Analysis of Directory Based Cache Coherence Schemes with Multistage
Networks

Ashwini K. Nanda

Con’}puter Science Department
exas A &M University

Abetract

igning efficient cache coherence schemes for shared
memory multiprocessors has attracted muach attention of the
rescarchers in the area. Snoopy cache protocols have been
designed for bus based multiprocessors. However, the snoopy
protocols are not applicable to general interconnection net-
works. On the other hand, the directory based cache proto-
cols adapt very well to any kind of interconnection network
such as a Multistage Network. Since different protocols have
different cost overheads, and may give different performance,
the protocol to be used must be wisely selected. Although

there has been some simulation studies on the behavior of
erent directory schemes pro in the Literature, there

has been no systematic analytical model for these schemes.
In this paper we develop a detailed analytical model of the
various directory schemes on a Multistage Interconnection
Network. The shared miss ratioe are computed analytically,
and the performance of the various schemes is compared. Re-
sults are presented to show that the directories do not form
a system bottleneck contrary to popular belief.

1 Introduction

Shared memory multiprocessors with private caches have
an inherent cache coherence problem associated with them.
The coherence problem arises when multiple copies of a
shared memory block are allowed to exist in the local caches
and one or more processors are permitted to write on the
cached blocks locally. In order to avoid the use of stale
data, there must be mechanisms to inform the concerned
caches and the memory when a processor modifies a shared

block in its local cache. These mechanisms constitute a
cache coherence protocol for a multiprocessor. The various

cache coherence protocols proposed in the literature fall into
two principal categories, the smoopy protocols(3, 8, 12, 16]
and the directory based protocols(2, 6, 19, 25].

The snoopy protocols are based on a single bus de-
sign. Each cache connected to the multiprocessor bus mon-
itors(snoops) every transaction on the bus and takes appro-
priate actions as dictated by the protocols. Although the
snoopy protocols have been proven to be very efficient for
bus based multiprocessors, they are not applicable to multi-
processors based on a general interconnection network that
does not have a shared bus.
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In contrast, the directory protocols are versatile in na-
tare and can work on any interconnection network. In
addition to the state information in the local caches, the
directory schemes also store some state imformations im
global directories associated with the memory modules. The
various directory schemes differ in the type and amount of
state information stored in the global directories and in the
naanner they hlflilgie Y pmicn:lu col:lerenc% action. A request
that is pot satis in the cache is submi -
re:;o‘:«ring directory. "Phe%rectory u:u ﬂr:dmy‘o the o&r’_
herence actions and supplies correct data to the requester. It

is due to this centralized nature of the cache coherepce m
anism in the directories that these schemes do not depend on

a particular type of network. Multiprocessor systems based
on Multistage Interconnection Networks(MINs) are becom-
ing popular[4, 9, 10, 18] due to the high scalability and cost
effectiveness of the MINs. Directory based cache coherence
protocols will be naturally suitable for such a multiproces-
sor. However, there exists ample criticism on the directory
schemes with a guess that the centralized directories might
become a system bottleneck. The authors are not aware of
any implementation of the directory schemes or any com-
prehensive study, either confirming or countering the above
facts.

An evaluation methodology is a necessary tool to deter-
mine which of the available options is best suited for a sys-
tem of given size and characteristics. Analytical models of
a system provide a more economical and effective means of
evaluation compared to trace driven and event driven simu-

lati odels. Considerabl t of effort has been mad
'L: ;.Cl)x: I;utein develll:‘pi;? .:.ﬁ'?ﬁ:f m%deel: for ::e bn‘: M

snoopy protocols (5, 11, 20, 21, 23, 24]. Even though the
directory schemes represent an important class of cache pro-
tocols, an analytical model for studying their behavior does
not exist to our knowledge. A trace driven simulation model
was used in[1] to compare the proposed directory methods.
This study was limited to a four processor system due to the
lack of trace data for larger systems, and the study did not
consider the overall system performance.

In this paper we develop an analytical model for evaluat-
ing the performance of the directory based cache protocols
for a system using a Multistage Interconnection Network.
The model uses a markov state approach[24] to calculate the
miss ratios for the shared accesses in vanous protocois. The
P-K mean value formula[13] is used to calculate the delays
seen by a request at various service centers. The overheads
of the directory schemes differ mostly in the number of inval-
idation and flush signals generated by the directories. Simce
more than one invalidation signals are generated in a bulk
by a single memory request, and the directory cas not serve
other requests until it has finished sending the invalidations,
it is difficult to mathematically model the system exactly.
We handle this situation by considering a fictitious source,
which generates these signals and presents to the directory,
instead of the directory generating them. These signals are
given higher priority over the other requests by the direc-
tory. The model is used to measure the relative performance



of the different directory schemes with a wide range of sys-
tem and workload parameters. The analytical model is ver-
ified through event driven simulations. Although it is tradi-
tionally suspected that the directories may become a system
bottleneck, our analysis points to the contrary. Directory
utilization is rather low(around 10%) even for a system hav-
ing as many as 1024 processors.

The rest of the paper is organized as follows. Section 2
discusses the operation of the directory protocols and shows
how to derive the shared miss ratios analytically. Section 3
presents the outline of the analytical model. Comparative
performance results are presented in section 4, and section 5
concludes the paper.

2 Operation of the Directory

Schemes and Calculation of
Miss Ratios

2.1 Operation of various schemes

A comprehensive description of all the directory schemes[2,
6, 19] is given in[1]. Here, we present a concise description
of the operations of the various schemes. All these directory

schemes maintain the state information on shared blocks in
each local cache. All of them allow multiple copies of a shared

block to exist in the various local caches. There can be as
many copies in a system at any time as the number of caches.

However, when one of the caches needs to modify its local
copy, it has to inform the directory first. The directory in-
validates the existing copies in other caches and the block
becomes dirty in the requesting cache. Thus, a block can be
in one of the following states in a local cache : (1)invalid,
meaning the cache does not have a valid copy of the block,
(2)valid, meaning this cache, and possibly other caches have
a valid copy, and (3)dirty, meaning this cache possesses the
only copy in the system, and it has been modified. In ad-
dition to the above information in the local caches, these
schemes also keep some state information in the directories
associated with the memory modules. In Tang’s scheme[19],
the state information of each of the local caches is duplicated
in the directory. Censier and Feautrier’s scheme[6] keeps the
same state information, but in a tabular fashion. Operation
of these two schemes are the same.

Archibald and Baer’s scheme[2] does not keep the state
information of the individual caches in the directory; it keeps
the consolidated state information of all caches by using only
two bits per shared block. The informations kept in the
directories are : (1)INVALID, meaning the block is not
present in any local cache, (2)VALID, meaning the block is
valid in an unspecified number of local caches, (3)VALIDI,
meaning the block is valid in exactly one cache, (4)DIRTY,
meaning the block is dirty in some cache. The directories
in this scheme do not know the identity of the local cache
having a valid or a dirty copy. Since this scheme keeps less
state information in the directory, it has a penalty of more
coherence overheads.

Agarwal et.al.[1] developed a generic terminology to de-
scribe the above protocols in a systematic manner. They also
suggested a new directory protocoi(called diry N B), which

does not allow a s,{xtrcd,block to exist in m%rc than one
cache at a time. e directory entry for a block in this

scheme keepse a pointer to the cache that contains the block.
If a cache has a block in the valid state or in the dirty state,
and another cache requests a copy of the block, the present
owner invalidates its copy before the the copy is supplied to
the requester. This is the simplest of the directory schemes
and the details of this protocol are similar to the other pro-
tocols as given in[1].

In this paper we adopt a simpler terminology to denote a

N-1 remcie reads + remote writes
= (N-1).(a+b), for x=1

{ N-1 remole wriles
=(N-1)bfor x=0 and N )

read, a

N-1 remote reads and

writes = (N-1).(a+b), for x=1 ( N-1 remcte reads = (N-1).a,

(N-1 remote wries = (N-1) b, for all other values of x )
for all other values of x )
a = single read = Pu.p.qa.iNeb
b = single write = Pu.p.qs.twNsb

Figure.1 State Transltion Diagram of a Shared Block in &
Local Cache for dirx acheme

particular directory scheme. Since there is no broadcasting
medium in a MIN, we drop the B/NB option of(1]. In gen-
eral we will call a scheme as dir,, where z is the number of
processor indices kept in the directory. Archibald and Baer’s
scheme[2] will be denoted as dirq, since it does not keep the
information on any particular cache in the directory. Agar-
wal et.al.’s single copy scheme{l] will be denoted as dir,.
Tang's(19], as well as Censier & Feautrier’s[6] schemes will
be denoted as diry, since they keep the information on all
the local caches in the directory. Although the dirp scheme
does not keep any information on a particular cache, it allows
all the caches to have a valid copy of a block.

The above dir; schemes basically operate in the same
way except for some minor differences. Figure.l shows the
state diagram of a shared block in a Jocal cache for the dir,
schemes. This diagram indicates when the state of a block
must change in the local cache. The coherence actions taken
by the directories in the diro, diry and diry schemes in the
events of a read miss, a write miss, and a write hit on a valid
copy are depicted in figures 2.3, 2.b and 2.c respectively. On
a read miss, the request goes to the directory. If the block is
dirty in another cache, then the block is flushed(retrieved)
from the owner cache, written into the memory, and sup-
plied to the requester as a valid copy. Otherwise, the block
18 supplied from the memory. The diry scheme, in addition,
invalidates any valid copy in the system. On a write miss,
the directory invalidates the other valid copies, if any, and
supplies the block from the memory. If the block was dirty
in some cache, it is flushed to the memory first and then
invalidated. For a write hit on a dirty, copy no coherence ac-
tion is needed. On a write hit on a valid block, the requester
sends an invalidation request to the directory and the direc-
tory invalidates the other existing valid copies, if any. This
chart shows the basic differences in the number of signals
generated by the directories in the three schemes. Since the
dirn and diry schemes know the identity of the caches hav-
ing a valid or dirty copy, they generate the exact numbers
of invalidation and flush signals as required. However, the
diro scheme does not know the location of the valid or dirty
copies, and when required, it has to send the invalidation and
flush signals to all caches except for the requester. The diry
scheme does not allow more than one cache to keep a copy of
a block which results in more mi in t}} local caches than
in case of the diro and diry schemes. iele erences in
overheads significantly affect the overall performance of the
schemes as will be shown in section 4. In the next subsec-
tion we describe the system and workload assumptions
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in our study.

2.2 System and Workload Models

The system configuration used for the various schemes is
shown in figure.3. There are N processors in the system,
each having a local cache. The processors are connected to
N memory modules using a MIN. Each memory module has
a directory associated with it for keeping state informations
and taking cache coherence actions. A delta network(17]
comprising of a forward and a backward network is used
for the MIN. The system is assumed to be synchronous and
packet switched. The MIN switch service time forms the
basis of the system cycle time. In further discussions, cycle
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will mean this system cycle. The service times of the caches,
the directories and the memories are integral multiples of
this cycle time. The processors are represented as delay cen-
ters, and in a given cycle, they submit memory requests to
their caches with some given probability. However, a
cessor waits until its previous memory request is satisfied,
before submitting another request. The system parameters
are defined below.

N : no. of processors in the system

k + k : size of the MIN switches

tq : directory access time

t; : directory controller service time for generating a single
invalidation signal

tc.: cache cycle time

t,: MIN switch service time

{m: memory service time

p: probability that a processor submits a memory request
in a given cycle provided it is busy

P,: processor utilization

Workload Parameters

In the absence of measurement data on the memory ref-
erence patterns for large multiprocessors, one has to resort
to some kind of synthetic patterns while analyzing such sys-
tems. The workload model used for this analysis is an exten-
sion of the workload developed in [7]. The memory reference
string of a processor consists of two streams, one for private
and read-only shared blocks and the other for the read-write
shared blocks. For convenience, we will call them private
requests and shared requests respectively . A given memory
request is to a shared block with probability ¢, and to a pn-
vate block with probability 1-q,. When ¢, = 0, there are no

accesses to shared blocks and hence there is ng overhead of
cache coherence. As ¢, increases the cache coherence over-

head also increases and the performance is affected more. A
private request is a hit in the local cache with probability A
and a miss with probability 1—A. The number of read-write
shared blocks ( or simply shared blocks ) in a system, N,,,
is assumed to be fixed. A memory request is a write with
probability f, and a read with probability f, =1-f,. In
invalidation based cache coherence protocols, the parameter
fw plays a major role. When f, = 0, there are no writes
and therefore there is no invalidation traffic. As f,, increases,
the number of write requests increases and the invalidation
traffic also increases causing performance degradation of the
system. The various workload parameters are summarized
below.

N,u: no. of shared blocks in the system

¢.: prob. that a request is to a shared block ( prob for a
private block is 1 — ¢, )

Ju: prob. that a request is write ( f, =1- f, )

h: prob. that a private request is a hit in the cache

2.3 Calculation of Shared Miss Ratios

The mi tio of the shared block ref is th
theepl:lo ;ll;i‘li:g' c{hatetgelélock gcinl;:ea 'x:niﬁesu:: to:li‘cmue:h:.

There are two options available regarding the state probabil-
ities. First, we can choose some arbitrary values for the Jocal
state probabilities independent of the workload and system
parameters and proceed with the analysis. Second, we can
derive the local state probabilities from the markov state dia-
gram of the protocol as functions of the system and workload
parameters as in [24] and then use them in the analysis. Since
the state probabilities are highly dependent on workload pa-
rameters in practice, we m.llf follow the second approach in
our study. We will assume infinite local caches in order to
avoid block replacements. However, the effect of replace-
ments can be easily incorporated in the state diagrams by
appropriately modifying the transition rates. The markov



state diagram of a block in a local cache in the three di-
rectory schemes under consideration was shown in figure.l.
Since the diro scheme allows all the caches to have valid
copies, the transition rates for this scheme are the same as
that of the diry scheme. The transition rates for the diry
scheme are different from the others as they allow only one
copy in the system nt any time. The various state probabil-
mes are defined be

: probability that a block is in invalid state in the local

e
Py : probability that a block is in valid state in the local
P4 : probability that a block is in dirty state in the local

cache

By solving the flow balance equations of the state diagram,
we get the following expressions for the above state proba-
bilities.

For diry and diry :

_ fu
M=E=IN-D.1,+Nfu

_ L+ (N =2)p)
pe NSo+ /-

pi=1-—ps—po

For dir; :

Jr-ps
Nfu+(N<1).fr

Pv =

Pa=1-pi—po

The shared miss ratio p, for the different schemes are
shown in figures 4 and 5 as a function of the write ratio
fw and the system size N respectively. The miss ratio for
the dir, scheme does not vary with the write frequency since
the protocol allows only a single cache to have a copy at
any time. On both a read request and a write request from
another cache this copy is invalidated. Thus, the write fre-
quency does not have any special eflect on the miss ratio.
The miss ratio in case of the dirp and dsry schemes is low
for small values of write frequencies. When write frequency
increases, there are more invalidations, and there are more
misses. When the system size increases, with a constant
write frequency, the miss ratios for all the schemes increase.
This increase in miss ratio occurs due to the fact that the
frequency of invali atnons increases when the number of pro-
cessors, potentially sharing the block, increases. The effect
is more pronounced in case of the diro and dirny protocols.
However, as seen from both figures 4 and 5, the dir, scheme
always has a higher miss ratio than the other two schemes.
The miss ratio along with the frequency of write hits on valid
blocks determines the amount of shared memory traffic re-
leased by a local cache to the network and the directory. The
differences in this traffic along with the number of invalida-
tion and flush signals generated by the directories give rise
to the difference in performance of the various schemes. It
may be pointed out that although the dsr; scheme generates
the highest miss ratio among the three protocols, the overall
performance will not be that bad because the dir, scheme
14|eeds less invalidations. We will see these results in section
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Figure.4 shared miss ratio as a function of the write frequency
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Figure.5 shared miss ratio as a function of the system size
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3 Outline of the Analysis

A memory request generated by a processor will visit differ-
ent service centers determined by the type of the request and
the state of the block in the local cache. The delay seen by
a request at any center, or the response time at that center
will depend on the service demand and the amount of input

traffic at that center. The various service demands or service
times are assumed to be ﬁxx and have been discussed along

with the system parameters. The traffic at an input of a ser-
vice center can be represented by the probability that there is
a request coming into that input in a given cycle, or in short,
the request probabslity. The request probabilities at differ-
ent service centers, are in general, functions of the processor
utilization, the workload parameters and the probabilities of
a block being in different states in the system. The global
state probabﬁities depend on the local state probabilities and
the local state probabilities in turn depend on the workload
parameters and system size. The local state probabilities
were defined and derived in the previous section. We define
below various conditional global probabilities to be used in
the analysis.

P(v/i) : probability that there are valid copies in the sys-
tem, given that the block is invalsid in the local cache

P(v/e) : probability that there are other valid copies in
the system given that the block is valid in the local cache.

P(p/i) : probability that there is a dirty copy in the sys-
tem, given that the block is invalid in the local cache

The conditional global probabilities will depend on the
local state probabilities and can be expressed as follows :

N=2

pviy = (N =1).pe.(1-p) forz=1, and

N-1

poviy =1 —(1=py) forz=0and z=N.

Pvivy =0 forz=1, and
N-1
Pvie) = E CcY 7l pl.(1-p)¥ 717! forz=0andz =N.
=1

posy =(N —1).pa forall z.

A Queueing Network Model

The closed queneing model of the system is shown in fig.6.
Since we assume a homogeneous system, all the service cen-
ters in a given stage, e.g. all the local caches or all the
directories, can be represented by the behavior of any single
center in that stage. We will assume infinite buffer lengths
for holding requests in the queue at the input of every ser-
vice center. A processor first submits its requests to the
cache. These requests are either satisfied by the cache or are
sent to the forward network. The forward network transmits
all the shared requests to the directory and the private
requests to the memory. The directory also receives the re-
quests from a fictitious source for generating invalidations.
The rationale behind this source will be explained in a short
while. The directory passes the invalidation and flush signals
to the backward MIN and the unsatisfied shared requests and
writebacks to the memory. The memory sends all its replies
to the backward network. The backward network passes all
the replies and control signals to the cache. A request will
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visit some combination of the above service centers depend-
ing on the type of the request and the state of the block
being requested in the system.

The reason for including a fictitious source at the input
of a directory queue is as follows. A local cache sends only
a single invalidation request to the directory. The directory
then generates a numbser of invalidation signals depending on
the directory scheme. These generated invalidation signals
do not represent any real request from a processor. But the
directory has to spend service time on them and it can not
serve any other request until all the invalidation signals have
been generated. We represent this phenomenon mathemat-
ically by imagining a fictitious source which generates the
invalidation signals and presents to the directory for service.
The directory gives priority to these signals over all other
requests such that as long as there is a request from this
source, other requests will not be served. The invalidation
signals are generated in a burst when there is an invalidation
request from a processor. We make a simplifying assumption
that these signals are uniformly distributed in time and the
probability that there is a request from this source at any
cycle is time-independent. Though this assumption is inac-
curate, it makes the analysis simpler and does not degrade
the overall accuracy of the analysis significantly. The ficti-
tious source also includes the generation of the extra flush
signals required in the dirg scheme.

Request Probabilities

The request probability at an input of a service center was
defined earlier as the probability that there is a request at
that input in any given cycle. The different request probabil-
ities shown at the inputs of these queueing centers in figure.6
are defined below.

pic : probability that there is a request at the input of a
local cache

pym : prob. that there is a request at an input of a forward
MIN switch

Pom : prob. that there is a request at an input of a back-
ward MIN switch

psa : prob. that there is a request from the forward MIN

to a directory
Pmem : prob.
memory module
Pinv : prob. that there is an invalidation (or flush) request
at an input of a directory

that there is a request at an input of a

The above request probabilities are functions of the processor
utilization, the probability that a memory request is gener-
ated, the private and shared reference ratios, the read write
frequencies, private and shared miss ratios, the local and
global state probabilities of the block and the system size.

ince the three coherence protocols are essentially the same
except for the number of invalidation and flush signals gen-
erated, the expressions for the request probabilities except
for pine will be the same for all. eale will derive the expres-
sion for pine below. The expressions for the other request
probabilities are derived in [15].

The invalidation signals are generated by the directory
when (a)there is a write miss and the block is valid in another
cache, (b)there is a write hit on a valid block and there are
other valid copies in the system, and (c)when there is a read
request for a block that is already valsd in z other caches.
Let us define n;, n; and n3 as the average number of copies
to be invalidated in case a, case b and case c respectively.
Then, ny = (N=1).p..(1—-p,)V 2 forz =1, n, = (N-1).p,
forz=Nandny=(N-1)forz=0 ny=0forz=1,
np=(N-1)p.forz=Nandng=N-~1forz =0
Note that case c does not arise for £ = 0 or z = N and
the number of invalidation signals generated is always 1 for



z = 1. Therefore, n3 = pyjiforz=1and nz =0forz =0

dzr=N,
Ti’n:e flush signals are generated by the duectory in case

of a shared read miss as well as a shared write miss on a
biock that is dirty in another cache. Let us define ng as the

number of unnecessary flush signals generated for each such
request. Then ny = N — 2 for £ = 0 and n, = 0 otherwise.
Hence by our definition of pin, we have

Pinv = Pu.p.qs.(n1.fu-Pi-Prvyi) + n2.Jw.Pe.P(vie)
+n3.fr.p.-.p(v,,-) +ﬂ4.p..p(p/.‘)) for all z.

Response Times

We will define the response time of a service center as
the total delay, i.e. the queneing delay plus the service time,
faced by a request at the particular service center. In order
to make the andysm simpler, each service center in the sys-

tem is considered in isolation from the other centers. The
response times of various service centers are enumerated be-
low.

r. : response time of a cache controller

rs : response time of a forward MIN switch
ry : response time of a backward MIN switch
r4 : response time of a directory controller
fm : response time of a memory module

The response time at an individual service center will depend
on the number of inputs to that center, the request proba-
bility at that center and the service demand of a request
at that center. The well known Pollaczek-Khinchine(P-K)
mean value formula[13] will be used to derive these response
times. The details of the derivations are given in [15). The
expression for the directory controller response time is rel-
atively more complex than others due to the requests from
the fictitious source which must get priority. For this queue,
first the utilization due to the high priority requests is de-
rived, and then the response time is modified according to
the fraction of directory time available for the other requests.

Overall Delays and Processor Utilization

At any point of time a processor is either busy doing some
internal computations or is waiting for the response to a
memory request. The Processor Utilszation, P, is defined
as the fraction of time a processor is busy doing some useful
computation. Ifit is busy, then it submits a memory request
to its cache in a cycle with probability p. In case of a pnivate
request, the block is immediately supplied if it is a hit, and
if it is a miss, then the block is supplied by the memory
through the MIN with the same amount of delay for both a
read and a write. In case of a shared request, the required
consistency action is taken by the cache controller and the
corresponding directory near the memory. The request is
satisfied with a variable amount of delay depending on the
state of the block and whether the request is a read or a
write. The processor utilization can be expressed in terms
of these overall delays. If we define

dp : overall delay for private requests
d, : overall delay for read requests to shared blocks
d. : overall delay for write requests to shared blocks,

then P, will be given by,

1
14p.((1-q.)dp+ qs-fr dr + ¢4 fu-dy)

The values of dp, d, and d,, will be the aggregated delays
across all the centers visited by the corresponding request.

P, =
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Figure.7 Comparison of analytical and simulation reaults
for dirN scheme

These delays will be functions of the service center response
times, the miss ratios and the local and global state proba-
bilities and are derived in [15].

The systemn power is defined as the sum of the processing
powers of all processors, or N.P,, and will be used as the

performance measure in our study. The delays d,, d, and
d will depend on the amount of traffic in the MfN which
in turn is a function of P, itself. Thus we get a nonlinear
equation with P, as the single variable, which can be solved
by using iteration techniques as discussed at the end of this
section. More details of the analysis can be found in[15).
Numerical Solutions and Validation of Results

Having found the relation between P, and the various de-
lays, we can employ any standard iterative technique to solve
the equation for P, for any directory scheme. A higher order
iteration would give faster convergence. Usually the speed
of convergence also depends on the initial value. With some
experimentation, P, = 1/N was found to be a good ini-
tial value for this problem and usually the convergence took
2 to 6 iterations. Due to finite precision of the computers,
when a number is subtracted from another comparable num-
ber, the percentage of error may become too high because

of truncatjon. In such a case the iteration tends to oscillate.
This can happen when the ntiization of any service center

comes very close to 1 (saturation). When this happens, the
iteration process can be stopped and the value of P, that
caused this saturation can be calculated from the equations
for that center. The analytical solution takes only of the or-
der of a second to run on a sparcstation/3. An event driven
simulation model was developed[15] to verify the analytical
model presented in this paper. The analytical results match
with the simulation results with an accuracy of 5 to 6%. A
sample comparison of the analytical and simulation results
is presented in figure.7. The curves are drawn for a diry
scheme on a system with 64 processors, with different values
of the shared reference ratio and write frequency.

4 Results and Comparison

The choice of system parameters, ially the service de-
mands at various centers has a ngmﬁp::nt effect on the per-
formance of a protocol on a given configuration. The analysis
developed in section 3 cui applied to any set of param-
eters. In this section we use some parameters values, that
we believe are typical, to compare the performance of the
three directory schemes discussed in section 2. We choose
the cache service time(t.) to be 1 cycle, since the caches are
made of high speed memories. The main memories are nor-
mally a few times slower than the caches, and therefore we
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chose memory service time(ty,) as 4 cycles. When the di-
rectory is designed as a part of the memory module, it will
have an identical access time as the memory(ts=4 cycles).
However the generation of invalidation signals can be done
at a faster speed after the directory is accessed to find out

the status of the block in various caches. We assume that
each such invalidation or flush sxgnal generauon takes one

cycle(t,=1 cycle). The MIN switch size is chosen to be 2*2
for the results in this section. Although we chose the above
parameters as specific instances, their exact values will de-
pend on the system being designed. We will use the process-
ing power(sum of processor utilizations) of the system as the
performance measure in the following discussions.

Figure.8 shows the relative performance of the three di-
rectory schemes for a system with 64 processors. For ¢, =0,
all the memory requests are to the private blocks, and all
the schemes have identical performance. By increasing g,,
the coherence overheads increase, which leads to a perfor-
mance degradation in all the schemes. The dir; scheme per-
forms slightly better than the dirp scheme in spite of having
a higher miss ratio. The reason is the large number of inval-
idation and flush signals generated by the later. The diry
scheme performs better than the dir; scheme even though

it incurs more invalidation overheads than the later. This
superiority in performance can attributed to the lower

miss ratio of the dsry scheme over the dir; scheme for the
chosen value of fu. Figure.9 shows the effect of increasing
the system size on performance. The dirny scheme is always
superior to the other two for the chosen values of workload
parameters. It can be noticed that the performance of the
diro scheme is the one that is affected the most when the sys-
tem becomes larger. The reason is that the overheads of this
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scheme grow directly with N (always N-1 invalidations, ir-
respective of how many are really needed). The dir, scheme
is well suited to systems where broadcasting is allowed. If a
MIN can be designed with broadcasting capability, then the
diro scheme will perform well.

It was obseerved in section 2 that the ratio of t
diro and diry schemes increases with write frequency w

the miss ratio of the dir; scheme remains constant. The in-

validation overheads also increase with an increase in write
frequency as they are directly related. The above facts sug-

gest that although the diry scheme may perform better than
dir, for lower values of f,, itsa performance will degrade at
a faster rate than the later with increase in f,. ;ﬁgnre 10
shows that this is in fact the case. Initially, diry is much su-
perior in performance, but after f, is around 0.30, the dir,
scheme performs nearly as good as the dir 5 scheme with the
chosen parameters. For lower values of f,, the dirg scheme
also performs better than the dir, scheme. For higher values
of fu, dir; performs better. An additional advantage for the
dir, scheme is that the storage requirements for this scheme
is only slightly higher than the diry scheme, but substantially
less than the diry scheme. Therefore, the cost/performance
ratio of the dir; scheme may prove to be more attractive.
Since the directory controllers handle all the coherence ac-
tions, one might suspect that they may soon become a bottle-
neck. We show the directory utilization of the three schemes
as a function of the system size, for relatively higher ¢, and
fw,in figure.11. While the directory in the diro scheme starts
saturating after N==256, the directory utilization of the diry
scheme remains low even up to N = 1024, at around 10%.
The dir, scheme has similar low directory utilizations. The
directory schemes adapt well to the growth in system size,
simply because with the growth in the number of memory



modules, the number of directories also increases and the
requests get distributed.

5 Conclusion

The directory based cache protocols provide an important
alternative in designing large scale cache coherent multipro-
cessors. In this paper we presented an analytical model for
evaluating the performance of various directory schemes on
a MIN based multiprocessor. The miss ratios for the shared
memory references for different schemes were derived analyt-
ically. A model was devised to handle the bulk generation
of the invalidation and flush signals mathematically. Overall
analysis of the schemes showed that the dir; scheme performs
nearly as good as the diry scheme. Although diry performs
better in most cases, the saving of directory storage space in
the dir; may make the later scheme more attractive. Perfor-
mance of the diry scheme is severely affected by the increase
in system size due to the generation of a large number of
invalidation signals. The directories in the dirg scheme also
become saturated fast. However, the directories in the dir,
and dsr v schemes remain rather underutilized even for a sys-
tem containing as many as 1024 processors. We would like to
point out here that since there is not a single implementation
of a directory scheme reported in the literature, we had to
second guess many operations. Hence the results presented
in this paper should not be over emphasized. The analytical
technique presented here, however, will be helpful for eval-
uation and quick prediction of performance of a directory
based cache coherent multiprocessor when implemented.
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