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ABSTRACT 
High availability is an increasingly important requirement for 
enterprise systems, often valued more than performance. Systems 
designed for high availability typically use redundant hardware for 
error detection and continued uptime in the event of a failure. Chip 
multiprocessors with an abundance of identical resources like 
cores, cache and interconnection networks would appear to be 
ideal building blocks for implementing high availability solutions 
on chip. However, doing so poses significant challenges with 
respect to error containment and faulty component replacement. 
Increasing silicon and transient fault rates with future technology 
scaling exacerbate the problem. This paper proposes a novel, cost-
effective, architecture for high availability systems built from 
future multi-core processors. We propose a new chip 
multiprocessor architecture that provides configurable isolation 
for fault containment and component retirement, based upon cost-
effective modifications to commodity designs. The design is 
evaluated for a state-of-the-art industrial fault model and the 
proposed architecture is shown to provide effective fault isolation 
and graceful degradation even when the failure rate is high.  

Categories and Subject Descriptors 
C.4 [Performance of Systems]: Reliability, Availability and 
Serviceability of Systems 

General Terms 
Performance, Design, Reliability 

Keywords 
High Availability, Fault Isolation, Chip Multiprocessors 

1. INTRODUCTION 
High availability is a critical feature of enterprise computer 
systems, especially given the close ties between information 
technology infrastructure and overall business processes (e.g., e-
commerce, business-to-business and customer relationship 
portals). For example, in a 2001 survey, a quarter of the 

respondents estimated the costs from server outage to be more 
than $250,000 per hour, and 8% estimated them as more than $1 
million per hour [10]. Others have similarly estimated downtime 
costs as high as $6 million per hour for availability-critical 
systems [26]. Consequently, high availability is emerging as the 
top requirement for enterprise systems and it is often valued more 
than performance [15].  

Current systems offering very high availability, such as the IBM 
z-series [11] and the HP NonStop systems [4], provide coverage 
for both permanent and transient hardware faults through a 
combination of redundant processor hardware and error correcting 
codes in memories. Redundant processor hardware, employing 
dual (or triple) modular redundancy – DMR (TMR) – can be 
applied at different granularities. In current systems this ranges 
from duplicated pipelines on the same die as in the IBM z-series to 
mirroring complete processors as in the HP NonStop systems. 
Redundant hardware not only detects the presence of faults, 
thereby preventing costly errors and system failure, it also allows 
applications to continue executing, without downtime, until faulty 
component(s) can be replaced. 

The impending widespread usage of chip multiprocessors (CMPs) 
– containing multiple processor cores, caches, and interconnection 
networks – would appear to be an excellent match for high 
availability systems incorporating redundant hardware. Using a 
CMP as the basic building block for future high availability 
systems has the benefit that the entire high availability solution 
can be implemented on a single chip (e.g., an 8-core CMP can be 
configured as a cluster of four high availability processors with 
DMR). However, architecting these systems poses significant 
challenges with respect to error containment and core-level 
reconfiguration. For example, in a chip architecture that shares a 
memory controller across multiple cores, a single fault in the 
memory controller can result in correlated, undetected errors, and 
system failure. Or, even if the fault is detected, none of the cores 
will be able to perform useful computation, requiring the 
replacement of the entire multi-core chip (including all of the 
functioning as well as non-functioning components).  

It is our objective to study the architecture of high availability 
systems employing commodity CMPs, in particular: 

• We propose a new chip multiprocessor architecture that 
provides low-level isolation for fault containment and 
reconfiguration through cost-effective modifications to 
commodity designs. Specifically, the proposed architecture 
introduces a minimal amount of hardware support for dynamic 
repartitioning of CMP hardware into multiple fault zones. At the 
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system level, the fault zones are leveraged to provide fault 
detection and reuse of system resources when a single on-chip 
component suffers a fault. We also demonstrate a new 
optimization that dynamically re-assigns the power budget of 
failed CMP components to the remaining components. The re-
allocated power enables voltage/frequency up-scaling of 
remaining cores so that performance loss due to failed 
component(s) is mitigated. 

• We perform an exhaustive simulation of the system design 
space using detailed fault models obtained from high availability 
system vendors. Results show that the proposed architecture is 
superior to alternative approaches and provides graceful 
performance degradation while using general-purpose commodity 
components. We also perform a detailed sensitivity analysis for 
various failure rates and show that benefits of the proposed 
approach become increasingly important with future technologies. 

2. MOTIVATION AND BACKGROUND 
2.1 Future Technology: A Two-Edged Sword 
Continuing trends toward aggressive scaling and greater transistor 
densities enable CMPs with increasing numbers of cores, but with 
reduced reliability. It is the combination of high density CMPs and 
reduced reliability that motivates the research reported here. 

From an architecture perspective, increased transistor densities are 
leading virtually all the major companies (Intel, AMD, Sun, and 
IBM) toward CMPs. Scaling of CMPs to more cores allows 
greater computational capability and system integration at the chip 
level, enabling cost and performance benefits from reduced 
component counts and enhanced resource sharing. The Sun 
Niagara chip, for example, includes eight cores, with a shared L2 
cache, and integrated memory controllers and I/O interfaces.  

With respect to reliability, the International Technology Roadmap 
for Semiconductors has predicted significant reliability problems 
for future systems, increasing at a pace that has not been seen in 
the past [36]. Several studies have shown dramatic increases in the 
number of hardware errors with technology scaling. Permanent or 
intermittent hardware faults, caused by defects in the silicon and 
wear out over time, lead to “hard errors”. Transient faults which 
change random bits due to electrical noise or external radiation 
(e.g., alpha radiation from impurities or gamma radiation from 
outside) lead to “soft errors” [8]. For example, Srinivasan et. al 
[29] showed a three-fold increase in processor wear out related 
faults when scaling from 180nm to 65nm. Similarly, Borkar [5] 
estimates a 100-fold increase in transient faults when scaling from 
180nm to 16nm; Shivakumar et. al [24] predict an even higher 
nine-orders-of-magnitude increase in logic circuits’ transient fault 
rates from 1992 to 2011. The increased likelihood of soft errors 
now means that we can potentially have multi-bit fault modes at 
the memory [9]. Even more importantly, with the typical doubling 
of logic state bits every generation, transient faults that cause 
arbitrary logic errors cannot be ignored any longer [5]. This means 
that more sophisticated techniques to detect soft errors, including 
redundant execution to verify logic at every level, are required 
even for low-end systems.  

2.2 CMP Based High Availability Systems 
The multiple cores in a CMP provide the basic ingredients for 
building highly available systems that mitigate the effects of 

reduced transistor level reliability. To realize this potential, 
however, there are a number of architecture and engineering 
obstacles that must be overcome. First, high availability CMP-
based system architectures that deal with future technology fault 
modes must be developed. These architectures should not only 
enable fault detection, but they should also provide fault isolation 
at relatively small granularities, so that an entire chip is not 
disabled by a single fault. Developing high availability system 
architectures is probably not enough, however. There is also a 
practical engineering issue:  at least in the near term, relatively 
few systems will employ high availability DMR/TMR solutions. 
Consequently, high availability enhancements to CMP 
architectures must be inexpensive and non-intrusive with respect 
to other CMP features. 

In the past, when the basic system building blocks were individual 
processors, memory controllers, and cache memory SRAMs, 
system designers could achieve good fault isolation by combining 
these chip-level building blocks into redundant configurations at 
the board level. And, when necessary, small amounts of “glue 
logic” could be incorporated. In these systems, fault isolation to a 
single chip (or socket) was adequate. For example, the NonStop 
Advanced Architecture implements process pairs and fault 
containment boundaries at the socket level. With CMP-based 
approaches, however, socket level isolation is no longer an 
attractive solution (nor is the use of off-chip glue logic) especially 
for small systems. The challenge is to design CMPs that use on-
chip mechanisms to enable either conventional, non-redundant 
systems or high availability systems with good fault isolation 
characteristics. Therefore, in our research we are focusing on 
techniques that will enable “off-the-shelf” CMPs to be configured, 
with relatively little added on-chip hardware and complexity, into 
high availability, redundant systems. 

Figure 1(a) shows a conventional CMP architecture with 8 cores 
(P0...P7) each with private L1 caches, an 8-way banked shared L2 
cache, 4 memory controllers, and coherent links (such as 
Hypertransport) to other sockets or I/O hubs. In this architecture, a 
bidirectional ring connects the processors and cache banks. (Our 
techniques also apply to more complex 2-D arrangements such as 
meshes). Although a “dance hall” layout is shown for simplicity 
(with all the cores on one side of the ring and the shared cache 
banks on the other), the proposed techniques apply equally well to 
interleaved layouts. This design with fully shared resources is the 
conventional baseline used in the remainder of this paper; it is also 
referred to as the shared design.  

As the number of cores in a CMP increase geometrically with 
lithographic scaling, a failure in one part of the conventional 
organization affects larger and larger amounts of computational 
capability. For example, if all L2 cache banks are shared, and 
addresses are low-order interleaved among the banks, a transient 
fault in the cache controller state machine can lead to erroneous 
coherence state. Note that ECC on a coherence bit does not help in 
this case because the fault is in the cache controller logic, before 
the coherence bits are set. Such a fault affects the reliability of an 
entire socket. Similarly, a fault in a memory controller or 
anywhere in the ring interconnect affects all the cores. This is true 
even if programs are being run in a Dual Modular Redundant 
(DMR) or Triple Modular Redundant (TMR) configuration. For 
cost-effective high availability systems, we want architectures 
where the effects of faults are isolated to much smaller areas. 
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(a) Baseline conventional system architecture 
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(b) A design with full isolation 

Figure 1. CMP architecture designs. 
One alternative to the conventional architecture is a design with 
independent computers fabricated on the same die (Figure 1(b)). 
Each computer has its own memory controller and I/O 
connections. This architecture has a number of disadvantages, 
however. Hard partitioning of cache resources (inhibiting any 
sharing) significantly reduces overall system performance and is 
not been used in proposed CMP designs [53, 54, 55]. Similarly, by 
partitioning chip interfaces and pins, off-chip bandwidth is 
inefficiently used. These performance inefficiencies make such a 
design unattractive for high volume applications where 
performance is the objective rather than very high availability. 
This design provides full isolation, however, and is referred to as 
fully isolated or private design in the remainder of the paper.  

In this paper, we explore the tradeoff between full isolation and 
full sharing. We propose non-intrusive enhancements to 
commodity CMP architectures, which provide configurable 
isolation for providing varying levels of availability.  

2.3 Related Work 
Gold et al. [13] classify error handling according to how far 
outside the processor core errors can propagate. The categories are 
(1) core-level containment, (2) cache-level containment, and (3) 
memory-level containment. Our work focuses on memory-level 
containment where processors and memory are grouped into a 
fault zone (or fault containment boundary). Consequently only 
operations that cause device accesses (I/O) require detection and 
recovery. The closest related approach is the HP NonStop 
Advanced Architecture (NSAA) [4]. However, as discussed 

earlier, the NSAA approach implements process pairs and 
supports fault containment boundaries at the socket level. In 
contrast, we consider the implications of memory-level fault 
containment at the chip multiprocessor level. The SafetyNet [28] 
and ReVive [18] projects both consider the challenges of, and 
solutions for, global checkpointing at the memory-level. These 
solutions are orthogonal to our work, and their methods can be 
used in conjunction with the fault detection and isolation 
architecture that we propose.  

At the core-containment level, the IBM z-series processor [26] 
uses an aggressive custom design employing redundant pipelines 
to create separate fault zones and detect failures. Academic work 
has proposed variants of such integrated checking at the processor 
level [2, 19, 21, 27]. Several studies have also evaluated core-level 
fault detection and containment by running redundant processes, 
either on a separate thread [22, 23, 33] or on a separate core [14, 
17, 32]. Solutions using core-containment methods rely on other 
fault tolerant methods for the rest of the system (ECC, RAID-M, 
etc). At the cache-containment level, the original Tandem 
NonStop architecture [3] uses a lock-stepped process pair’s 
results, compared at the front-side bus. The TRUSS project [12] 
proposes an alternate form of cache-level fault containment for 
shared-memory multiprocessors by performing error detection and 
checkpointing at the granularity of cache coherence events. These 
approaches typically require custom changes to the processor or 
cache controller. Moreover, they assume fine grained and 
aggressive fault containment at every level of the system. In 
contrast, memory-level fault containment approaches like ours are 
typically less expensive, by virtue of performing fault tolerance at 
a coarser level. Our work is also different in its approach to 
leveraging commodity multi-core processors with little additional 
on-chip support for providing high-levels of availability and fault 
containment.  

Russ Joseph discusses an approach to “salvage” processors in 
multi-core architectures using a virtualization layer to emulate lost 
functionality [16]. Other studies [6, 25, 31] have explored the 
design of redundancy and self-repair at the hardware level to make 
up for lost functionality in the event of a fault. These methods 
need additional hardware overhead at every structure where faults 
occur, and furthermore, they do not address fault isolation and 
issues regarding the effects of single faults on multiple cores.  

2.4 Paper Overview 
The rest of the paper is organized as follows. Section 3 discusses 
the proposed architecture and the tradeoffs in detail. Sections 4 
and 5 discuss evaluation methodology and results. In section 6, we 
discuss future work and other implications of the proposed 
research and conclude the paper. 

3. PROPOSED ARCHITECTURE 
A block diagram of the proposed CMP organization is in Figure 2. 
In the simplest arrangement, the resources of the CMP are split 
into two groups represented by two colors, say for example, red 
and green (in a black and white print, these appear as black and 
gray in Figure 2). The CMP is configured so that the colored 
domains are units of fault containment. Any failure in a color-
shared component affects computation only on the cores mapped 
to that color. To ensure that a failure in one color domain does not 
affect all the other colored domains, we propose “configurable 

472



isolation” for interconnect, caches and memory controllers. We 
define configurable isolation to be a set of techniques that provide 
optional logical fault isolation for shared components. 
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Figure 2. Proposed architecture with configurable isolation 
split into two domains. 
The proposed architecture can be used in a number of 
configurations. Below, we discuss a NonStop-like DMR 
configuration. We choose this configuration as an illustrative 
example of both the benefits of our approach – (1) fault isolation 
without losing the benefits of sharing and (2) graceful degradation 
via reconfiguration in the event of a hard fault. Furthermore, fault 
recovery is more difficult in a DMR configuration as compared to 
TMR. Resources from two colors are used to run a DMR process 
pair, with computations in the red domain replicated in the green 
domain when higher availability is required. The microprocessor 
is dynamically reconfigured to the higher-availability 
configuration by setting a small number of control points in the 
design. This allows systems to support “high availability on 
demand.” 

Note that this capability only requires small changes to the ring 
and bank addressing, while the rest of the CMP is unchanged. The 
ring interconnect in Figure 2 has been logically re-routed via 
configuration cross links to create two independent rings. 
Physically, the ring is expected to form the central spine of the 
chip, so the cross links should be less than a millimeter long and 
their activation requires the insertion of a multiplexer at the input 
of a ring interface incoming data port. Thus, cross links and input 
multiplexers are a small additional fixed cost in terms of area and 
power, which does not significantly increase the cost of the design 
for system configurations where higher availability is not an 
objective. The cross-links are also expected to be shorter than the 
ring segments between cores, so the cross-connects should operate 
at least as fast as a core-to-core or bank-to-bank ring segment. 
Because the cross links and input multiplexers are shared and they 
can now form a single point of failure, they need to be 
implemented using self checked logic to satisfy stringent 
availability requirements. Self checked logic in these components 
allows dynamic reconfiguration and reassignment of colors after 
failures. If these components are not self checked then the color 
assignment is static and can not be changed.  

When the inter-core interconnect is partitioned, interleaving 
among L2 cache banks uses one fewer address bit, thereby 

interleaving references among half the banks, and all references 
are kept within the same color. Therefore, the L2 cache size 
available in a color is inversely proportional to the number of 
colors.  

In high availability configurations, self checked voters compare 
the output of the redundant execution to detect errors. In our 
proposed architecture these voters can be implemented in a 
number of ways. For highest availability, voters can be 
implemented in I/O hubs connected to a red and green link 
adapter, similar to the hardware voters in the Nonstop Advanced 
Architecture [4]. For lower-cost lower availability solutions, the 
voter can be implemented in hypervisors that communicate 
between the colored partitions through I/O [7].  

The proposed architecture is developed from a system perspective. 
Similar to the NonStop system, physical memory is partitioned 
between the logical processors using virtual to physical memory 
mapping. Redundant TLBs are used for fault tolerance. Further, 
OS support for statically partitioned TLB entries provides 
complete memory fault isolation.  

When a fault is detected in the proposed system, reconfiguration 
takes place. Cores that fail in one color domain are deleted (retired 
from use), but the remaining cores are still usable. If a failure in a 
cache bank cannot be corrected by line sparing (e.g., a logic 
failure in the bank controller), the other bank sharing its memory 
controller can be reconfigured to cache all lines serviced by its 
memory controller. This requires the provision of an extra bit in 
the bank cache tags and a mode bit in the cache bank. Similarly, if 
a memory controller in a color domain fails, the domain can be 
reconfigured to use a single memory controller. This requires 
caching all lines in the cache banks associated with the failed 
memory controller in the remaining controller’s banks. Doing so 
adds one bit in the cache tags and a second mode bit. Given the 
large number of bits in a cache line (more than 600 bits for a 64B 
cache line with ECC plus previously required tag bits), providing 
two more bits to enable reconfiguration is a very modest overhead 
[1, 20]. Overall, the number of extra bits required in a bank to 
enable caching of lines from any other bank is log2 (number of 
banks).  

Reconfiguration may be limited by the topology of the system. For 
example, due to the placement of the ring cross-connect, if two 
cores fail in one color domain while all the cores are fault-free in 
the other domain, it may not be possible to reassign a core from 
one color to another. Thus in the 8-core 2-color system, if two red 
cores fail, only two DMR process pairs can be supported by the 
CMP. However, the number of colors is not restricted to two and 
can be increased to provide more redundancy or smaller 
granularity of fault containment. For example, three colors can be 
used to enable a Triple Modular Redundant (TMR) configuration. 
Furthermore, the number of colors need not be static and can be 
changed as the system needs evolve.  

Figure 3(a) shows a configuration with four colors. This 
configuration requires four ring cross connects and uses two fewer 
address bits for interleaving cache bank addresses. This 
configuration runs processes in TMR using triples of three 
different colors. For example, one process can be run on red, 
green, and blue, simultaneously another TMR process can be run 
on green, blue, and yellow and DMR processing can be supported 
on red and yellow to balance the load among colors.  
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(a) Design with 3 reconfigurable cross links supporting four 

fault isolation domains for use in TMR. 
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(b) Design illustrating use of reconfiguration to isolate 

specific faulty components.  

Figure 3. More architectures with configurable isolation and 
reconfiguration. 

It should be noted that the reconfiguration and fault isolation 
proposed in our architecture can be used independently of 
DMR/TMR-coloring to provide repartitioning of resources in the 
event of a hard fault. This is illustrated in Figure 3(b) for 
applications with more modest availability requirements. If there 
is a core fault (P5 in the figure) then system software isolates the 
faulty core and continues functioning with the remaining cores. 
Furthermore, the proposed architecture has the ability to continue 
functioning in the event of hard faults in cache banks, memory 
controllers and interconnect. For example, if there is a fault in a 
cache bank (B0 in the figure) then all the lines in that bank can be 
cached in the bank that shares the memory controller with the 
faulty bank (in this case B1). In case of a memory controller fault, 
lines cached by both the banks (B4 and B5) connected with the 
memory controller can be cached by two other banks connected to 
a fault free memory controller (B6 and B7). Similarly, link adapter 
and interconnect failures can be tolerated by isolation of the faulty 
components and reconfiguration to use the remaining fault free 
components.  

3.1 Example: A NonStop-like DMR system 
In this section we briefly explain how the proposed architecture 
can be deployed in a high availability configuration similar to a 
NonStop DMR system. The NonStop software stack includes the 
NonStop kernel and critical software implemented as process 
pairs. Using the NonStop terminology, a single logical processor is 
implemented with two hardware processing elements (PEs). So, an 

eight core CMP (eight PEs) implements four logical processors. A 
logical processor runs a redundant process pair. In a DMR 
configuration of the proposed architecture the OS schedules each 
process of a process pair to a different color. Each PE of a logical 
processor has the same virtual-to-physical mapping and takes page 
faults and interrupts at the same points in the instruction stream – 
supported by hardware in the voter logic and the OS. The cache 
and TLB state across the two colors can be different, but each PE 
writes to memory so that on any output operation (say to disk) the 
data pulled from either of the colors should be the same. 
Consequently, result comparison is done in the I/O system. The 
output operations of each PE in a logical processor are compared 
by a fully self-checked voter in the I/O hub. Therefore, in an eight 
core CMP, four voters compare the output operations from the 
four logical processors.  

Coverage for soft errors is provided for all the circuitry on chip 
because the voting is done at the I/O level. Voting at the I/O level 
does not lead to miscomparison if a transient fault does not cause 
an error in the I/O output. In case of a miscomparison, execution is 
restarted with the help of software supported checkpoints on both 
PEs in a logical processor. If the error persists, then the two cores 
(PEs) are halted and the process pair is restarted from a checkpoint 
on remaining, fault-free cores.  

In a DMR configuration a voter miscompare can be ambiguous 
regarding which PE is at fault. However, as pointed out in the 
NonStop description [4] some hard faults, for example, 
interconnect faults and functional unit faults, are self identifying. 
Heuristics similar to a probation vector used by NonStop in a 
DMR configuration can also help disambiguate voter 
miscomparisons. A bit in the probation vector is set when a core 
suffers a number of correctable errors. In case of an ambiguous 
miscomparison the core that has its probation vector set is 
assumed to be the one with the fault. Furthermore, localized 
component diagnostic tests can identify a faulty component. Once 
the faulty hardware structure is diagnosed, the chip is reconfigured 
(similar to hardware reconfiguration example explained above) to 
allow further operation. In such a case, the proposed architecture 
provides effective fault isolation and allows continued operation 
with fault free components. However, if the error can not be 
identified then the logical processor is halted and the OS will 
invoke failover to other logical processors and the application can 
continue to run. 

4. EVALUATION METHODOLOGY 
During the lifetime of a fault tolerant system, as hard faults occur 
and are detected, system reconfiguration degrades the system’s 
computing capacity. Consequently, we perform lifetime 
simulations targeted at measuring computing capability as a 
function of time. We compare three fault tolerant architectures: 1) 
shared -- a completely shared system similar to proposed CMPs 
(Figure 1a), 2) fully isolated -- a completely private system with 
full isolation (Figure 1b), and 3) configurable isolation – the 
proposed architecture with reconfiguration and configurable 
isolation (Figure 2). All three are assumed to be in a DMR 
configuration. 

4.1 Workloads    
Because the proposed architecture does not contain any 
modification to the cores, the most important workload 
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characteristic is the size of the working set and its effect on cache 
behavior. We tried to cover a spectrum of workloads and 
considered the following factors while choosing the benchmarks 
for simulated workloads – 1) the combined working set size of the 
workload, 2) stability of the benchmark – the chosen benchmarks 
typically grow quickly to their target size and stay there, and 3) 
the ability of the benchmarks in the workload to exercise the L2 
cache. Consequently, we constructed three different workloads 
from the SPEC benchmarks. The workloads have large, mixed, 
and small memory requirements as measured by memory footprint 
[35] and are listed in Table 2. The large and small memory 
workloads contain benchmarks all having large and small memory 
requirements, respectively. The mixed workload has benchmarks 
with large, medium, and small memory footprints. When 
simulated, each benchmark is duplicated to mimic the DMR 
configuration and is run to completion.  

Table 1: Benchmarks studied and their memory footprints.  
High Memory gap (192), apsi (191), swim (191), mcf (190)
Mixed Memory applu (181), perlbmk (146), fma3d (103), crafty (2.0)
Low Memory vortex (72), equake (49), facerec (16), mesa (9.4)  
Over the course of a simulation run, as cores become unusable 
(either because of a core fault or a fault in a component that is 
required by the core), benchmarks are dropped from the 
workloads, reflecting the loss of computing capability. This is 
done only for our evaluation; in a deployed configuration, a 
program would not be dropped but would be failed-over to one of 
the other cores. At any point, the dropped benchmark is the one 
having the median-sized footprint. For example, when evaluating 
the small memory workload after two core failures, the workload 
becomes equake, vortex, and mesa. The goal is to maintain the 
overall memory characteristic of the workload.   

4.2 Fault and Failure Modeling 
The fault-models are based on state of the art technology and are 
derived from detailed (confidential) models from processor 
vendors and were calibrated by HP-internal fault analysis 
experiments. The fault data includes failures in time (FIT) rates 
and distributions for hard and soft errors per component. The fault 
data has been de-rated both at the chip level and system level for 
various architecture optimizations that help mitigate the effect of 
faults. For example, the fault model assumes that 90% of cache 
related errors are dynamically correctable through chip-kill, ECC, 
cache line sparing, etc. The model also uses separate detailed 
distribution models for hard and soft errors. For hard errors the 
distribution is Weibull with a decreasing hazard rate. For soft 
errors the distribution is exponential. (This is in contrast to some 
prior work which assumes that all failure distributions are poisson 
or log normal [30, 31].)  

The system is divided into five different fault zones (which also 
represent the granularity of reconfigurations). These are: core and 
L1 cache, L2 circuitry, L2 banks, memory controller circuitry, and 
link controller. To prune the simulation space, we limit the study 
to hard faults that require system reconfiguration – for example we 
do not model the performance impact from faults that lead to 
minor degradations such as cache line deletions. Consequently, 
reconfiguration is done only at full component granularity.  

On the shared system, any hard fault leads to system failure. This 
means that after a failure, the system throughput goes to zero for 
all workloads. On the fully isolated system, any single fault leads 

to the loss of throughput from a DMR process pair. For example, 
even a fault in the bank associated with a core would lead to that 
core being unusable. On a system with configurable isolation, a 
reconfigurable fault (for example, in a memory controller) leads to 
loss of performance over all the process pairs, but not the loss of a 
workload. Only when a core fails is a benchmark (both copies) 
dropped from the workload. The entire system becomes unusable 
in the configurable isolated architecture only when the penultimate 
component of any type fails (for example, 7th core, 3rd memory 
controller, 7th cache bank in a system similar to the baseline).  

The simulation model assumes that in all the cases soft errors are 
detected by DMR execution and corrected through checkpointing 
or re-execution; but given that this consumes relatively little time, 
this is not shown in the results. Note that in the fully shared case, 
given the lack of fault isolation, it is not guaranteed that all soft 
errors will be detected; however, we assume that such cases are 
rare and do not penalize this configuration.  

4.3 Simulation Methodology 
In order to make a large number of very long time scale 
simulations feasible we use a two phase simulation methodology. 
First, we use a full system simulator to exhaustively simulate the 
possible system configurations (using more than one machine 
year) and compute the throughput of all configurations, subject to 
policies described below. Second, we perform Monte Carlo 
simulations using a detailed component-level fault model. With 
Monte Carlo simulation we simulate fault injection in a total of 
10,000 systems with each run comprising 100,000 simulated hours 
(approximately 11 simulated years).  

For the simulated configurations and failure rates, the system 
typically becomes unusable in a fault tolerant configuration in 
100,000 hours. At every fault instance the system is reconfigured 
to map out the faulty component. The Monte Carlo simulator then 
looks up the aggregate throughput of the new configuration (from 
the first phase detailed simulation results), and assigns it as the 
system throughput until the next fault and subsequent 
reconfiguration occur. This methodology is similar to the one used 
by Srinivasan et al. [30]. The key difference is that we model the 
lifetime of a complete system along with its transitions through the 
configuration space and model the potential throughput on a 
yearly scale. We include the overheads of coloring to the 
performance of the proposed configurable isolation architecture. 
In the DMR configuration each color has access to only half the 
cache and so we model the performance assuming two L2 caches; 
each half the size of the cache in the shared configuration. 

All simulations were done using a full system x86/x86-64 
simulator (based on AMD SimNowTM) [37] that can boot an 
unmodified Windows or Linux OS and execute complex 
application programs. The simulator has been validated by 
comparing to real hardware. The simulator guest runs a 64-bit 
Ubuntu Linux distribution with 2.6.15 kernel. The SPEC 
benchmarks were compiled directly in the simulated machine with 
gcc/g77 version 4.0, at -O3 optimization level. To evaluate only 
workload execution, we restore a snapshot of the system taken just 
after booting when the machine is idle (except for standard OS 
housekeeping tasks) and directly invoke the execution of the 
benchmark from a Linux shell. The timing simulation begins just 
after the execution command is typed in the OS console. Falcon et 
al. provide more details about the simulator [37].  
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Table 2: Simulation parameters. 

Instruction set x86_64
Core clock  2200MHz
Bus clock 550MHz
Issue width 4
2-level branch predictor (g-share) 16384 entries 
L1 icache size 32kB
L1 icache line_size 64B
L1 icache associativity 2-way
L1 dcache size 32kB
L1 dcache line_size 64B
L1 dcache associativity 2-way
L1 itlb entries 32
L1 itlb associativity 8
L1 dtlb entries 32
L1 dtlb associativity 8
L2 cache size 2MB (initial)
L2 cache line_size 64B
L2 cache associativity 4-way
L2 dtlb entries 512
L2 dtlb associativity 4
Coherency protocol MOESI, shared bus
Main memory access  220 cycles  
 

We used a SMARTS-like [34] functional timing sampling of 
200:1, where for every 3s (6.6B instructions) of simulation there is 
a warming phase of 15ms (33M instructions), a detailed timing 
phase of 15ms (33M instructions), and a fast functional emulation 
phase of 2.7s (6,534M instructions). The long warming phase is 
necessary to ensure that large L2 cache structures contain 
meaningful data for the timing phase.  

We use a timing model with a memory hierarchy roughly similar 
to that supported by an AMD Opteron 280 processor. The only 
exception is that the L2 caches are smaller than currently found in 
real systems. As explained in Section 2, the changes to support 
cache reconfiguration lead to smaller caches in the DMR 
configuration. In order to avoid giving an unfair advantage to 
configurable isolation, we used smaller caches that match the 
working set requirements of the benchmarks, thereby exposing the 
difference in performance when the cache size is halved due to 
coloring. Our results hold qualitatively for larger cache sizes 
which we validated by simulating several configurations with an 
initial 8 MB L2 cache. The detailed simulator configuration is in 
Table 2.  

5. RESULTS 
To evaluate the proposed architecture, in Section 5.1 we consider 
an application of configurable isolation for systems that provide 
full fault coverage using DMR for both hard fault and transient 
faults. Section 5.2 considers the applicability of the proposed 

architecture in an environment where graceful degradation is more 
important: a server farm with lower-availability systems that 
provide coverage only for hard faults. Section 5.3 presents results 
showing sensitivity to future trends and per-component fault 
variations. Section 5.4 presents results showing improvements 
with dynamic re-provisioning of power.  

5.1 High availability Systems with Soft Error 
and Hard Error Coverage 
Figures 4(a), (b), and (c) summarize the baseline results for the 
small, mixed, and large workloads respectively. All these 
experiments employ averaged results from 10,000-run Monte 
Carlo simulations of an individual system. Each system is a server 
with 8 cores, 8 L2 banks and 4 memory controllers and similar to 
the baseline. Each graph has three curves representing (1) a 
baseline system using traditional full-resource sharing, (2) a 
system with full isolation, and (3) the proposed system with 
configurable isolation. In each of the graphs, the y-axis is the 
mean cumulative performance normalized to the baseline 
performance of the shared configuration with no faults. The x-axis 
is time, measured in years.  

Referring to Figure 4, as expected, the shared system performs the 
worst, with a dramatic degradation (30-35%) in average 
performance during the first two years, and a degradation of close 
to 50% by the end of five years. The fully-isolated configuration is 
much more resilient to failures and provides more gradual 
performance degradation. Over five years, the net performance 
loss is only 10-15%. The results for the large memory workload 
(Figure 4c) are particularly interesting. Here, the completely 
isolated configurations, by virtue of having private caches, 
initially under-perform the shared configuration. However, 
compared to the shared system, the fully-isolated system becomes 
performance competitive at around 2 years (at the crossover of the 
curves in Figure 4c).  

The configurable isolation system consistently achieves the best 
performance across all the workloads. Figure 4 illustrates that it 
achieves effectively 100% fault detection without compromising 
benefits from sharing. Compared to the fully isolated 
configuration that underperforms the fully shared for a full two 
years, the proposed architecture breaks even in the middle of the 
first year. With configurable isolation, resources can still be shared 
within a given fault zone. Additionally, the ability to dynamically 
repartition the resources leads to the best graceful degradation 
across all three workloads.  

It is interesting to consider the reconfiguration benefits as 
compared with full isolation. In the case where one component 
fails, for example a bank controller, the entire core associated with 
that bank is taken out of commission. In contrast, in the 
configurable isolation case, the core can be reconfigured to use 
other banks in the same color. As discussed earlier, these benefits 
are obtained with very little area overhead in conventional 
commodity systems and provide the option of being disabled if 
unneeded. 
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Figure 4. Benefits from our architecture. The results from a 
Monte-Carlo simulation of faults for normalized performance over an 11-
year period of time for three architectures –  a baseline conventional 
solution with full sharing,  our proposed solution, with configurable 
isolation, and a solution with full isolation for a) small memory workload, 
b) mixed memory workload and c) large memory workload. 

 
Figure 5 provides an alternate view of the benefits of configurable 
isolation. For each of the three approaches, the number of 
component replacements is shown. It is assumed that the system 
continues to stay operational until the performance dips below a 
certain threshold after which the entire multi-core component is 
replaced (and the performance is re-initialized to that of the no-
fault configuration). 
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Figure 5. Number of component replacements as a function of 
performance. The figure shows the normalized  number of component 
replacements for the three architectures (mixed workload), compared 
assuming components are replaced (a) when performance dips below 
90%,(b) when performance dips below 75%,  and (c) when performance 
dips below 50%.  

The simulation then continues for the remainder of the 100,000 
hours. Note that there might be multiple replacements in a single 
Monte Carlo run simulating 100,000 hours. We consider three 
cases where the performance threshold is set to (a) 90% (b) 75%, 
and (c) 50% of initial performance. The total number of 
replacements (across 10000 Monte Carlo runs) for fully isolated 
and configurable isolated system is normalized with respect to the 
total number of replacements for a fully shared system. In a fully 
shared system every fault leads to system replacement because the 
performance drops to 0. These results show that the architecture 
with configurable isolation dramatically reduces the need to 
replace components across all three workloads irrespective of the 
performance thresholds.  

5.2 Systems with Hard Error Protection 
Thus far, we have assumed that configurable isolation is used in 
conjunction with redundant processes to detect soft errors. 
Although there are several ways to reconfigure after a core failure, 
as discussed earlier, in our experiments we conservatively assume 
that in configurations with an odd number of cores, one core is 
unused to make sure that there are as many cores as the total 
number of processes in a DMR configuration. This can potentially 
affect the slope of the performance degradation curves.  

Additionally, there may be many system environments, such as 
farms of web servers, where coverage for soft errors through 
redundant processes may be more expensive than the acceptable 
alternative of just restarting the system when the software detects 
an error and halts. In these cases, rather than being able to 
guarantee fault isolation across redundant processes in a dual 
modular configuration, the biggest advantage from configurable 
isolation is the ability to isolate a fault to a specific component, 
allowing continued use of the rest of the system.  
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Figure 6. Evaluating a server-farm with only hard-error 
coverage  

Therefore, we performed experiments on a simulated server farm 
with each core running a single process. Figure 6 summarizes the 
results1. As shown in Figure 6(a), performance degrades much 
more gracefully with respect to hard faults. The average 
performance of the configurable isolation architecture degrades by 
less than 10% over 10 years. In contrast, the fully shared 
configuration degrades by almost 60% over the same time period. 
Also, the difference in performance between the fully isolated and 
configurable isolated architecture is now smaller as compared to 
that in Figure 4. In the present configuration, any single fault in a 
fully isolated architecture leads to throughput loss of a single 
process, unlike the DMR case where the loss is in pairs. 
Comparison of the number of component replacements (Figures 5 
and 6(b)) show similar trends. 

5.3 Sensitivity Study 
5.3.1.1 Sensitivity to overall fault rate  
As discussed in Section 3, our fault model is based on proprietary 
industry data. This data, while based on actual measurements and 
                                                                 
1 Unless the trends for the “small” and “large” workloads are 

qualitatively different, we present time-variation results just for the 
“mixed workload” in the interests of space.   

deployment experience, is indicative of current and past 
technologies. Several studies [6, 29, 24] have hypothesized that 
the fault rates in the future are likely to be significantly higher. To 
study higher fault rates, we performed some additional 
evaluations. Specifically, we increased the industry FIT rates by a 
factor of ten while keeping the same fault distributions.  
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Figure 7. Evaluation with a “future” fault model. We change the 
default fault model (that is based on current industry data) to reflect 
predicted future trends in the number of faults.  

Figure 7 summarizes the results for the DMR-configurations. As 
shown in the figure, increased fault rates more strongly motivate 
the need for fault isolation and faulty-component retirement. In 
particular, the fully-shared system fails completely in less than one 
year. In contrast, configurable isolation continues to provide 60% 
of the original performance even after 10 years. In the same time 
frame, the fully isolated solution provides only 40% of the original 
performance. The component replacements data show similar 
trends. 

5.3.1.2 Sensitivity to specific component faults 
 Our results thus far have focused on performance degradation 
over time with an integrated fault model that includes the 
possibility of failure in any CMP component. However, different 
system components contribute disproportionately to performance 
degradation for two reasons. First, the fault rates and distributions 
differ across components, and second, the failures of different 
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components have varying impact on aggregate system 
performance. To understand the relative importance of specific 
components to the system lifetime, we present results on 
performance degradation with five variations of the fault model 
that specifically isolate (1) core faults, (2) cache faults, (3) 
interconnection faults, (4) memory controller faults and (5) I/O 
link faults. 
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(b) Configurable isolation 

Figure 8. Isolating the impact from faults at a component 
level. It is assumed that  only one component fails at a given time; the 
results are for the futuristic fault model for the DMR system.  
Figure 8 summarizes results for the fully-shared and configurable 
isolated configurations with the DMR-based system (the fully-
isolated configuration is similar to the configurable isolated 
configuration). To better illustrate the trends, we assume the more 
aggressive future fault rates. We plot five curves representing 
performance degradation when a given component type fails, and 
for reference, also plot the overall performance degradation. For 
the fully-shared configuration, as expected, all faults are equally 
critical. However, for the configurable isolated configuration, the 
maximum performance impact is from core faults. This reflects 
the characteristics of the proposed architecture where 
reconfiguration can address some of the performance degradation 
for all faults except those in a core; a core fault results in the loss 
of throughput from a process pair (the next section discusses a 
novel solution to address this). Our results also underscore the 
importance of techniques proposed in prior work that focus on 

intra processor redundancy to help mitigate the effect of faults in a 
core [31].  

5.4 Power Re-provisioning to Offset 
Performance Loss in Degraded 
Configurations 
The proposed architecture enables dynamic core partitioning to 
isolate faults and reuse system resources, albeit with degraded 
performance. One way to offset this performance loss is to 
dynamically re-provision the power budget by re-assigning power 
allotments of the faulty components to the remaining fault-free 
components. 

Specifically, given that the cores are the dominant component of 
power consumption (and, as seen in Figure 8, they also have the 
most impact on performance degradation), we focus on core 
failures. When a core fails, we assume that the power budget of 
that core can be re-allocated dynamically to increase the clock 
frequency of the remaining cores. There are two issues to be 
considered. First, the supply voltage needs to be increased to 
enable the high frequency2. Given that power is proportional to the 
product of the frequency and the voltage squared, the increased 
frequency is likely to be limited to the cube root of power 
available from the faulty core. Second, the thermal packaging of 
the processor must be able to support the additional localized heat 
generation. Both these problems can be addressed, however, 
through judicious design. In particular, for our experiments, we 
assume that when two cores are retired, the remaining processors’ 
frequency can be scaled up by 8/6(1/3) ≈ 10%, and when four are 
retired, the remaining processors’ frequency can be increased by 
8/4(1/3) ≈ 25%. When six cores are retired, we conservatively cap 
the maximum upward frequency scaling to only 25% to avoid 
thermal overload (although our calculations show that the 
remaining processors’ frequency can be scaled up by 50%). 

Figure 9 summarizes the results for dynamic power re-
provisioning. We focus on the DMR-based system for the future 
fault model from section 4.3. Overall, we find that re-allocating 
power and frequency scaling to use the extra power budget does 
improve system performance by around 10%. Also, as compared 
to the results from Figure 7 (b), we find that the two 
configurations that support isolation now degrade much more 
gracefully. For example, at the 25% performance threshold, the 
number of component replacements declines from 20% to 5%.  

                                                                 
2 Recent proposals [38] for multi-core processors have suggested 

capping power by dynamic power management across multiple cores. 
This would imply that one could potentially do frequency scaling in 
the cores without having to worry about increasing the voltage or 
hitting thermal caps, up to certain limits. In this paper, we assume, 
conservatively, that this option does not exist, but if it did, one could 
expect higher performance benefits from the proposed optimization.  
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Figure 9: Improved performance from dynamically re-
provisioning the power budget during failures. 

6. SUMMARY AND CONCLUSIONS 
Integration of more cores and other components on CMPs allows 
greater computational capacity and system functionality at the 
chip level, enabling cost and performance benefits. These same 
trends, however, pose problems by requiring fault containment 
and faulty-component replacement at the CMP level, leading to 
higher costs and increased downtime. This problem is exacerbated 
by the expected increased fault rates in future technologies.  

In this paper, we addressed the conflict between the benefits from 
system integration and resource sharing and the need for fault 
isolation and graceful degradation. Specifically, we proposed a 
novel CMP architecture that is designed to support configurable 
isolation, or optional logical isolation to shared components. We 
achieved this through intelligent support for reconfiguration that 
allows processor resources to be reallocated and partitioned 
dynamically, but with very little area overhead. 

Using a two-phase simulation methodology, we showed the 
benefits of the proposed architecture. Fault isolation in the 
proposed architecture can deal with failures from both permanent 
faults and transient faults, while still getting most of the benefits 
from sharing. Additionally, for permanent faults, the 
reconfiguration support in our architecture allows for graceful 

degradation even in the face of failure of individual CMP 
components. The reconfiguration also enables other optimizations 
including a novel approach that dynamically reprovisions the 
power budget to further reduce degradation from faults. Our 
results show that, even for a futuristic fault model, the 
performance degradation from our architecture is less than 30% 
over a 10-year period, in contrast to more than 80% with 
conventional architectures; moreover, the incremental area 
overhead to enable this solution in a commodity processor is less 
than 1%. 

Our work also opens up an interesting design space of policies - 
for reconfiguration, fault color distribution, workload-to-partition 
assignment, and power re-provisioning. Additionally, configurable 
isolation has implications beyond faults, to performance and 
security isolation. Furthermore, this architecture can enable 
tradeoffs between availability and performance, which is a useful 
characteristic in future utility computing environments. As part of 
ongoing and future work, we plan to evaluate these in more detail.  

In the near future, not all general purpose systems will require 
such a high degree of protection from faults. Therefore, we 
designed our architecture to be configurable and evaluated the 
proposed architecture as it would be deployed in a high 
availability configuration. Although using these techniques can 
lead to 100% overhead they provide effectively 100% detection of 
faults. Furthermore, the 100% overhead stays constant as the fault 
rates increase in future generations, making this solution viable for 
continued technology scaling. As fault rates continue to increase 
in the future, we believe approaches like configurable isolation, 
needing only small and non-intrusive changes to commodity 
architectures to enable high availability, are likely to be an integral 
part of future systems, including possibly in general-purpose 
desktops and laptops.  
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