four ranges, [5, 200], [15, 190], [25, 180]
and [35, 170], respectively. These four ranges correspond to
four different levels of heterogeneity, with [5, 200] being the
highest. Figs. 14 and 15 indicate that the DRCD schedul-
ing algorithm has better performance for jobs with higher
computational heterogeneity. This result suggests that high
computational heterogeneity helps the DRCD algorithm

898 X. Qin, H. Jiang / J. Parallel Distrib. Comput. 65 (2005) 885–900

2

4

6

8

10

12

14

16

2 4 6 8 10 12

[35, 170]
[25, 180]

[15, 190]
[5, 200]

R
el

ia
bi

lit
y

C
os

t (
10

-4
)

Arrival rate (10-4No./Sec.)

Fig. 15. Impact of computational heterogeneity on reliability cost, task
graphs are btrees.

increase guarantee ratios and reduce reliability costs,
thereby enhancing the schedulability. This can be explained
by the fact that the advantage of DRCD over the two non-
reliability driven algorithms in schedulability mainly comes
from the variance in tasks’ reliability costs among differ-
ent machines and reduced heterogeneity implies reduced
variance in tasks’ reliability costs. It is proved by this ex-
periment that DRCD is efficient in terms of scheduling
heterogeneous jobs, and its performance varies with the
heterogeneity of the parallel real-time jobs.

5.9. Performance on real applications

The goal of this experiment is two-fold: (1) to validate the
results from the synthetic application cases and (2) to test
the scalability of the proposed algorithm. We chose a real-
life application, a digital signal processing (DSP) system
with 119 tasks in the task graph[40], as a case study to
quantitatively evaluate the improvements in guarantee ratio
and reliability cost as we increase the number of nodes in
the cluster.

We conducted experiments with eight cluster sizes (the
number of nodes is varied from 10 to 80). The guarantee ra-
tio and reliability cost were obtained for each heterogeneous
cluster, where machine failure rates were randomly chosen
between 9.5×10−7 and 10.5×10−7/h and link failure rates
between 7.5× 10−6 and 12.5× 10−6/h. Job arrival rates
were kept constant at 1.0 × 10−4 No./ms, and ranges for
generating deadlines were fixed to 500 ms. Fig. 16 shows the
guarantee ratios of the DRCD, DASAP, and DALAP algo-
rithms running on eight heterogeneous clusters. Comparing
DRCD with two other algorithms, we find that the DRCD al-
gorithm performances better than the other alternatives, and
DRCD improves guarantee ratios over DASAP and DALAP
by up to 3% and 45%, respectively. Fig. 17 compares relia-
bility cost for the DRCD, DASAP, and DALAP algorithms.
We observe that with respect to reliability cost, DRCD is

60

65

70

75

80

85

90

95

100

10 20 30 40 50 60 70 80

DRCD
DAEAP
DALAP

Number of Nodes

G
ua

ra
nt

ee
 r

at
io

 (
%

)

Fig. 16. Impact of the number of nodes on guarantee ratio for the DSP
example.

2

22

42

62

82

102

10 20 30 40 50 60 70 80

DRCD

DAEAP
DALAP

Number of Nodes

R
el

ia
bi

lit
y

C
os

t (
10

-4
)

Fig. 17. Impact of the number of nodes on reliability cost for the DSP
example.

constantly better than the other two algorithms. Specifically,
DRCD can reduce the reliability cost of DASAP and DALAP
by up to 92% and 25% (with average of 89% and 21%),
respectively. From these results, we conclude that the pro-
posed DRCD algorithm can achieve the most reliable allo-
cations for both small- and large-scale applications by lever-
aging the reliability-cost driven technique while improving
resource utilization.

6. Conclusion

Most research work in the area of real-time task schedul-
ing in heterogeneous systems either ignored reliability is-
sues, or only considered homogeneous clusters, or assumed
independent tasks, or only schedule tasks with precedence
constraints offline. In this paper, we have addressed these

X. Qin, H. Jiang / J. Parallel Distrib. Comput. 65 (2005) 885–900 899

issues by proposing a reliability aware algorithm (DRCD)
that dynamically schedules real-time tasks with precedence
constraints in heterogeneous cluster environments. To make
the scheduling more practical and realistic, both scheduling
time and dispatching time are incorporated in our schedul-
ing algorithm. In the DRCD algorithm, reliability cost is
used as one of the objective functions for scheduling tasks in
parallel jobs. For comparison purposes, we have introduced
two variations of the list-scheduling family of algorithms,
DASAP and DALAP, which are greedy in nature but make
no effort to maximize reliability. Simulation results show
that DRCD outperforms DASAP and DALAP with respect
to reliability and schedulability in both synthetic workloads
and real life applications. In addition, our experiments sug-
gested that higher computational heterogeneity is conducive
to improving the schedulability of DRCD, while computa-
tional heterogeneity had no apparent effect on reliability.
Simulation results also reveal that both scheduling times and
dispatching times can significantly impact the effectiveness
of a scheduling algorithm. Thus, it is highly desirable to sub-
stantially reduce both scheduling and dispatching times by
parallelizing schedulers and providing high-speed network
capabilities.

This work represents our first and preliminary attempt to
study a very complicated problem. Future studies in this area
are twofold. First, based on the DRCD algorithm, a dynamic
fault-tolerant scheduling algorithm will be investigated, and
primary/backup versions will be our approach. Second, we
plan to study a more complex version of DRCD algorithm,
in which power conservative issues are taken into account.

Acknowledgments

This is a substantially revised and improved version of a
preliminary paper [26] that appeared in theProc. of 2001
Int’ l Conference on Parallel Processing(ICPP2001), pp.
113–122, September 2001. The revisions include a detailed
reliability cost model, an improved scheduling algorithm that
considers the reliability of links connecting machines in a
cluster, consideration of more workload parameters, and per-
formance evaluation with a real application. This work was
partially supported by an NSF Grant (EPS-0091900), a start-
up research fund (103295) from the research and economic
development office of the New Mexico Institute of Mining
and Technology, a Nebraska University Foundation Grant
(26-0511-0019), a UNL Academic Program Priorities Grant,
and a Chinese NSF 973 project grant (2004cb318201). We
are grateful to the anonymous referees for their insightful
suggestions and comments.

References

[1] T.F. Abdelzaher, K.G. Shin, Combined task and message scheduling
in distributed real-time systems, IEEE Trans. Parallel Distrib. Systems
10 (11) (November 1999).

[2] I. Ahmad, Y.K. Kwok, Parallelizing the multiprocessor scheduling
problem, IEEE Trans. Parallel Distrib. Systems 10 (4) (April 1999)
414–432.

[3] M. Arora, S.K. Das, R. Biswas, A de-centralized scheduling and
load balancing algorithm for heterogeneous grid environments, in:
Proceedings of the Workshop Scheduling and Resource Management
for Cluster Computing, Vancouver, Canada, August 2002, pp.
499–505.

[4] I.D. Baev, W.M. Meleis, A. Eichenberger, Lower bounds on
precedence-constrained scheduling for parallel machines, in:
Proceedings of the 29th International Conference on Parallel
Processing, 2000, pp. 549–553.

[5] O. Beaumont, V. Boudet, Y. Robert, A realistic model and an
efficient heuristic for scheduling with heterogeneous processors, in:
Proceedings of the 11th Heterogeneous Computing Workshop, 2002.

[6] O. Beaumont, A. Legrand, Y. Robert, ENS Lyon, L. Carter, J.
Ferrante, Bandwidth-centric allocation of independent tasks on
heterogeneous platforms, in: Proceedings of the International Parallel
and Distributed Processing Symposium, 2002.

[7] M. Cosnard, E. Jeannot, T. Yang, SLC: symbolic scheduling
for executing parameterized task graphs on multimachines, in:
Proceedings of the 28th International Conference on Parallel
Processing, Fukushima, Japan, 1999.

[8] A. Doǧan, F. Özgüner, Reliable matching and scheduling of
precedence-constrained tasks in heterogeneous distributed computing,
in: Proceedings of the International Conference on Parallel
Processing, 2000, pp. 307–314.

[9] D.G. Feitelson, L. Rudolph, Job scheduling for parallel
supercomputers, Encyclopedia of Computer Science and Technology,
vol. 38, Marcel Dekker, Inc., New York, 1998.

[10] E.N. Huh, L.R. Welch, B.A. Shirazi, C.D. Cavanaugh, Heterogeneous
resource management for dynamic real-time systems, in: Proceedings
of the 9th Heterogeneous Computing Workshop, 2000, pp. 287–296.

[11] M. Iverson, F. Özgüner, Dynamic, competitive scheduling of multiple
DAGs in a distributed heterogeneous environment, in: Proceedings
of the 7th Heterogeneous Computing Workshop, 1998, pp. 70–78.

[12] X. Jia, W. Zhao, J. Li, An integrated routing and admission control
mechanism for real-time multicast connections in ATM networks,
IEEE Trans. Commun. 49 (9) (September 2001) 1515–1519.

[13] V. Kalogeraki, P.M. Melliar-Smith, L.E. Moser, Dynamic scheduling
for soft real-time distributed object systems, in: Proceedings of
the IEEE International Symposium on Object-Oriented Real-Time
Distributed Computing, 2000, pp. 114–121.

[14] D. Kebbal, E.G. Talbi, J.M. Geib, Building and scheduling parallel
adaptive applications in heterogeneous environments, in: Proceedings
of the IEEE International Workshop Cluster Computing, 1999, pp.
195–201.

[15] Y.K. Kwok, I. Ahmad, FASTEST: a practical low-complexity
algorithm for compile-time assignment of parallel programs to
multiprocessors, IEEE Trans. Parallel Distrib. Systems 10 (2)
(February 1999) 147–159.

[16] Y.K. Kwok, I. Ahmad, Static scheduling algorithms for allocating
directed task graphs to multiprocessors, ACM Comput. Surveys 31
(4) (December 1999) 406–471.

[17] T. Lundqvist, P. Stenstrom, Timing anomalies in dynamically
scheduled micromachines, in: Proceedings of the IEEE Real-Time
Systems Symposium, 1999, pp. 12–21.

[18] M. Maheswaran, H.J. Siegel, A dynamic matching and scheduling
algorithm for heterogeneous computing systems, in: Proceedings of
the 7th Heterogeneous Computing Workshop, 1998, pp. 57–69.

[19] G. Manimaran, C.S.R. Murthy, An efficient dynamic scheduling
algorithm for multimachine real-time systems, IEEE Trans. Parallel
Distrib. System 9 (3) (1998) 312–319.

[20] P. Marwedel, A new synthesis algorithm for the MIMOLA software
system, Proceedings of the 23rd Design Automatic Conference (Las
Vegas, NV), July 1986, pp. 271–277.

900 X. Qin, H. Jiang / J. Parallel Distrib. Comput. 65 (2005) 885–900

[21] J.C. Palencia, H.M. Gonzalez, Schedulability analysis for tasks with
static and dynamic offsets, in: Proceedings of the IEEE Real-Time
Systems Symposium, 1998, pp. 26–37.

[22] M.A. Palis, Online real-time job scheduling with rate of progress
guarantees, in: Proceedings of the sixth International Symposium
on Parallel Architectures, Algorithms, and Networks, Manila,
Philippines, 2002, pp. 65–70.

[23] P.G. Paulin, J.P. Knight, Force directed scheduling for the behavioral
synthesis of ASIC’s, IEEE Trans. Comput. Aided Design 8 (June
1989) 661–679.

[24] X. Qin, H. Jiang, C.S. Xie, Z.F. Han, Reliability-driven scheduling
for real-time tasks with precedence constraints in heterogeneous
distributed systems, in: Proceedings of the International Conference
on Parallel and Distributed Computing Systems, 2000, pp. 617–623.

[25] X. Qin, H. Jiang, Y. Zhu, D. Swanson, Dynamic load balancing for
I/O-intensive tasks on heterogeneous clusters, in: Proceedings of the
International Conference on High Performance Computing, 2003,
pp. 300–309.

[26] X. Qin, H. Jiang, Dynamic, reliability-driven scheduling of parallel
real-time jobs in heterogeneous systems, in: Proceedings of the
International Conference on Parallel Processing, Valencia, Spain,
2001, pp. 113–122.

[27] X. Qin, H. Jiang, D.R. Swanson, An efficient fault-tolerant
scheduling algorithm for real-time tasks with precedence constraints
in heterogeneous systems, in: Proceedings of the International
Conference on Parallel Processing, Vancouver, Canada, 2002, pp.
360–368.

[28] A. Radulescu, A.J.C. van Gemund, Fast and effective task scheduling
in heterogeneous systems, in: Proceedings of the Euromicro
Conference on Real-Time Systems, 2000, pp. 229–238.

[29] S. Ranaweera, D.P. Agrawal, Scheduling of periodic time critical
applications for pipelined execution on heterogeneous systems, in:
Proceedings of the International Conference on Parallel Processing,
2001, pp. 131–138.

[30] S. Sahni, G. Vairaktarakis, Scheduling for distributed computing, in:
Proceedings of the IEEE Workshop Future Trends of Distributed
Computing Systems, 1997, pp. 284–289.

[31] R.M. Santos, J. Santos, J. Orozco, Scheduling heterogeneous
multimedia servers: different QoS for hard, soft and non real-time
clients, in: Proceedings of the Euromicro Conference on Real-Time
Systems, 2000, pp. 247–253.

[32] B. Shirazi, H.Y. Youn, D. Lorts, Evaluation of static scheduling
heuristics for real-time multiprocessing, Parallel Process. Lett. 5 (4)
(1995) 599–610.

[33] G.C. Sih, E.A. Lee, A compile-time scheduling heuristic for
interconnection-constrained heterogeneous machine architectures,
IEEE Trans. Parallel Distrib. Systems 4 (2) (1993) 175–187.

[34] S. Srinivasan, N.K. Jha, Safety and reliability driven task allocation
in distributed systems, IEEE Trans. Parallel Distrib. Systems 10 (3)
(1999) 238–251.

[35] X.Y. Tang, S.T. Chanson, Optimizing static job scheduling in
a network of heterogeneous computers, in: Proceedings of the
International Conference on Parallel Processing, 2000, pp. 373–382.

[36] M.E. Thomadakis, Jyh-Charn Liu, On the efficient scheduling of
non-periodic tasks in hard real-time systems, in: Proceedings of the
IEEE Real-Time Systems Symposium, 1999, pp. 148–151.

[37] H. Topcuoglu, S. Hariri, M.Y. Wu, Task scheduling algorithms
for heterogeneous machines, in: Proceedings of the Heterogeneous
Computing Workshop, 1999, pp. 3–14.

[38] D.B. Tracy, Noemix, H.J. Siegel, A. Maciejewski, Static mapping
heuristics for tasks with dependencies, priorities, deadlines, and
multiple versions in heterogeneous environments, in: Proceedings
of the International Parallel and Distributed Processing Symposium,
2002.

[39] C. Tseng, D.P. Siewoirek, Automated synthesis of data paths in
digital systems, IEEE Trans. Comput. Aided Design CAD-5 (July
1986) 379–395.

[40] C.M. Woodside, G.G. Monforton, Fast allocation of processes in
distributed and parallel systems, IEEE Trans. Parallel Distrib. Systems
4 (2) (February 1993) 164–174.

[41] M.Y. Wu, W. Shu, Y. Chen, Runtime parallel incremental scheduling
of DAGs, in: Proceedings of the International Conference on Parallel
Processing, 2000, pp. 541–548.

[42] Y. Zhang, H. Kameda, K. Shimizu, Adaptive bidding load balancing
algorithms in heterogeneous distributed systems, in: Proceedings of
the International Symposium on Modeling, Analysis, and Simulation
on Computer and Telecommunication Systems, 1994, pp. 250–254.

[43] Y. Zhang, A. Sivasubramaniam, Scheduling best-effort and real-time
pipeline application on time-shared clusters, in: Proceedings of the
International Symposium Parallel Architecture and Algorithm, 2001.

Xiao Qin received the B.S. and M.S. de-
grees in computer science from Huazhong
University of Science and Technology in
1992 and 1999, respectively. He received
the Ph.D. degree in computer science from
the University of Nebraska-Lincoln in 2004.
Currently, he is an Assistant Professor in
the department of computer science at the
New Mexico Institute of Mining and Tech-
nology. He had served as a subject area
editor of IEEE Distributed System Online
(2000–2001). His research interests are in
parallel and distributed systems, storage
systems, real-time computing, performance
evaluation, and fault-tolerance. He is a
member of the IEEE.

Hong Jiang received the B.Sc. degree
in Computer Engineering in 1982 from
Huazhong University of Science and Tech-
nology, Wuhan, China; the M.A.Sc. degree
in Computer Engineering in 1987 from the
University of Toronto, Toronto, Canada;
and the Ph.D. degree in Computer Science
in 1991 from the Texas A&M University,
College Station, Texas, USA. Since Au-
gust 1991 he has been at the University
of Nebraska-Lincoln, Lincoln, Nebraska,
USA, where he is Associate Professor and
Vice Chair in the Department of Com-
puter Science and Engineering. His present

research interests are computer architecture, parallel/distributed comput-
ing, computer storage systems and parallel I/O, performance evaluation,
middleware, networking, and computational engineering. He has over 90
publications in major journals and international conferences in these ar-
eas and his research has been supported by NSF, DOD and the State of
Nebraska. Dr. Jiang is a Member of ACM, the IEEE Computer Society,
and the ACM SIGARCH and ACM SIGCOMM.

