

Dancing Robots!
CSCE 489 Final Report

Adam Eck, Bradly Paul, and Daniel Podany
University of Nebraska-Lincoln

May 4, 2008

Page I

Table of Contents

Abstract ... 1

Section 1: Introduction ... 1

1.1. Motivation .. 1

1.2. Project Goals .. 1

1.3. Related Work ... 2

1.4. Paper Outline ... 3

Section 2: Design Overview .. 3

2.1. Musical Input Component ... 4

2.2. Robotic Movement Component .. 5

2.3. Information Processing Component .. 6

Section 3: Project Implementation ... 7

3.1. Musical Inputs Implementation ... 7

MIDI ... 7

3.2. Robotics Movements Implementation .. 8

Robosapien Robot ... 8

Bluetooth Wireless Communications ... 9

3.3. Information Processing Implementation ... 12

Hardware Implementation ... 12

MIDI Parser ... 12

Song Display .. 14

Song Segmentation ... 15

Action Selection .. 16

Dance Performance .. 17

Listen/Repeat Game ... 18

Section 4: Conclusions .. 18

4.1. Project Summary .. 18

4.2. Future Work ... 19

Improve Connections .. 20

Better Microcontroller .. 20

Better Control over Robotic Actions ... 21

Performance Art ... 21

Page II

References .. 22

Appendix A: Cost Information .. 24

Appendix B: Robosapien Control Sequence ... 25

Appendix C: Robosapien Commands with Timing .. 26

Appendix D: XML Configuration Files ... 28

D.1. Bluetooth Settings ... 28

D.2. Command Settings .. 29

D.3. Timing Settings .. 31

Page 1

Abstract

In this final report, we describe the design and implementation of a senior design project
involving the creation of dancing robots. The goal of this project was to inspire young children
to become more interested in both music education and technology by creating a system
where several robots dance interactively based on both synchronous and asynchronous (i.e.,
stored) music sources. Using a software bridge between music and hardware, our system
visualizes MIDI data, helps users choose segments for robots to dance to, assists with the
assignment of various robotic actions to those segments, incorporates a Simon Says type game
for musical instruction, and commands the robots over Bluetooth wireless connections. The
main contributions of this report include a description and analysis of the various design
decisions made during the course of the project, as well as information about the project’s
primary components and how their interactions enable dancing robots to form an educational
tool.

Section 1: Introduction

1.1. Motivation

Throughout the musical education literature, one common theme stands out: children who

listen to and learn about music have increased skills in learning, reasoning, and retention of

information (e.g., [1]-[3]). In order to help children become more interested in learning about

music both in schools and at home, we have designed an educational toy which combines the

playfulness of robots with music education. This toy, Dancing Robots!, enables instructors to

use robotic dances to emphasize musical structures visually, providing an extra type of

feedback to help children understand concepts at a faster rate. Dancing Robots! also provides a

playful response to a child’s learning, rewarding children when they repeat melodies performed

by an instructor.

1.2. Project Goals

Our goals in creating Dancing Robots! were 1) to build an educational toy that emphasizes

entertainment while learning, 2) help children become interested in both music and

Page 2

technology, 3) provide a relatively cheap and affordable product, and 4) use anthropomorphic,

programmable robots with many available actions across several degrees of freedom to create

our dance performances. These goals were drafted after surveying existing products on the

market, and after discussions with both the Computer Science and Engineering Department and

the Department of Music at the University of Nebraska-Lincoln.

1.3. Related Work

Looking at the current market, we found that there are existing robots which already dance

to music. For instance, Tiger Electronics has created the I-DOG and several other cheap ($20)

dancing animal music players [4]. These devices can play music through internal speakers but

only dance randomly to the sounds and have a limited number of available actions. Another

interesting type of robot popularized in Japan is called BeatBots [5]. Their prominent robot is

named Keepon, which looks like a yellow snowman made of two tennis balls. This robot has

four degrees of motion and reacts directly to the beat of music, but has a limited number of

available actions and is non-programmable. Its price is currently unknown and the robot is not

available for sale. Finally, Sony has created the QRIO (formally known as Sony’s Dream Robot)

which is able to dance and perform to music, as well as sing and conduct dialogs with humans

[6]. This robot has even been used to test how children react to small robots with varying

degrees of success by introducing the robot as a classmate to a room full of toddlers [7].

However, although the QRIO is probably ideal for our project, its cost is extremely prohibitive:

before the project was discontinued, Sony announced the robot would be priced between

$60,000 and $80,000 [8].

Page 3

1.4. Paper Outline

The rest of this paper is organized as follows: in Section 2, we provide an overview of our

project’s design and introduce the three primary components. In Section 3, we describe how

we implemented these components and illustrate how the system works. Finally, in Section 4,

we provide a summary of our project and detail our vision for future extension of this toy.

Additional information, including a cost analysis, is provided in an appendix.

Section 2: Design Overview

In order to build robots that can perform to music and serve as an educational toy, we have

created a design utilizing both software and hardware with three main modules, as shown in

Figure 2.1. These modules are explored more in-depth in the following subsections and include

1) musical input devices, 2) hardware-based robotic movement, and 3) software-based

information processing. The implementation of these components, including the specific

hardware and software choices made to meet our design, is provided in Section 3.

These three components work together to serve two primary purposes, each of which is a

separate mode of operation. First of all, Dancing Robots allows instructors to input a stored

music performance and highlight key musical events (e.g., a chorus, verses, phrases, etc.) with

various robotic actions. Whenever any of these events occur, the robots will perform a specific

routine, emphasizing the event both visually and audibly. We believe that this extra feedback

will help children learn musical concepts faster, especially for children who are visual learners.

Page 4

Figure 2.1: Dancing Robots! Design Components

Outside the realm of music education, this mode can also be used to create elaborate robotic

dances which correspond to different movements and parts within a song.

 Second, Dancing Robots can also be used in conjunction with live inputs to provide a

Listen/Repeat game, similar to Simon Says, where an instructor plays a melody which must be

played back by the children. Depending on the accuracy of the child’s response, the robots will

perform different routines. This mode serves to help children interact with music while

providing a reward system to boost learning. This could especially be useful to piano teachers

who might otherwise have a hard time encouraging children to become interested in their

lessons.

2.1. Musical Input Component

The first primary component in the Dancing Robots! design involves several types of

musical input devices. For the performance dancing mode, we support asynchronous inputs in

the form of stored musical performances. These stored files can come from recorded

Page 5

performances, as well as song files created by musical software (e.g., Rosegarden [9] and

Cubase [10]). To provide the Listen/Repeat game, our project also supports synchronous inputs

through electronically attached musical instruments, (e.g., a digital keyboard).

When designing the musical input component of Dancing Robots!, we made the important

decision that all music interpretation should be conducted through software rather than

hardware. This simplifies the design, allowing us to use algorithms to decode important

musical information rather than filters and other discrete electrical components. All three

project members are computer engineers with stronger backgrounds in software development

than electronics, so we felt it would have been a senior design project in-and-of-itself to

interpret music through hardware, regardless of what we use the interpretation for. We also

already need the software for the information processing component (described in Subsection

2.3), so decoding the music in this component was a natural fit in the project. Finally, not using

hardware for music interpretation reduces the cost of our project and requires less power to

drive the robots, enabling longer performances.

2.2. Robotic Movement Component

The next component in our design is the robotic movement component. This component

consists of several anthropomorphic robots with many predefined actions across several

degrees of freedom which can perform to music. They are programmable by the information

processing component and can perform elaborate routines in synch with each other or

independent from one another. One of the primary requirements of the robotic movement

component’s design is the robots must be controlled over wireless communications to avoid

Page 6

the clutter of wires, increase the distance they can be used from the computer hosting the

software, and prevent robots from tripping over themselves while dancing.

2.3. Information Processing Component

The information processing component of our design is used as a bridge between the

musical inputs to the dancing robots. It is responsible for organizing robotic actions to various

portions of music, remembering and analyzing melodies for the Listen/Repeat game, playing

back musical performances while the robots dance, and controlling the actions of the robots.

Because this component is the primary interface to the user, we wanted it to have an easy to

use graphical user interface (GUI) that both instructors and children could quickly understand

and use. This includes pictures of the robots to help children know how to assign actions, as

well as clearly defined buttons to control the toy.

To support both modes of operation, the information processing component consists of

several key elements: 1) a module which can process data from musical inputs, 2) a song display

for relaying information about a chosen song or inputted melody back to users, 3) the ability to

split songs into various “segments” (e.g., chorus, verses, or other musical events) for the robots

to dance within, 4) a means for assigning robotic actions to segments or accuracies of melody

playback (for the Listen/Repeat game), and 5) song playback and robotic control. Since for

larger songs, segmenting the song and assigning actions can become very tedious, the

information processing component supports both manual choices by users and automatic

assignments by the software.

Page 7

Section 3: Project Implementation

In this section, we describe how we implemented each of the various components of our

design while creating Dancing Robots! We begin with the musical input component, followed

by the robotic movements, and end with information processing. Along the way, we also

describe alternatives considered and provide a justification for their exclusion.

3.1. Musical Inputs Implementation

MIDI

To achieve both live (synchronous) and stored (asynchronous) inputs which can be

processed entirely through software, we selected the MIDI (Musical Instrument Digital

Interface) protocol created by the MIDI Manufacturers Association [11], which encodes musical

events and relevant metadata into digital files and streams. MIDI is a well documented [12]-

[14] language for music which discretizes musical events (e.g., notes on and off, pitch bends,

beat changes, etc.) into sequences of bytes which can easily be decoded to interpret their

meaning. This prevents us from having to interpret the songs in either the frequency or time

domains in order to extract such information. This protocol is well established around the

world with large libraries of stored performances for teachers to draw upon, representing all

genres of music. It is also the format natively used by many electronic musical instruments and

devices (e.g., digital keyboards, synthesizers, etc.), enabling such devices to be used by our

Listen/Repeat game without modification.

We also considered several other alternatives when deciding upon what musical inputs

should be used for Dancing Robots! We especially thought about using the popular MP3, AAC,

Page 8

or WMA file formats which many users already store their favorite songs in for use on their

computers and portable music players (e.g., iPod or Zune). However, these formats are not

discretized like MIDI, so we would have had to deal with the added overhead of extracting

important information like when notes are playing and where tempos change, increasing the

complexity of our project and slowing down the toys’ performance. Additionally, these file

formats are not supported my musical instruments, so we would have been left without the

synchronous inputs required for the Listen/Repeat game.

3.2. Robotics Movements Implementation

Robosapien Robot

The robot we chose for our project was the Robosapien from WowWee toys [15]. This

robot was chosen for several reasons. First of all, it is relatively cheap (see Appendix A for cost

information), so it fits well with our goal of delivering an affordable toy. Second, the

Robosapien has 67 available actions [16] across five degrees of freedom, so there are many

predefined actions for users to take advantage of in their dances. Third, the robot already

includes wireless communications in the form of IR, so adding our own wireless

communications was relatively easy (see the next subsection for more details). Finally, the

Robosapien has fostered a community of hobbyists and hackers, so there is a plethora of

available information online for how the robots work and how to manually control them (e.g.,

[17], [18]). A picture of the Robosapiens in action is given in Figure 3.1.

Page 9

Figure 3.1: Robosapiens Dancing to Music

We also considered using other types of robots for this component of our design, including

Lego robots. These toys would be a great inclusion because children could build their own

robots, then watch their creations dance. The Legos would also provide a greater flexibility in

what forms the robots could take on. However, these robots would have a limited number of

available actions and would require extra configuration for use with the information processing

component (since the actions would not be predefined). Furthermore, we wanted human-like

anthropomorphic robots in our project, which would be difficult to achieve with Legos.

Bluetooth Wireless Communications

In order to control the Robosapiens over a wireless connection, we chose to use the

Bluetooth protocol using the BlueSMiRF module from Sparkfun [19]. This choice was made for

several reasons. First of all, we wanted a protocol which allows one device on the information

Page 10

processing component side to connect to multiple robots at once. Second, Bluetooth has the

capability to act as a wireless serial connection without the need for additional packet

processing on the receiver side. Third, Bluetooth is long range (up to 100 meters [19]) and is

not line of sight, so obstructions are not a problem. Finally, Bluetooth is low power, conserving

battery life on the robots.

Bluetooth was chosen over other wireless protocols, including the Robosapiens’ built in

infrared (IR) control. We replaced IR because that protocol is line of sight, creating problems

depending on the placement of the user’s computer. Additionally, each receiver receives the

exact same signal, so it would be difficult to control the robots independently.

In order to interpret the Bluetooth signal sent from the information processing component

to the Robosapiens, we included the Basic Stamp 2 (BS2) microcontroller [20]. This device

receives a serially transmitted command over Bluetooth, then asserts the proper control

sequence to the Robosapien’s mainboard. This sequence is the exact same signal received over

IR from the robot’s remote control, and is explained in Appendix B. We tried to mimic this

sequence simply using Bluetooth, since it sends serial bits, but we were unsuccessful given start

and stop bits within asynchronous serial communications, hence the inclusion of the

microcontroller. The control sequences outputted by the BS2 were determined using an

oscilloscope connected to the robot while using the remote control, and through online sources

[21]. A list of all sequences implemented, along with their timing and hex codes are provided in

Appendix C. A block diagram describing the connection of the wireless communications

components is provided in Figure 3.2, and a picture of their inclusion inside a Robosapien is

shown in Figure 3.3.

Page 11

Figure 3.2.: Wireless Communications Diagram [16], [19], [20]

Figure 3.3: Location of Bluetooth and Microcontroller (front chest cavity of Robosapien)

Page 12

3.3. Information Processing Implementation

The information processing component consists of software written in C# running on a

personal computer. We chose the C# programming language over alternatives like C++ or Java

for several reasons. First, the design team as a whole has more experience writing for C# than

other high level programming languages. Second, C# has strong support for building GUIs,

which is required for our information processing component. Third, C# also has native support

for threading, which was required for controlling the robotic actions and playing back songs to

the users. Finally, there are many available libraries for necessary functionality, including MIDI

support [22]. A screenshot of our software is provided in Figure 3.4.

Hardware Implementation

In order to use the information processing component, it must reside on hardware. This

consists of a personal computer (desktop or laptop) with a sound card for playing MIDI files,

USB connections to provide a Bluetooth connection to the modified Robosapien and for

connecting to a MIDI device, a monitor for displaying the software, and a keyboard and mouse

for user input. Based on these specifications, almost any personal computer would work and

we had no problems using any of the design team’s laptops.

MIDI Parser

In order to extract musical information from various inputs, the first main element of the

information processing component is used to interpret raw MIDI data. This is done through a

parser written by the team which reads in MIDI messages from an attached MIDI device, or

extracts these messages from stored MIDI files. The messages are then converted into MIDI

Page 13

Figure 3.4: Dancing Robots! Software GUI

Page 14

events which wrap around messages to include timing information. Finally, based on tempo

changes, volume settings, and timing within the data, the various musical notes are extracted

from the MIDI data and saved for use by the rest of the software.

We would like to note here that all of the parser was written by the team members, but we

relied on the open source C# MIDI Toolkit [22], written by Leslie Sanford, to grab MIDI message

from attached devices (e.g., a digital keyboard).

Song Display

Once a series of notes have been extracted from a synchronous musical stream or a stored

MIDI file, they are displayed in a piano roll format to the user, seen on the left side of Figure

3.4. This piano roll is shown as a two-dimensional table or matrix, where each row is a different

pitch and each column signifies the passage of time. Higher vertical rows are higher pitches and

time extends to the right on the horizontal axis. The piano roll draws each note as a contiguous

sequence of cells in the table, and each track in the MIDI files are colored differently for easier

readability. This format was chosen because it can display the contents of a song in an easy to

understand format, and different tracks (or musical parts/instruments) can be easily

distinguished.

The piano roll format was chosen over other alternatives, including sheet music and lyrics.

Sheet music would be useful because it represents music in a compact form, but might be

difficult for casual users and children to read, and songs with many tracks would be difficult to

draw. Lyrics would be great for children because it is the words that they commonly associate

with songs. However, lyrics are not often provided by MIDI files, nor are they available for

Page 15

synchronous inputs. Furthermore, we want Dancing Robots! to be a teaching tool, so we want

children to learn something they don’t already know.

Song Segmentation

When creating dancing performances to asynchronous, stored MIDI files (whose process is

described by Figure 3.5), the actions performed by the robots are done to various segments

within a song. These segments can represent different musical events (e.g., a chorus or verse,

phrases, etc.), therefore they are worth emphasizing during teaching. Furthermore, by

synchronizing actions to segments, the performances carried out by the robots are more in-

synch with the music than without segments.

Figure 3.5: Flowchart of Robotic Dances to MIDI Files

To support both user control and flexibility, segments can either be manually chosen by

users or automatically by the software. To manually create a segment, the user simply clicks on

the “Add Breaks” button on the GUI, then they can click on any part of the piano roll to create a

break between two segments, which is represented a vertical black line in the display. Also, if a

user doesn’t want to create their own segments, they can instead have the software create its

own segments, based on the music in a user-specified track. This functionality uses open

source code from the Melisma Music Analyzer [23] from CMU to generate a list of notes and

beats in a song using the Meter program. Next, the Grouper program uses the note/beat list to

find breaks between segments using a rule based system. These rules include inserting a break

Page 16

between long pauses in the song and keeping all segments as close to the same length as

possible [24]. Once the Grouper program has finished, it returns the location of segment

breaks to our software, which then stores those breaks internally and adds them to the piano

roll.

Action Selection

Once a song has been segmented, different actions can be assigned for the robots to

perform during the dances. This is conducted on the right side of the GUI, as shown in Figure

3.4. A picture of the Robosapien is provided as a reference, and all of the available actions are

organized in combo boxes next to where on the robot they are performed. This was designed

to make the GUI easier to use for children. Each action is represented by its name and duration

and can be added by selecting them, then clicking the corresponding “Add” button. All actions

for a selected segment (chosen by again clicking on the piano roll) are displayed to the user,

along with their start times and duration, in a table below the picture of the robot. This

provides a compact form for detailing robotic dances to be performed by the Robosapiens.

The actions within a segment must fit within the duration of the segment. Any actions

added that violate this requirement result in a message box which alerts the user of their error.

The timing values for each action, as well as the command to be transmitted over the Bluetooth

wireless connection, are provided by XML configuration files read by the software. Using XML

allows our software to support multiple types of robots and different command sets for each

robot. For example, users could choose to limit which actions they want the robots to be able

to perform. This can be done simply by editing these configuration files, which are described in

Appendix D.

Page 17

Each robot in the system can perform its own set of actions, so the user can select different

robots to assign actions to by choosing the proper entry in the Robot combo box at the top of

the display. When a different robot is chosen, the interface is updated to show the actions

selected for that robot, and the picture of the Robosapien is updated to show the proper one

(right now we have a white and red Robosapien).

If a user decides that they do not want to assign their own actions, they can choose to have

the software automatically do so for them. To guide the automatic assignment of user actions

to a set of segments, we store all action groupings performed by the robots in a MySQL

database. After each performance, the software asks users whether or not they enjoyed the

performance. This information is used to “learn” through reinforcement which performances

users enjoy most. During automatic assignment, the groupings with the highest weights are

more likely to be selected, tailoring the dances to a user’s tastes. However, to introduce

variability into the system, new performances are sometimes generated by the automatic

action selection functionality.

Dance Performance

Once the song has been segmented and actions have been selected, the robots can now

dance! The user must finalize their choices by pressing the “Finalize Actions” button, which

converts the specified performance to a sequence of commands to transmit over Bluetooth,

organized by when they occur. The user can then start the dance by pressing the “Start

Actions” button. To allow the user to continue using the interface, the transmitting is done

over a separate thread so it doesn’t block other functionality. A timer is also used to start

Page 18

playing the song when the commands start transmission. This song playing is performed using

the SequencerDemo project provided by the C# MIDI Toolkit [22].

Listen/Repeat Game

Performing the Listen/Repeat game is done a little bit differently using the software.

Instead of loading a song, the teacher tells the software to listen to an inputted melody, played

on an attached MIDI keyboard. Once the melody is finished (as indicated by the user), the

software asks the teacher to specify what actions the robots should perform when the students

are entirely correct (100%), close (>= 80%), or wrong (< 80%). Next, the students can try to

repeat the melody. This input is then compared against the teacher’s input and the proper

dance is performed by the robots. A flow diagram describing the software elements used

during the Listen/Repeat game is provided in Figure 3.6.

Figure 3.6: Flowchart for Listen/Repeat Game

Section 4: Conclusions

4.1. Project Summary

In conclusion, we have created an educational toy called Dancing Robots! which promotes

musical education and technology to young children. Using the anthropomorphic Robosapien

robot modified to use a Bluetooth wireless connection, Dancing Robots! allows children to

interact with music using MIDI instruments and receive a reward for their efforts in the form of

Page 19

a robotic dance. Teachers can also use the segmentation feature of the Dancing Robots!

software to highlight key musical events, helping students learn important musical features,

such as what a chorus or verse is, or when a song exhibits vibrato or a sequence of staccato

notes.

While the prototypes were a little pricy at $140 (see Appendix A for a cost analysis), we

believe that in mass production while working with WowWee, this price could be greatly

reduced to offer an affordable product to schools and homes. If available, we believe that such

a product could motivate students to learn about music, increasing their skills in learning,

reasoning, and retention of information.

For more detailed information about our design and implementation and a description of

our testing procedures and results, please refer back to our previous progress reports and

original proposal. These are available online at our project Wiki

<http://csce.unl.edu/wiki/index.php/CSCE489_Dancing_Robots>

along with our team meeting log and Adam’s design log. The design log also includes inline

links to most of our references, as well as programming resources and a datasheet for the

BlueSMiRF (mostly unused during the project).

4.2. Future Work

To further improve Dancing Robots!, we have several ideas for future work that we would

like to see be conducted: 1) improve connections between hardware components, 2) use a

better microcontroller, 3) provide better control over robotic actions, and 4) use Dancing

Robots! for a new form of performance art.

http://csce.unl.edu/wiki/index.php/CSCE489_Dancing_Robots

Page 20

Improve Connections

First, we encountered several problems with connecting our software to both a MIDI

keyboard and the Robosapiens. Whenever the robots respond to a child’s playback of the

melody, only one robot dances. However, both robots work fine up until this point if they are

just dancing to stored MIDI files. Both of these connections rely on USB devices, so we think

there is a conflict somewhere in the USB layer. Additionally, the Bluetooth connection was

sometimes intermittent between the computer and robots. We used a pretty cheap USB

dongle provided by the Computer Science and Engineering Department, so the problem could

just be the quality of our parts. Fixing these problems would result in a more stable toy for

children to enjoy.

Better Microcontroller

Second, we would like to see a better microcontroller used in the Dancing Robots! We

chose the BS2 because it was cheap, available through the EE Shop on campus, and it offered a

built in library for serial communications. However, the device uses a lot of our power (battery

life is cut by 66% from 6 hours to around 2 hours when using the BS2), causing us to go through

many sets of expensive D batteries. The BS2 does not support interrupts, so we had to use

polling to listen for incoming Bluetooth commands. A microcontroller with interrupt support

would greatly cut down on the power consumption and battery drain. In fact, if we were to

ever produce this product, the mainboard of the Robosapien could be replaced by a Bluetooth-

enabled microcontroller which contains all of the functionality we require.

Page 21

Better Control over Robotic Actions

Third, right now we are only using the built in actions in the Robosapiens. Unfortunately,

only one action can be performed at once, and some actions take several seconds to complete.

This is why our design only has robots dance to segments of songs instead of individual music

events – the robots are just not responsive enough to do anything else. However, the

Robosapien has all of its motor servos exposed, so we could control the motors themselves

directly using the microcontroller instead of mimicking the IR signal through its current

mainboard. This would give us a wider range of available actions, and it would also make the

robot more responsive, making it possible for them to directly respond to music.

Performance Art

Finally, Dancing Robots! represents a relatively new form of performance art – robots

dancing to music. We would like to see how this project could be extended beyond the

education domain to performance arts. This could create a whole new genre of dance and as

technology advances, exciting new possibilities could occur at the intersection of music and

robots.

Page 22

References

[1] Hetland, L. Learning to make music enhances spatial reasoning. Journal of Aesthetic

Education, Vol. 34(3-4), 2000, pp 179-238.

[2] Schellenberg, E.G. Music lessons enhance IQ. Psychological Science, Vol. 15(8), Aug. 2004,

pp. 511-514

[3] Rauscher, F.H., and Zupan, M.A. Classroom keyboard instruction improves kindergarten

children’s spatial-temporal performance: a field experiment. Early Childhood Research
Quarterly, Vol. 15(2), 2000, pp. 215-228.

*4+ Hasbro, “Tiger Electronics”, available at <http://www.hasbro.com/tiger/default.cfm>,

accessed on October 21, 2007.

 *5+ Michalowski, M. and Kozima, H., “Keepon & the BeatBots”, available at

<http://beatbots.org/>, accessed on October 21, 2007.

[6] Tanaka, F., Fortenberry, B., Aisaka, K., and Movellan, J.R. Developing dance interaction

between QRIO and toddlers in a classroom environment: plans for the first steps, in
Proceedings of the 2005 IEEE International Workshop on Robots and Human Interactive
Communication (RO-MAN ’05), Nashville, TN, Aug. 13-15, 2005, pp. 223-228.

[7] Tanaka, F., Cicourel, A., and Movellan, J.R. Socialization between toddlers and robots at an

early childhood education center, Proceedings of the National Academy of Sciences, Vol.
104(46), Nov. 13, 2007, pp. 17954-17958.

[8] Lowe, S. Sony soon to deliver child robot, The Age, Dec. 23, 2002, available online at

<http://www.theage.com.au/articles/2002/12/22/1040510966660.html>, accessed on
April 28, 2008.

*9+ Rosegarden, “Rosegarden: music software for Linux”, available at

<http://www.rosegardenmusic.com/>, accessed on October 21, 2007.

*10+ Steinberg, “Cubase 4 :: Steinberg Media Technologies GmbH”, available at

<http://www.steinberg.net/983_1.html>, accessed on October 22, 2007.

[11] MIDI Manufacturers Association, “MIDI Manufacturers Association”, available at

<http://www.midi.org/>, accessed on October 21, 2007.

*12+ Glatt, J., “MIDI Technical/Programming Docs”, available at

<http://www.borg.com/~jglatt/tech/miditech.htm>, accessed on November 21, 2007.

http://www.hasbro.com/tiger/default.cfm
http://beatbots.org/
http://www.theage.com.au/articles/2002/12/22/1040510966660.html
http://www.rosegardenmusic.com/
http://www.steinberg.net/983_1.html
http://www.midi.org/
http://www.borg.com/~jglatt/tech/miditech.htm

Page 23

*13+ Harmony Central, “Harmony Central – MIDI Documentation”, available at
<http://www.harmony-central.com/MIDI/Doc/>, accessed on November 23, 2007.

*14+ Sapp, C.S., “Variable Length Values”, available at

<http://www.ccarh.org/courses/253/handout/vlv/>, accessed on November 21, 2007.

[15] WowWee Ltd., “Welcome to the Official Robosapien site”, available at

<http://www.wowwee.com/robosapien/robo1/robomain.html>, accessed on December
2, 2007.

[16] WowWee Ltd., “Wowwee Roboitics Robosapien”, available at

<http://www.wowweestore.com/index.asp?PageAction=VIEWPROD&ProdID=2>,
accessed on December 3, 2007

[17] “ROBOSAPIEN.tk - The unofficial Robosapien Hacks and Mods site”, available at

<http://home.planet.nl/~pruim006/index2.htm>, accessed on November 17, 2007.

*18+ Brown, Chance. “BasicX-24”, available at < http://www.evosapien.com/robosapien-

hack/knitsu/html/basicx-24.html>, accessed on February 22, 2008.

[19] Sparkfun, “Bluetooth Modem -BlueSMiRFGold” , available at

<http://www.sparkfun.com/commerce/product_info.php?products_id=582 >, accessed
on February 3, 2008

[20] Parallax, Inc., “BASIC Stamp 2 Module”, available at

<http://www.parallax.com/Store/Microcontrollers/BASICStampModules/tabid/134/Cat
egoryID/9/List/0/SortField/0/Level/a/ProductID/1/Default.aspx>, accessed on February
18, 2008

*21+ “*AiboHack+ RoboSapien IR Codes”, available at

<http://www.andrew.cmu.edu/user/ebuehl/robosapien-lirc/ir_codes.htm>, accessed
on February 3, 2008.

[22] The Code Project, “CodeProject: C# MIDI Toolkit”, available online at

<http://www.codeproject.com/KB/audio-video/MIDIToolkit.aspx>, accessed on March
28, 2008.

[23] Sleator, D. and Temperley, D. “The Melisma Music Analyzer”, available online at

<http://www.link.cs.cmu.edu/music-analysis/>, accessed on March 23, 2008.

[24] Thom, B., Spevak, C, and Hoethker, K. 2002. Melodic segmentation: evaluating the

performance of algorithms and musical experts, in Proceedings of ICMC’02, Goeteborg,
Sweden, Sept. 2002.

http://www.harmony-central.com/MIDI/Doc/
http://www.ccarh.org/courses/253/handout/vlv/
http://www.wowwee.com/robosapien/robo1/robomain.html
http://www.wowweestore.com/index.asp?PageAction=VIEWPROD&ProdID=2
http://home.planet.nl/~pruim006/index2.htm
http://www.evosapien.com/robosapien-hack/knitsu/html/basicx-24.html
http://www.evosapien.com/robosapien-hack/knitsu/html/basicx-24.html
http://www.sparkfun.com/commerce/product_info.php?products_id=582%20
http://www.parallax.com/Store/Microcontrollers/BASICStampModules/tabid/134/CategoryID/9/List/0/SortField/0/Level/a/ProductID/1/Default.aspx
http://www.parallax.com/Store/Microcontrollers/BASICStampModules/tabid/134/CategoryID/9/List/0/SortField/0/Level/a/ProductID/1/Default.aspx
http://www.parallax.com/Store/Microcontrollers/BASICStampModules/tabid/134/CategoryID/9/List/0/SortField/0/Level/a/ProductID/1/Default.aspx
http://www.andrew.cmu.edu/user/ebuehl/robosapien-lirc/ir_codes.htm
http://www.codeproject.com/KB/audio-video/MIDIToolkit.aspx
http://www.link.cs.cmu.edu/music-analysis/

Page 24

Appendix A: Cost Information

The idea behind Dancing Robots! may be solid, but it means nothing if buyers cannot afford

to purchase them. The prototypes for Dancing Robots! were built from a combination of

readily available parts that were relatively inexpensive. Table A.1 shows the actual cost of each

prototype as 140 US dollars. As mentioned in the Future Work (Subsection 4.2) the main

controller board of the Robosapien could easily be modified as to include the needed Bluetooth

functionality. Working with WowWee on design changes would also allow for added

functionality and improvements to be added. Judging from the fact that WowWee is easily able

to sell these robots for 50 US dollars, these small changes would probably not tip the scales. As

with any product that is ramped up to mass production, there is a bulk discount. Taking

advantage of this discount, our team projects that the cost to produce a Robosapien with all

functionality could be lowered to around $65. This results in a total projected cost of $70 if

batteries are included. This low price would allow a great market price of around $100.

Dancing Robots! may soon be in a store near you!

Table A.1: Cost Analysis for Dancing Robots!

Component Our Cost Projected Cost

Robot (Robosapien) $50 $65

Bluetooth (BlueSMiRF) $65 -

Microcontroller (BS2) $20 -

Batteries ((4) D cells) $5 $5

 $140 $70

Page 25

Appendix B: Robosapien Control Sequence

A command is issued to the Robosapien from our BS2 microcontroller as follows. Each

command starts with a sequence of 0's (eight to be exact), each 1 bit in the original command is

actually sent as 1110, and each 0 bit is sent as 10, all asserted at 1200 baud. An example

command and its attached waveform are shown below in Figure B.1.

Figure B.1: Command Sequence for Left Arm Up

Page 26

Appendix C: Robosapien Commands with Timing

Table C.1: Robosapien Commands with Timing

Hex

Code
Command Work?

Delay

(S)

Delay

(S)
80 Turn Right Yes

81 Right Arm Up Yes 0.772 1.301

82 Right Arm Out Yes 0.820 0.504

83 Tilt Body Right Yes 0.558

84 Right Arm Down Yes 0.873 0.343

85 Right Arm In Yes 0.823 0.397

86 Walk Forward Yes

87 Walk Bakcward Yes

88 Turn Left Yes

89 Left Arm Up Yes 0.772 1.301

8a Left Arm Out Yes 0.820 0.504

8b Tilt Body Left Yes 0.558

8c Left Arm Down Yes 0.873 0.343

8d Left Arm In Yes 0.823 0.397

8e Stop Yes

a0 Right Turn Step Yes 2.969

a1 Right Hand Thump Yes 1.885

a2 Right Hand Throw Yes 3.053

a3 Sleep Yes

a4 Right Hand Pick-Up Yes 2.202

a5 Lean Backward Yes 0.453

a6 Forward Step Yes 2.005

a7 Backward Step Yes 2.005

a8 Left Turn Step Yes 2.969

a9 Left Hand Thump Yes 1.885

aa Left Hand Throw Yes 3.053

ac Left Hand Pick-Up Yes 2.202

ad Lean Forward Yes 0.453

b1 Wakeup Yes

c0 Right Hand Strike 3 Yes 2.678

c1 Right Hand Sweep Yes 1.618

c3 Right Hand Strike 2 Yes 4.452

c4 High Five Yes 4.378

c5 Right Hand Strike 1 Yes 3.107

Page 27

c8 Left Hand Strike 3 Yes 2.678

c9 Left Hand Sweep Yes 1.618

cb Left Hand Strike 2 Yes 4.452

cd Left Hand Strike 1 Yes 3.107

d6 Karate Chop Yes 2.683

f6 Feet Shuffle Yes 2.735

fc Raise Arm Throw Yes 3.036

ab Listen Not

ae Reset Not

c2 Burp Not

c6 Bulldozer Not

c7 Oops Not

ca Whistle Not

cc Talkback Not

ce Roar Not

90 Master Program Not

91 Play Not

92 Right Program Not

93 Left Program Not

94 Sonic Program Not

98 Quiet Execute Not

9a
Quiet Execute with

Subroutines
Not

b0 Master Execute Not

b2 Right Execute Not

b3 Left Execute Not

b4 Sonic Execute Not

d0 All Demo Not

d1 Power Off Not

d2 Demo 1 Not

d3 Demo 2 Not

d4 Dance Not

fb Nothing Not

Page 28

Appendix D: XML Configuration Files

D.1. Bluetooth Settings

This configuration file determines whether or not we are using a robot and which COM port

its Bluetooth is connected to. Here, we wrote this without considering the colors of our robots,

so White is the white robot and Black is the red robot.

<?xml version="1.0" encoding="utf-8" ?>
<Settings>
 <White>
 <Conn>COM5</Conn>
 <Use>True</Use>
 </White>
 <Black>
 <Conn>COM7</Conn>
 <Use>True</Use>
 </Black>
</Settings

Page 29

D.2. Command Settings

The command settings configuration file defines all of the actions available to the robots,

groups them by category, and provides their commands to be transmitted over Bluetooth. The

file is organized as follows: the root is the type of robot, the branch is the action category, and

the leaves are the actions with values equal to their commands.

<?xml version="1.0" encoding="utf-8" ?>
<Robosapien>
 <LeftArm>
 <LeftUp>89</LeftUp>
 <LeftOut>8A</LeftOut>
 <LeftDown>8C</LeftDown>
 <LeftIn>8D</LeftIn>
 <LeftThump>A9</LeftThump>
 <LeftThrow>AA</LeftThrow>
 <LeftPickup>AC</LeftPickup>
 <LeftStrike1>CD</LeftStrike1>
 <LeftStrike2>CB</LeftStrike2>
 <LeftStrike3>C8</LeftStrike3>
 <LeftSweep>C9</LeftSweep>
 </LeftArm>
 <RightArm>
 <RightUp>81</RightUp>
 <RightDown>84</RightDown>
 <RightIn>85</RightIn>
 <RightOut>82</RightOut>
 <RightThump>A1</RightThump>
 <RightThrow>A2</RightThrow>
 <RightPickup>A4</RightPickup>
 <RightStrike1>C5</RightStrike1>
 <RightStrike2>C3</RightStrike2>
 <RightStrike3>C0</RightStrike3>
 <RightSweep>C1</RightSweep>
 </RightArm>
 <Body>
 <TiltLeft>8B</TiltLeft>
 <TiltRight>83</TiltRight>
 <LeanBackward>A5</LeanBackward>
 <LeanForward>AD</LeanForward>

Page 30

 </Body>
 <Legs>
 <TurnLeftStep>A8</TurnLeftStep>
 <TurnRightStep>A0</TurnRightStep>
 <ForwardStep>A6</ForwardStep>
 <BackwardStep>A7</BackwardStep>
 <FeetShuffle>F6</FeetShuffle>
 </Legs>
 <Commands>
 <High5>C4</High5>
 <RaiseArmThrow>FC</RaiseArmThrow>
 <KarateChop>D6</KarateChop>
 </Commands>
 <System>
 <Stop>8E</Stop>
 <Sleep>A3</Sleep>
 <Wakeup>B1</Wakeup>
 </System>
</Robosapien>

Page 31

D.3. Timing Settings

The timings settings configuration file defines the longest duration each of the actions in the

command settings configuration file take to execute.

<?xml version="1.0" encoding="utf-8" ?>
<Robosapien>
 <LeftArm>
 <LeftUp>1.301</LeftUp>
 <LeftDown>0.873</LeftDown>
 <LeftIn>0.823</LeftIn>
 <LeftOut>0.820</LeftOut>
 <LeftThump>1.885</LeftThump>
 <LeftThrow>3.053</LeftThrow>
 <LeftPickup>2.202</LeftPickup>
 <LeftStrike1>3.107</LeftStrike1>
 <LeftStrike2>4.452</LeftStrike2>
 <LeftStrike3>2.678</LeftStrike3>
 <LeftSweep>1.618</LeftSweep>
 </LeftArm>
 <RightArm>
 <RightUp>1.301</RightUp>
 <RightDown>0.873</RightDown>
 <RightIn>0.823</RightIn>
 <RightOut>0.820</RightOut>
 <RightThump>1.885</RightThump>
 <RightThrow>3.053</RightThrow>
 <RightPickup>2.202</RightPickup>
 <RightStrike1>3.107</RightStrike1>
 <RightStrike2>4.452</RightStrike2>
 <RightStrike3>2.678</RightStrike3>
 <RightSweep>1.618</RightSweep>
 </RightArm>
 <Body>
 <TiltLeft>0.558</TiltLeft>
 <TiltRight>0.558</TiltRight>
 <LeanBackward>0.453</LeanBackward>
 <LeanForward>0.453</LeanForward>
 </Body>
 <Legs>
 <TurnLeftStep>2.969</TurnLeftStep>
 <TurnRightStep>2.969</TurnRightStep>

Page 32

 <ForwardStep>2.005</ForwardStep>
 <BackwardStep>2.005</BackwardStep>
 <FeetShuffle>2.735</FeetShuffle>
 </Legs>
 <Commands>
 <High5>4.378</High5>
 <RaiseArmThrow>3.036</RaiseArmThrow>
 <KarateChop>2.683</KarateChop>
 </Commands>
 <System>
 <Stop>0</Stop>
 <Sleep>0</Sleep>
 <Wakeup>0</Wakeup>
 </System>
</Robosapien>

