
Configurable Isolation: Building High Availability Systems
with Commodity Multi-Core Processors

Nidhi Aggarwal
Computer Sciences Dept,
University of Wisconsin-

Madison
naggarwal@wisc.edu

Parthasarathy Ranganathan
Hewlett Packard Labs,

Palo Alto, California
partha.ranganathan@hp.com

Norman P. Jouppi
Hewlett Packard Labs,

Palo Alto, California
norm.jouppi@hp.com

James E. Smith
Dept. of Electrical and
Computer Engineering,
University of Wisconsin-

Madison
jes@ece.wisc.edu

ABSTRACT
High availability is an increasingly important requirement for
enterprise systems, often valued more than performance. Systems
designed for high availability typically use redundant hardware for
error detection and continued uptime in the event of a failure. Chip
multiprocessors with an abundance of identical resources like
cores, cache and interconnection networks would appear to be
ideal building blocks for implementing high availability solutions
on chip. However, doing so poses significant challenges with
respect to error containment and faulty component replacement.
Increasing silicon and transient fault rates with future technology
scaling exacerbate the problem. This paper proposes a novel, cost-
effective, architecture for high availability systems built from
future multi-core processors. We propose a new chip
multiprocessor architecture that provides configurable isolation
for fault containment and component retirement, based upon cost-
effective modifications to commodity designs. The design is
evaluated for a state-of-the-art industrial fault model and the
proposed architecture is shown to provide effective fault isolation
and graceful degradation even when the failure rate is high.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Reliability, Availability and
Serviceability of Systems

General Terms
Performance, Design, Reliability

Keywords
High Availability, Fault Isolation, Chip Multiprocessors

1. INTRODUCTION
High availability is a critical feature of enterprise computer
systems, especially given the close ties between information
technology infrastructure and overall business processes (e.g., e-
commerce, business-to-business and customer relationship
portals). For example, in a 2001 survey, a quarter of the

respondents estimated the costs from server outage to be more
than $250,000 per hour, and 8% estimated them as more than $1
million per hour [10]. Others have similarly estimated downtime
costs as high as $6 million per hour for availability-critical
systems [26]. Consequently, high availability is emerging as the
top requirement for enterprise systems and it is often valued more
than performance [15].

Current systems offering very high availability, such as the IBM
z-series [11] and the HP NonStop systems [4], provide coverage
for both permanent and transient hardware faults through a
combination of redundant processor hardware and error correcting
codes in memories. Redundant processor hardware, employing
dual (or triple) modular redundancy – DMR (TMR) – can be
applied at different granularities. In current systems this ranges
from duplicated pipelines on the same die as in the IBM z-series to
mirroring complete processors as in the HP NonStop systems.
Redundant hardware not only detects the presence of faults,
thereby preventing costly errors and system failure, it also allows
applications to continue executing, without downtime, until faulty
component(s) can be replaced.

The impending widespread usage of chip multiprocessors (CMPs)
– containing multiple processor cores, caches, and interconnection
networks – would appear to be an excellent match for high
availability systems incorporating redundant hardware. Using a
CMP as the basic building block for future high availability
systems has the benefit that the entire high availability solution
can be implemented on a single chip (e.g., an 8-core CMP can be
configured as a cluster of four high availability processors with
DMR). However, architecting these systems poses significant
challenges with respect to error containment and core-level
reconfiguration. For example, in a chip architecture that shares a
memory controller across multiple cores, a single fault in the
memory controller can result in correlated, undetected errors, and
system failure. Or, even if the fault is detected, none of the cores
will be able to perform useful computation, requiring the
replacement of the entire multi-core chip (including all of the
functioning as well as non-functioning components).

It is our objective to study the architecture of high availability
systems employing commodity CMPs, in particular:

• We propose a new chip multiprocessor architecture that
provides low-level isolation for fault containment and
reconfiguration through cost-effective modifications to
commodity designs. Specifically, the proposed architecture
introduces a minimal amount of hardware support for dynamic
repartitioning of CMP hardware into multiple fault zones. At the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA’07, June 9–13, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-706-3/07/0006...$5.00.

470

system level, the fault zones are leveraged to provide fault
detection and reuse of system resources when a single on-chip
component suffers a fault. We also demonstrate a new
optimization that dynamically re-assigns the power budget of
failed CMP components to the remaining components. The re-
allocated power enables voltage/frequency up-scaling of
remaining cores so that performance loss due to failed
component(s) is mitigated.

• We perform an exhaustive simulation of the system design
space using detailed fault models obtained from high availability
system vendors. Results show that the proposed architecture is
superior to alternative approaches and provides graceful
performance degradation while using general-purpose commodity
components. We also perform a detailed sensitivity analysis for
various failure rates and show that benefits of the proposed
approach become increasingly important with future technologies.

2. MOTIVATION AND BACKGROUND
2.1 Future Technology: A Two-Edged Sword
Continuing trends toward aggressive scaling and greater transistor
densities enable CMPs with increasing numbers of cores, but with
reduced reliability. It is the combination of high density CMPs and
reduced reliability that motivates the research reported here.

From an architecture perspective, increased transistor densities are
leading virtually all the major companies (Intel, AMD, Sun, and
IBM) toward CMPs. Scaling of CMPs to more cores allows
greater computational capability and system integration at the chip
level, enabling cost and performance benefits from reduced
component counts and enhanced resource sharing. The Sun
Niagara chip, for example, includes eight cores, with a shared L2
cache, and integrated memory controllers and I/O interfaces.

With respect to reliability, the International Technology Roadmap
for Semiconductors has predicted significant reliability problems
for future systems, increasing at a pace that has not been seen in
the past [36]. Several studies have shown dramatic increases in the
number of hardware errors with technology scaling. Permanent or
intermittent hardware faults, caused by defects in the silicon and
wear out over time, lead to “hard errors”. Transient faults which
change random bits due to electrical noise or external radiation
(e.g., alpha radiation from impurities or gamma radiation from
outside) lead to “soft errors” [8]. For example, Srinivasan et. al
[29] showed a three-fold increase in processor wear out related
faults when scaling from 180nm to 65nm. Similarly, Borkar [5]
estimates a 100-fold increase in transient faults when scaling from
180nm to 16nm; Shivakumar et. al [24] predict an even higher
nine-orders-of-magnitude increase in logic circuits’ transient fault
rates from 1992 to 2011. The increased likelihood of soft errors
now means that we can potentially have multi-bit fault modes at
the memory [9]. Even more importantly, with the typical doubling
of logic state bits every generation, transient faults that cause
arbitrary logic errors cannot be ignored any longer [5]. This means
that more sophisticated techniques to detect soft errors, including
redundant execution to verify logic at every level, are required
even for low-end systems.

2.2 CMP Based High Availability Systems
The multiple cores in a CMP provide the basic ingredients for
building highly available systems that mitigate the effects of

reduced transistor level reliability. To realize this potential,
however, there are a number of architecture and engineering
obstacles that must be overcome. First, high availability CMP-
based system architectures that deal with future technology fault
modes must be developed. These architectures should not only
enable fault detection, but they should also provide fault isolation
at relatively small granularities, so that an entire chip is not
disabled by a single fault. Developing high availability system
architectures is probably not enough, however. There is also a
practical engineering issue: at least in the near term, relatively
few systems will employ high availability DMR/TMR solutions.
Consequently, high availability enhancements to CMP
architectures must be inexpensive and non-intrusive with respect
to other CMP features.

In the past, when the basic system building blocks were individual
processors, memory controllers, and cache memory SRAMs,
system designers could achieve good fault isolation by combining
these chip-level building blocks into redundant configurations at
the board level. And, when necessary, small amounts of “glue
logic” could be incorporated. In these systems, fault isolation to a
single chip (or socket) was adequate. For example, the NonStop
Advanced Architecture implements process pairs and fault
containment boundaries at the socket level. With CMP-based
approaches, however, socket level isolation is no longer an
attractive solution (nor is the use of off-chip glue logic) especially
for small systems. The challenge is to design CMPs that use on-
chip mechanisms to enable either conventional, non-redundant
systems or high availability systems with good fault isolation
characteristics. Therefore, in our research we are focusing on
techniques that will enable “off-the-shelf” CMPs to be configured,
with relatively little added on-chip hardware and complexity, into
high availability, redundant systems.

Figure 1(a) shows a conventional CMP architecture with 8 cores
(P0...P7) each with private L1 caches, an 8-way banked shared L2
cache, 4 memory controllers, and coherent links (such as
Hypertransport) to other sockets or I/O hubs. In this architecture, a
bidirectional ring connects the processors and cache banks. (Our
techniques also apply to more complex 2-D arrangements such as
meshes). Although a “dance hall” layout is shown for simplicity
(with all the cores on one side of the ring and the shared cache
banks on the other), the proposed techniques apply equally well to
interleaved layouts. This design with fully shared resources is the
conventional baseline used in the remainder of this paper; it is also
referred to as the shared design.

As the number of cores in a CMP increase geometrically with
lithographic scaling, a failure in one part of the conventional
organization affects larger and larger amounts of computational
capability. For example, if all L2 cache banks are shared, and
addresses are low-order interleaved among the banks, a transient
fault in the cache controller state machine can lead to erroneous
coherence state. Note that ECC on a coherence bit does not help in
this case because the fault is in the cache controller logic, before
the coherence bits are set. Such a fault affects the reliability of an
entire socket. Similarly, a fault in a memory controller or
anywhere in the ring interconnect affects all the cores. This is true
even if programs are being run in a Dual Modular Redundant
(DMR) or Triple Modular Redundant (TMR) configuration. For
cost-effective high availability systems, we want architectures
where the effects of faults are isolated to much smaller areas.

471

P0 P1 P2 P3 P4 P5 P6 P7
L1 D1L1 D1 L1 D1 L1 D1 L1 D1 L1 D1 L1 D1 L1 D1

B0 B1 B2 B3 B4 B5 B6 B7

Link
Adpt

Mem
Ctrl

Link
Adpt

Mem
Ctrl

Link
Adpt

Mem
Ctrl

Link
Adpt

Mem
Ctrl

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

P0 P1 P2 P3 P4 P5 P6 P7
L1 D1L1 D1 L1 D1 L1 D1 L1 D1 L1 D1 L1 D1 L1 D1

B0 B1 B2 B3 B4 B5 B6 B7

Link
Adpt

Mem
Ctrl

Link
Adpt

Mem
Ctrl

Link
Adpt

Mem
Ctrl

Link
Adpt

Mem
Ctrl

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM
(a) Baseline conventional system architecture

B0

Mem
Ctrl

Link
Adpt

FBDIMM

FBDIMM

P0
L1 D1

B1

Mem
Ctrl

Link
Adpt

FBDIMM

FBDIMM

P1
L1 D1

B7

Mem
Ctrl

Link
Adpt

FBDIMM

FBDIMM

P7
L1 D1

B0

Mem
Ctrl

Link
Adpt

FBDIMM

FBDIMM

FBDIMM

FBDIMM

P0
L1 D1

B1

Mem
Ctrl

Link
Adpt

FBDIMM

FBDIMM

FBDIMM

FBDIMM

P1
L1 D1

B7

Mem
Ctrl

Link
Adpt

FBDIMM

FBDIMM

FBDIMM

FBDIMM

P7
L1 D1

(b) A design with full isolation

Figure 1. CMP architecture designs.
One alternative to the conventional architecture is a design with
independent computers fabricated on the same die (Figure 1(b)).
Each computer has its own memory controller and I/O
connections. This architecture has a number of disadvantages,
however. Hard partitioning of cache resources (inhibiting any
sharing) significantly reduces overall system performance and is
not been used in proposed CMP designs [53, 54, 55]. Similarly, by
partitioning chip interfaces and pins, off-chip bandwidth is
inefficiently used. These performance inefficiencies make such a
design unattractive for high volume applications where
performance is the objective rather than very high availability.
This design provides full isolation, however, and is referred to as
fully isolated or private design in the remainder of the paper.

In this paper, we explore the tradeoff between full isolation and
full sharing. We propose non-intrusive enhancements to
commodity CMP architectures, which provide configurable
isolation for providing varying levels of availability.

2.3 Related Work
Gold et al. [13] classify error handling according to how far
outside the processor core errors can propagate. The categories are
(1) core-level containment, (2) cache-level containment, and (3)
memory-level containment. Our work focuses on memory-level
containment where processors and memory are grouped into a
fault zone (or fault containment boundary). Consequently only
operations that cause device accesses (I/O) require detection and
recovery. The closest related approach is the HP NonStop
Advanced Architecture (NSAA) [4]. However, as discussed

earlier, the NSAA approach implements process pairs and
supports fault containment boundaries at the socket level. In
contrast, we consider the implications of memory-level fault
containment at the chip multiprocessor level. The SafetyNet [28]
and ReVive [18] projects both consider the challenges of, and
solutions for, global checkpointing at the memory-level. These
solutions are orthogonal to our work, and their methods can be
used in conjunction with the fault detection and isolation
architecture that we propose.

At the core-containment level, the IBM z-series processor [26]
uses an aggressive custom design employing redundant pipelines
to create separate fault zones and detect failures. Academic work
has proposed variants of such integrated checking at the processor
level [2, 19, 21, 27]. Several studies have also evaluated core-level
fault detection and containment by running redundant processes,
either on a separate thread [22, 23, 33] or on a separate core [14,
17, 32]. Solutions using core-containment methods rely on other
fault tolerant methods for the rest of the system (ECC, RAID-M,
etc). At the cache-containment level, the original Tandem
NonStop architecture [3] uses a lock-stepped process pair’s
results, compared at the front-side bus. The TRUSS project [12]
proposes an alternate form of cache-level fault containment for
shared-memory multiprocessors by performing error detection and
checkpointing at the granularity of cache coherence events. These
approaches typically require custom changes to the processor or
cache controller. Moreover, they assume fine grained and
aggressive fault containment at every level of the system. In
contrast, memory-level fault containment approaches like ours are
typically less expensive, by virtue of performing fault tolerance at
a coarser level. Our work is also different in its approach to
leveraging commodity multi-core processors with little additional
on-chip support for providing high-levels of availability and fault
containment.

Russ Joseph discusses an approach to “salvage” processors in
multi-core architectures using a virtualization layer to emulate lost
functionality [16]. Other studies [6, 25, 31] have explored the
design of redundancy and self-repair at the hardware level to make
up for lost functionality in the event of a fault. These methods
need additional hardware overhead at every structure where faults
occur, and furthermore, they do not address fault isolation and
issues regarding the effects of single faults on multiple cores.

2.4 Paper Overview
The rest of the paper is organized as follows. Section 3 discusses
the proposed architecture and the tradeoffs in detail. Sections 4
and 5 discuss evaluation methodology and results. In section 6, we
discuss future work and other implications of the proposed
research and conclude the paper.

3. PROPOSED ARCHITECTURE
A block diagram of the proposed CMP organization is in Figure 2.
In the simplest arrangement, the resources of the CMP are split
into two groups represented by two colors, say for example, red
and green (in a black and white print, these appear as black and
gray in Figure 2). The CMP is configured so that the colored
domains are units of fault containment. Any failure in a color-
shared component affects computation only on the cores mapped
to that color. To ensure that a failure in one color domain does not
affect all the other colored domains, we propose “configurable

472

isolation” for interconnect, caches and memory controllers. We
define configurable isolation to be a set of techniques that provide
optional logical fault isolation for shared components.

P0 P1 P2 P3 P4 P5 P6 P7
L1 D1L1 D1 L1 D1 L1 D1 L1 D1 L1 D1 L1 D1 L1 D1

B0 B1 B2 B3 B4 B5 B6 B7

Link
Adpt

Mem
Ctrl

Link
Adpt

Mem
Ctrl

Link
Adpt

Mem
Ctrl

Link
Adpt

Mem
Ctrl

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

V V

P0 P1 P2 P3 P4 P5 P6 P7
L1 D1L1 D1 L1 D1 L1 D1 L1 D1 L1 D1 L1 D1 L1 D1

B0 B1 B2 B3 B4 B5 B6 B7

Link
Adpt

Mem
Ctrl

Link
Adpt

Mem
Ctrl

Link
Adpt

Mem
Ctrl

Link
Adpt

Mem
Ctrl

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

V V

Figure 2. Proposed architecture with configurable isolation
split into two domains.
The proposed architecture can be used in a number of
configurations. Below, we discuss a NonStop-like DMR
configuration. We choose this configuration as an illustrative
example of both the benefits of our approach – (1) fault isolation
without losing the benefits of sharing and (2) graceful degradation
via reconfiguration in the event of a hard fault. Furthermore, fault
recovery is more difficult in a DMR configuration as compared to
TMR. Resources from two colors are used to run a DMR process
pair, with computations in the red domain replicated in the green
domain when higher availability is required. The microprocessor
is dynamically reconfigured to the higher-availability
configuration by setting a small number of control points in the
design. This allows systems to support “high availability on
demand.”

Note that this capability only requires small changes to the ring
and bank addressing, while the rest of the CMP is unchanged. The
ring interconnect in Figure 2 has been logically re-routed via
configuration cross links to create two independent rings.
Physically, the ring is expected to form the central spine of the
chip, so the cross links should be less than a millimeter long and
their activation requires the insertion of a multiplexer at the input
of a ring interface incoming data port. Thus, cross links and input
multiplexers are a small additional fixed cost in terms of area and
power, which does not significantly increase the cost of the design
for system configurations where higher availability is not an
objective. The cross-links are also expected to be shorter than the
ring segments between cores, so the cross-connects should operate
at least as fast as a core-to-core or bank-to-bank ring segment.
Because the cross links and input multiplexers are shared and they
can now form a single point of failure, they need to be
implemented using self checked logic to satisfy stringent
availability requirements. Self checked logic in these components
allows dynamic reconfiguration and reassignment of colors after
failures. If these components are not self checked then the color
assignment is static and can not be changed.

When the inter-core interconnect is partitioned, interleaving
among L2 cache banks uses one fewer address bit, thereby

interleaving references among half the banks, and all references
are kept within the same color. Therefore, the L2 cache size
available in a color is inversely proportional to the number of
colors.

In high availability configurations, self checked voters compare
the output of the redundant execution to detect errors. In our
proposed architecture these voters can be implemented in a
number of ways. For highest availability, voters can be
implemented in I/O hubs connected to a red and green link
adapter, similar to the hardware voters in the Nonstop Advanced
Architecture [4]. For lower-cost lower availability solutions, the
voter can be implemented in hypervisors that communicate
between the colored partitions through I/O [7].

The proposed architecture is developed from a system perspective.
Similar to the NonStop system, physical memory is partitioned
between the logical processors using virtual to physical memory
mapping. Redundant TLBs are used for fault tolerance. Further,
OS support for statically partitioned TLB entries provides
complete memory fault isolation.

When a fault is detected in the proposed system, reconfiguration
takes place. Cores that fail in one color domain are deleted (retired
from use), but the remaining cores are still usable. If a failure in a
cache bank cannot be corrected by line sparing (e.g., a logic
failure in the bank controller), the other bank sharing its memory
controller can be reconfigured to cache all lines serviced by its
memory controller. This requires the provision of an extra bit in
the bank cache tags and a mode bit in the cache bank. Similarly, if
a memory controller in a color domain fails, the domain can be
reconfigured to use a single memory controller. This requires
caching all lines in the cache banks associated with the failed
memory controller in the remaining controller’s banks. Doing so
adds one bit in the cache tags and a second mode bit. Given the
large number of bits in a cache line (more than 600 bits for a 64B
cache line with ECC plus previously required tag bits), providing
two more bits to enable reconfiguration is a very modest overhead
[1, 20]. Overall, the number of extra bits required in a bank to
enable caching of lines from any other bank is log2 (number of
banks).

Reconfiguration may be limited by the topology of the system. For
example, due to the placement of the ring cross-connect, if two
cores fail in one color domain while all the cores are fault-free in
the other domain, it may not be possible to reassign a core from
one color to another. Thus in the 8-core 2-color system, if two red
cores fail, only two DMR process pairs can be supported by the
CMP. However, the number of colors is not restricted to two and
can be increased to provide more redundancy or smaller
granularity of fault containment. For example, three colors can be
used to enable a Triple Modular Redundant (TMR) configuration.
Furthermore, the number of colors need not be static and can be
changed as the system needs evolve.

Figure 3(a) shows a configuration with four colors. This
configuration requires four ring cross connects and uses two fewer
address bits for interleaving cache bank addresses. This
configuration runs processes in TMR using triples of three
different colors. For example, one process can be run on red,
green, and blue, simultaneously another TMR process can be run
on green, blue, and yellow and DMR processing can be supported
on red and yellow to balance the load among colors.

473

P0 P1 P2 P3 P4 P5 P6 P7
L1 D1L1 D1 L1 D1 L1 D1 L1 D1 L1 D1 L1 D1 L1 D1

B0 B1 B2 B3 B4 B5 B6 B7

Link
Adpt

Mem
Ctrl

Link
Adpt

Mem
Ctrl

Link
Adpt

Mem
Ctrl

Link
Adpt

Mem
Ctrl

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

P0 P1 P2 P3 P4 P5 P6 P7
L1 D1L1 D1 L1 D1 L1 D1 L1 D1 L1 D1 L1 D1 L1 D1

B0 B1 B2 B3 B4 B5 B6 B7

Link
Adpt

Mem
Ctrl

Link
Adpt

Mem
Ctrl

Link
Adpt

Mem
Ctrl

Link
Adpt

Mem
Ctrl

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM
(a) Design with 3 reconfigurable cross links supporting four

fault isolation domains for use in TMR.

P0 P1 P2 P3 P4 P5 P6 P7
L1 D1L1 D1 L1 D1 L1 D1 L1 D1 L1 D1 L1 D1 L1 D1

B0 B1 B2 B3 B4 B5 B6 B7

Link
Adpt

Mem
Ctrl

Link
Adpt

Mem
Ctrl

Link
Adpt

Mem
Ctrl

Link
Adpt

Mem
Ctrl

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

P0 P1 P2 P3 P4 P5 P6 P7
L1 D1L1 D1 L1 D1 L1 D1 L1 D1 L1 D1 L1 D1 L1 D1

B0 B1 B2 B3 B4 B5 B6 B7

Link
Adpt

Mem
Ctrl

Link
Adpt

Mem
Ctrl

Link
Adpt

Mem
Ctrl

Link
Adpt

Mem
Ctrl

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM

FBDIMM
(b) Design illustrating use of reconfiguration to isolate

specific faulty components.

Figure 3. More architectures with configurable isolation and
reconfiguration.

It should be noted that the reconfiguration and fault isolation
proposed in our architecture can be used independently of
DMR/TMR-coloring to provide repartitioning of resources in the
event of a hard fault. This is illustrated in Figure 3(b) for
applications with more modest availability requirements. If there
is a core fault (P5 in the figure) then system software isolates the
faulty core and continues functioning with the remaining cores.
Furthermore, the proposed architecture has the ability to continue
functioning in the event of hard faults in cache banks, memory
controllers and interconnect. For example, if there is a fault in a
cache bank (B0 in the figure) then all the lines in that bank can be
cached in the bank that shares the memory controller with the
faulty bank (in this case B1). In case of a memory controller fault,
lines cached by both the banks (B4 and B5) connected with the
memory controller can be cached by two other banks connected to
a fault free memory controller (B6 and B7). Similarly, link adapter
and interconnect failures can be tolerated by isolation of the faulty
components and reconfiguration to use the remaining fault free
components.

3.1 Example: A NonStop-like DMR system
In this section we briefly explain how the proposed architecture
can be deployed in a high availability configuration similar to a
NonStop DMR system. The NonStop software stack includes the
NonStop kernel and critical software implemented as process
pairs. Using the NonStop terminology, a single logical processor is
implemented with two hardware processing elements (PEs). So, an

eight core CMP (eight PEs) implements four logical processors. A
logical processor runs a redundant process pair. In a DMR
configuration of the proposed architecture the OS schedules each
process of a process pair to a different color. Each PE of a logical
processor has the same virtual-to-physical mapping and takes page
faults and interrupts at the same points in the instruction stream –
supported by hardware in the voter logic and the OS. The cache
and TLB state across the two colors can be different, but each PE
writes to memory so that on any output operation (say to disk) the
data pulled from either of the colors should be the same.
Consequently, result comparison is done in the I/O system. The
output operations of each PE in a logical processor are compared
by a fully self-checked voter in the I/O hub. Therefore, in an eight
core CMP, four voters compare the output operations from the
four logical processors.

Coverage for soft errors is provided for all the circuitry on chip
because the voting is done at the I/O level. Voting at the I/O level
does not lead to miscomparison if a transient fault does not cause
an error in the I/O output. In case of a miscomparison, execution is
restarted with the help of software supported checkpoints on both
PEs in a logical processor. If the error persists, then the two cores
(PEs) are halted and the process pair is restarted from a checkpoint
on remaining, fault-free cores.

In a DMR configuration a voter miscompare can be ambiguous
regarding which PE is at fault. However, as pointed out in the
NonStop description [4] some hard faults, for example,
interconnect faults and functional unit faults, are self identifying.
Heuristics similar to a probation vector used by NonStop in a
DMR configuration can also help disambiguate voter
miscomparisons. A bit in the probation vector is set when a core
suffers a number of correctable errors. In case of an ambiguous
miscomparison the core that has its probation vector set is
assumed to be the one with the fault. Furthermore, localized
component diagnostic tests can identify a faulty component. Once
the faulty hardware structure is diagnosed, the chip is reconfigured
(similar to hardware reconfiguration example explained above) to
allow further operation. In such a case, the proposed architecture
provides effective fault isolation and allows continued operation
with fault free components. However, if the error can not be
identified then the logical processor is halted and the OS will
invoke failover to other logical processors and the application can
continue to run.

4. EVALUATION METHODOLOGY
During the lifetime of a fault tolerant system, as hard faults occur
and are detected, system reconfiguration degrades the system’s
computing capacity. Consequently, we perform lifetime
simulations targeted at measuring computing capability as a
function of time. We compare three fault tolerant architectures: 1)
shared -- a completely shared system similar to proposed CMPs
(Figure 1a), 2) fully isolated -- a completely private system with
full isolation (Figure 1b), and 3) configurable isolation – the
proposed architecture with reconfiguration and configurable
isolation (Figure 2). All three are assumed to be in a DMR
configuration.

4.1 Workloads
Because the proposed architecture does not contain any
modification to the cores, the most important workload

474

characteristic is the size of the working set and its effect on cache
behavior. We tried to cover a spectrum of workloads and
considered the following factors while choosing the benchmarks
for simulated workloads – 1) the combined working set size of the
workload, 2) stability of the benchmark – the chosen benchmarks
typically grow quickly to their target size and stay there, and 3)
the ability of the benchmarks in the workload to exercise the L2
cache. Consequently, we constructed three different workloads
from the SPEC benchmarks. The workloads have large, mixed,
and small memory requirements as measured by memory footprint
[35] and are listed in Table 2. The large and small memory
workloads contain benchmarks all having large and small memory
requirements, respectively. The mixed workload has benchmarks
with large, medium, and small memory footprints. When
simulated, each benchmark is duplicated to mimic the DMR
configuration and is run to completion.

Table 1: Benchmarks studied and their memory footprints.
High Memory gap (192), apsi (191), swim (191), mcf (190)
Mixed Memory applu (181), perlbmk (146), fma3d (103), crafty (2.0)
Low Memory vortex (72), equake (49), facerec (16), mesa (9.4)
Over the course of a simulation run, as cores become unusable
(either because of a core fault or a fault in a component that is
required by the core), benchmarks are dropped from the
workloads, reflecting the loss of computing capability. This is
done only for our evaluation; in a deployed configuration, a
program would not be dropped but would be failed-over to one of
the other cores. At any point, the dropped benchmark is the one
having the median-sized footprint. For example, when evaluating
the small memory workload after two core failures, the workload
becomes equake, vortex, and mesa. The goal is to maintain the
overall memory characteristic of the workload.

4.2 Fault and Failure Modeling
The fault-models are based on state of the art technology and are
derived from detailed (confidential) models from processor
vendors and were calibrated by HP-internal fault analysis
experiments. The fault data includes failures in time (FIT) rates
and distributions for hard and soft errors per component. The fault
data has been de-rated both at the chip level and system level for
various architecture optimizations that help mitigate the effect of
faults. For example, the fault model assumes that 90% of cache
related errors are dynamically correctable through chip-kill, ECC,
cache line sparing, etc. The model also uses separate detailed
distribution models for hard and soft errors. For hard errors the
distribution is Weibull with a decreasing hazard rate. For soft
errors the distribution is exponential. (This is in contrast to some
prior work which assumes that all failure distributions are poisson
or log normal [30, 31].)

The system is divided into five different fault zones (which also
represent the granularity of reconfigurations). These are: core and
L1 cache, L2 circuitry, L2 banks, memory controller circuitry, and
link controller. To prune the simulation space, we limit the study
to hard faults that require system reconfiguration – for example we
do not model the performance impact from faults that lead to
minor degradations such as cache line deletions. Consequently,
reconfiguration is done only at full component granularity.

On the shared system, any hard fault leads to system failure. This
means that after a failure, the system throughput goes to zero for
all workloads. On the fully isolated system, any single fault leads

to the loss of throughput from a DMR process pair. For example,
even a fault in the bank associated with a core would lead to that
core being unusable. On a system with configurable isolation, a
reconfigurable fault (for example, in a memory controller) leads to
loss of performance over all the process pairs, but not the loss of a
workload. Only when a core fails is a benchmark (both copies)
dropped from the workload. The entire system becomes unusable
in the configurable isolated architecture only when the penultimate
component of any type fails (for example, 7th core, 3rd memory
controller, 7th cache bank in a system similar to the baseline).

The simulation model assumes that in all the cases soft errors are
detected by DMR execution and corrected through checkpointing
or re-execution; but given that this consumes relatively little time,
this is not shown in the results. Note that in the fully shared case,
given the lack of fault isolation, it is not guaranteed that all soft
errors will be detected; however, we assume that such cases are
rare and do not penalize this configuration.

4.3 Simulation Methodology
In order to make a large number of very long time scale
simulations feasible we use a two phase simulation methodology.
First, we use a full system simulator to exhaustively simulate the
possible system configurations (using more than one machine
year) and compute the throughput of all configurations, subject to
policies described below. Second, we perform Monte Carlo
simulations using a detailed component-level fault model. With
Monte Carlo simulation we simulate fault injection in a total of
10,000 systems with each run comprising 100,000 simulated hours
(approximately 11 simulated years).

For the simulated configurations and failure rates, the system
typically becomes unusable in a fault tolerant configuration in
100,000 hours. At every fault instance the system is reconfigured
to map out the faulty component. The Monte Carlo simulator then
looks up the aggregate throughput of the new configuration (from
the first phase detailed simulation results), and assigns it as the
system throughput until the next fault and subsequent
reconfiguration occur. This methodology is similar to the one used
by Srinivasan et al. [30]. The key difference is that we model the
lifetime of a complete system along with its transitions through the
configuration space and model the potential throughput on a
yearly scale. We include the overheads of coloring to the
performance of the proposed configurable isolation architecture.
In the DMR configuration each color has access to only half the
cache and so we model the performance assuming two L2 caches;
each half the size of the cache in the shared configuration.

All simulations were done using a full system x86/x86-64
simulator (based on AMD SimNowTM) [37] that can boot an
unmodified Windows or Linux OS and execute complex
application programs. The simulator has been validated by
comparing to real hardware. The simulator guest runs a 64-bit
Ubuntu Linux distribution with 2.6.15 kernel. The SPEC
benchmarks were compiled directly in the simulated machine with
gcc/g77 version 4.0, at -O3 optimization level. To evaluate only
workload execution, we restore a snapshot of the system taken just
after booting when the machine is idle (except for standard OS
housekeeping tasks) and directly invoke the execution of the
benchmark from a Linux shell. The timing simulation begins just
after the execution command is typed in the OS console. Falcon et
al. provide more details about the simulator [37].

475

Table 2: Simulation parameters.

Instruction set x86_64
Core clock 2200MHz
Bus clock 550MHz
Issue width 4
2-level branch predictor (g-share) 16384 entries
L1 icache size 32kB
L1 icache line_size 64B
L1 icache associativity 2-way
L1 dcache size 32kB
L1 dcache line_size 64B
L1 dcache associativity 2-way
L1 itlb entries 32
L1 itlb associativity 8
L1 dtlb entries 32
L1 dtlb associativity 8
L2 cache size 2MB (initial)
L2 cache line_size 64B
L2 cache associativity 4-way
L2 dtlb entries 512
L2 dtlb associativity 4
Coherency protocol MOESI, shared bus
Main memory access 220 cycles

We used a SMARTS-like [34] functional timing sampling of
200:1, where for every 3s (6.6B instructions) of simulation there is
a warming phase of 15ms (33M instructions), a detailed timing
phase of 15ms (33M instructions), and a fast functional emulation
phase of 2.7s (6,534M instructions). The long warming phase is
necessary to ensure that large L2 cache structures contain
meaningful data for the timing phase.

We use a timing model with a memory hierarchy roughly similar
to that supported by an AMD Opteron 280 processor. The only
exception is that the L2 caches are smaller than currently found in
real systems. As explained in Section 2, the changes to support
cache reconfiguration lead to smaller caches in the DMR
configuration. In order to avoid giving an unfair advantage to
configurable isolation, we used smaller caches that match the
working set requirements of the benchmarks, thereby exposing the
difference in performance when the cache size is halved due to
coloring. Our results hold qualitatively for larger cache sizes
which we validated by simulating several configurations with an
initial 8 MB L2 cache. The detailed simulator configuration is in
Table 2.

5. RESULTS
To evaluate the proposed architecture, in Section 5.1 we consider
an application of configurable isolation for systems that provide
full fault coverage using DMR for both hard fault and transient
faults. Section 5.2 considers the applicability of the proposed

architecture in an environment where graceful degradation is more
important: a server farm with lower-availability systems that
provide coverage only for hard faults. Section 5.3 presents results
showing sensitivity to future trends and per-component fault
variations. Section 5.4 presents results showing improvements
with dynamic re-provisioning of power.

5.1 High availability Systems with Soft Error
and Hard Error Coverage
Figures 4(a), (b), and (c) summarize the baseline results for the
small, mixed, and large workloads respectively. All these
experiments employ averaged results from 10,000-run Monte
Carlo simulations of an individual system. Each system is a server
with 8 cores, 8 L2 banks and 4 memory controllers and similar to
the baseline. Each graph has three curves representing (1) a
baseline system using traditional full-resource sharing, (2) a
system with full isolation, and (3) the proposed system with
configurable isolation. In each of the graphs, the y-axis is the
mean cumulative performance normalized to the baseline
performance of the shared configuration with no faults. The x-axis
is time, measured in years.

Referring to Figure 4, as expected, the shared system performs the
worst, with a dramatic degradation (30-35%) in average
performance during the first two years, and a degradation of close
to 50% by the end of five years. The fully-isolated configuration is
much more resilient to failures and provides more gradual
performance degradation. Over five years, the net performance
loss is only 10-15%. The results for the large memory workload
(Figure 4c) are particularly interesting. Here, the completely
isolated configurations, by virtue of having private caches,
initially under-perform the shared configuration. However,
compared to the shared system, the fully-isolated system becomes
performance competitive at around 2 years (at the crossover of the
curves in Figure 4c).

The configurable isolation system consistently achieves the best
performance across all the workloads. Figure 4 illustrates that it
achieves effectively 100% fault detection without compromising
benefits from sharing. Compared to the fully isolated
configuration that underperforms the fully shared for a full two
years, the proposed architecture breaks even in the middle of the
first year. With configurable isolation, resources can still be shared
within a given fault zone. Additionally, the ability to dynamically
repartition the resources leads to the best graceful degradation
across all three workloads.

It is interesting to consider the reconfiguration benefits as
compared with full isolation. In the case where one component
fails, for example a bank controller, the entire core associated with
that bank is taken out of commission. In contrast, in the
configurable isolation case, the core can be reconfigured to use
other banks in the same color. As discussed earlier, these benefits
are obtained with very little area overhead in conventional
commodity systems and provide the option of being disabled if
unneeded.

476

Small Memory Workload

0.00

0.20

0.40

0.60

0.80

1.00

0.0 2.0 4.0 6.0 8.0 10.0 12.0
Time in Years

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Configurable Full Isolation Shared

 (a)
Mixed Memory Workload

0.00

0.20

0.40

0.60

0.80

1.00

0.0 2.0 4.0 6.0 8.0 10.0 12.0
Time in Years

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Configurable Full Isolation Shared
(b)

Large Memory Workload

0.00

0.20

0.40

0.60

0.80

1.00

0.0 2.0 4.0 6.0 8.0 10.0 12.0
Time in Years

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Configurable Full Isolation Shared
(c)

Figure 4. Benefits from our architecture. The results from a
Monte-Carlo simulation of faults for normalized performance over an 11-
year period of time for three architectures – a baseline conventional
solution with full sharing, our proposed solution, with configurable
isolation, and a solution with full isolation for a) small memory workload,
b) mixed memory workload and c) large memory workload.

Figure 5 provides an alternate view of the benefits of configurable
isolation. For each of the three approaches, the number of
component replacements is shown. It is assumed that the system
continues to stay operational until the performance dips below a
certain threshold after which the entire multi-core component is
replaced (and the performance is re-initialized to that of the no-
fault configuration).

Baseline

0.0

0.2

0.4

0.6

0.8

1.0

10
%

D
eg

ra
da

tio
n

25
%

D
eg

ra
da

tio
n

50
%

D
eg

ra
da

tio
n

10
%

D
eg

ra
da

tio
n

25
%

D
eg

ra
da

tio
n

50
%

D
eg

ra
da

tio
n

10
%

D
eg

ra
da

tio
n

25
%

D
eg

ra
da

tio
n

50
%

D
eg

ra
da

tio
n

Large Memory Mixed Memory Small Memory

N
or

m
al

iz
ed

 c
om

po
ne

nt
 r

ep
la

ce
m

en
ts

Shared Full Isolation Configurable Isolation
Figure 5. Number of component replacements as a function of
performance. The figure shows the normalized number of component
replacements for the three architectures (mixed workload), compared
assuming components are replaced (a) when performance dips below
90%,(b) when performance dips below 75%, and (c) when performance
dips below 50%.

The simulation then continues for the remainder of the 100,000
hours. Note that there might be multiple replacements in a single
Monte Carlo run simulating 100,000 hours. We consider three
cases where the performance threshold is set to (a) 90% (b) 75%,
and (c) 50% of initial performance. The total number of
replacements (across 10000 Monte Carlo runs) for fully isolated
and configurable isolated system is normalized with respect to the
total number of replacements for a fully shared system. In a fully
shared system every fault leads to system replacement because the
performance drops to 0. These results show that the architecture
with configurable isolation dramatically reduces the need to
replace components across all three workloads irrespective of the
performance thresholds.

5.2 Systems with Hard Error Protection
Thus far, we have assumed that configurable isolation is used in
conjunction with redundant processes to detect soft errors.
Although there are several ways to reconfigure after a core failure,
as discussed earlier, in our experiments we conservatively assume
that in configurations with an odd number of cores, one core is
unused to make sure that there are as many cores as the total
number of processes in a DMR configuration. This can potentially
affect the slope of the performance degradation curves.

Additionally, there may be many system environments, such as
farms of web servers, where coverage for soft errors through
redundant processes may be more expensive than the acceptable
alternative of just restarting the system when the software detects
an error and halts. In these cases, rather than being able to
guarantee fault isolation across redundant processes in a dual
modular configuration, the biggest advantage from configurable
isolation is the ability to isolate a fault to a specific component,
allowing continued use of the rest of the system.

477

Only Hard Error Coverage - Baseline (Mixed)

0.00

0.20

0.40

0.60

0.80

1.00

0.0 2.0 4.0 6.0 8.0 10.0 12.0
Time in Years

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Configurable Full Isolation Shared
(a) Performance over time

Only hard error coverage - Baseline (Mixed)

0

0.2

0.4

0.6

0.8

1

10% Degradation 25% Degradation 50% Degradation

N
or

m
al

iz
ed

 c
om

po
ne

nt
 re

pl
ac

em
en

ts

Shared Full Isolation Configurable
(b) Normalized component replacements

Figure 6. Evaluating a server-farm with only hard-error
coverage

Therefore, we performed experiments on a simulated server farm
with each core running a single process. Figure 6 summarizes the
results1. As shown in Figure 6(a), performance degrades much
more gracefully with respect to hard faults. The average
performance of the configurable isolation architecture degrades by
less than 10% over 10 years. In contrast, the fully shared
configuration degrades by almost 60% over the same time period.
Also, the difference in performance between the fully isolated and
configurable isolated architecture is now smaller as compared to
that in Figure 4. In the present configuration, any single fault in a
fully isolated architecture leads to throughput loss of a single
process, unlike the DMR case where the loss is in pairs.
Comparison of the number of component replacements (Figures 5
and 6(b)) show similar trends.

5.3 Sensitivity Study
5.3.1.1 Sensitivity to overall fault rate
As discussed in Section 3, our fault model is based on proprietary
industry data. This data, while based on actual measurements and

1 Unless the trends for the “small” and “large” workloads are

qualitatively different, we present time-variation results just for the
“mixed workload” in the interests of space.

deployment experience, is indicative of current and past
technologies. Several studies [6, 29, 24] have hypothesized that
the fault rates in the future are likely to be significantly higher. To
study higher fault rates, we performed some additional
evaluations. Specifically, we increased the industry FIT rates by a
factor of ten while keeping the same fault distributions.

10X (Mixed)

0.00

0.20

0.40

0.60

0.80

1.00

0.0 2.0 4.0 6.0 8.0 10.0 12.0
Time in Years

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Configurable Full Isolation Shared

1

(a) Performance over time

10X

0.0

0.2

0.4

0.6

0.8

1.0
10

%
D

eg
ra

da
tio

n

25
%

D
eg

ra
da

tio
n

50
%

D
eg

ra
da

tio
n

10
%

D
eg

ra
da

tio
n

25
%

D
eg

ra
da

tio
n

50
%

D
eg

ra
da

tio
n

10
%

D
eg

ra
da

tio
n

25
%

D
eg

ra
da

tio
n

50
%

D
eg

ra
da

tio
n

Large Memory Mixed Memory Small Memory

N
or

m
al

iz
ed

 c
om

po
ne

nt
 r

ep
la

ce
m

en
ts

 Shared FulI Isolation Configurable
(b) Normalized component replacements

Figure 7. Evaluation with a “future” fault model. We change the
default fault model (that is based on current industry data) to reflect
predicted future trends in the number of faults.

Figure 7 summarizes the results for the DMR-configurations. As
shown in the figure, increased fault rates more strongly motivate
the need for fault isolation and faulty-component retirement. In
particular, the fully-shared system fails completely in less than one
year. In contrast, configurable isolation continues to provide 60%
of the original performance even after 10 years. In the same time
frame, the fully isolated solution provides only 40% of the original
performance. The component replacements data show similar
trends.

5.3.1.2 Sensitivity to specific component faults
 Our results thus far have focused on performance degradation
over time with an integrated fault model that includes the
possibility of failure in any CMP component. However, different
system components contribute disproportionately to performance
degradation for two reasons. First, the fault rates and distributions
differ across components, and second, the failures of different

478

components have varying impact on aggregate system
performance. To understand the relative importance of specific
components to the system lifetime, we present results on
performance degradation with five variations of the fault model
that specifically isolate (1) core faults, (2) cache faults, (3)
interconnection faults, (4) memory controller faults and (5) I/O
link faults.

Shared-Various Configuration

0.00

0.20

0.40

0.60

0.80

1.00

0.00 2.00 4.00 6.00 8.00 10.00 12.00

Time in years

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Mem Controller Cache I/O Link Ring Core All

(a) Shared design

Configurable Isolation-Various Configurations

0.0

0.2

0.4

0.6

0.8

1.0

0.0 2.0 4.0 6.0 8.0 10.0 12.0
Time in years

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Mem Controller Cache I/O Link Ring Core All

(b) Configurable isolation

Figure 8. Isolating the impact from faults at a component
level. It is assumed that only one component fails at a given time; the
results are for the futuristic fault model for the DMR system.
Figure 8 summarizes results for the fully-shared and configurable
isolated configurations with the DMR-based system (the fully-
isolated configuration is similar to the configurable isolated
configuration). To better illustrate the trends, we assume the more
aggressive future fault rates. We plot five curves representing
performance degradation when a given component type fails, and
for reference, also plot the overall performance degradation. For
the fully-shared configuration, as expected, all faults are equally
critical. However, for the configurable isolated configuration, the
maximum performance impact is from core faults. This reflects
the characteristics of the proposed architecture where
reconfiguration can address some of the performance degradation
for all faults except those in a core; a core fault results in the loss
of throughput from a process pair (the next section discusses a
novel solution to address this). Our results also underscore the
importance of techniques proposed in prior work that focus on

intra processor redundancy to help mitigate the effect of faults in a
core [31].

5.4 Power Re-provisioning to Offset
Performance Loss in Degraded
Configurations
The proposed architecture enables dynamic core partitioning to
isolate faults and reuse system resources, albeit with degraded
performance. One way to offset this performance loss is to
dynamically re-provision the power budget by re-assigning power
allotments of the faulty components to the remaining fault-free
components.

Specifically, given that the cores are the dominant component of
power consumption (and, as seen in Figure 8, they also have the
most impact on performance degradation), we focus on core
failures. When a core fails, we assume that the power budget of
that core can be re-allocated dynamically to increase the clock
frequency of the remaining cores. There are two issues to be
considered. First, the supply voltage needs to be increased to
enable the high frequency2. Given that power is proportional to the
product of the frequency and the voltage squared, the increased
frequency is likely to be limited to the cube root of power
available from the faulty core. Second, the thermal packaging of
the processor must be able to support the additional localized heat
generation. Both these problems can be addressed, however,
through judicious design. In particular, for our experiments, we
assume that when two cores are retired, the remaining processors’
frequency can be scaled up by 8/6(1/3) ≈ 10%, and when four are
retired, the remaining processors’ frequency can be increased by
8/4(1/3) ≈ 25%. When six cores are retired, we conservatively cap
the maximum upward frequency scaling to only 25% to avoid
thermal overload (although our calculations show that the
remaining processors’ frequency can be scaled up by 50%).

Figure 9 summarizes the results for dynamic power re-
provisioning. We focus on the DMR-based system for the future
fault model from section 4.3. Overall, we find that re-allocating
power and frequency scaling to use the extra power budget does
improve system performance by around 10%. Also, as compared
to the results from Figure 7 (b), we find that the two
configurations that support isolation now degrade much more
gracefully. For example, at the 25% performance threshold, the
number of component replacements declines from 20% to 5%.

2 Recent proposals [38] for multi-core processors have suggested

capping power by dynamic power management across multiple cores.
This would imply that one could potentially do frequency scaling in
the cores without having to worry about increasing the voltage or
hitting thermal caps, up to certain limits. In this paper, we assume,
conservatively, that this option does not exist, but if it did, one could
expect higher performance benefits from the proposed optimization.

479

Dynamic power reprovisioning-10X (Mixed)

0.0

0.2

0.4

0.6

0.8

1.0

10% Degradation 25% Degradation 50% Degradation

N
or

m
al

iz
ed

 c
om

po
ne

nt
 re

pl
ac

em
en

ts

Shared Full Isolation Configurable

10X-Power reprovisioning-Mixed

0.00

0.20

0.40

0.60

0.80

1.00

0.0 2.0 4.0 6.0 8.0 10.0 12.0
Time in Years

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Configurable Power Configurable Full Isolation Power
Full Isolation Shared

(a) Performance over time

(b) Normalized component replacements

Figure 9: Improved performance from dynamically re-
provisioning the power budget during failures.

6. SUMMARY AND CONCLUSIONS
Integration of more cores and other components on CMPs allows
greater computational capacity and system functionality at the
chip level, enabling cost and performance benefits. These same
trends, however, pose problems by requiring fault containment
and faulty-component replacement at the CMP level, leading to
higher costs and increased downtime. This problem is exacerbated
by the expected increased fault rates in future technologies.

In this paper, we addressed the conflict between the benefits from
system integration and resource sharing and the need for fault
isolation and graceful degradation. Specifically, we proposed a
novel CMP architecture that is designed to support configurable
isolation, or optional logical isolation to shared components. We
achieved this through intelligent support for reconfiguration that
allows processor resources to be reallocated and partitioned
dynamically, but with very little area overhead.

Using a two-phase simulation methodology, we showed the
benefits of the proposed architecture. Fault isolation in the
proposed architecture can deal with failures from both permanent
faults and transient faults, while still getting most of the benefits
from sharing. Additionally, for permanent faults, the
reconfiguration support in our architecture allows for graceful

degradation even in the face of failure of individual CMP
components. The reconfiguration also enables other optimizations
including a novel approach that dynamically reprovisions the
power budget to further reduce degradation from faults. Our
results show that, even for a futuristic fault model, the
performance degradation from our architecture is less than 30%
over a 10-year period, in contrast to more than 80% with
conventional architectures; moreover, the incremental area
overhead to enable this solution in a commodity processor is less
than 1%.

Our work also opens up an interesting design space of policies -
for reconfiguration, fault color distribution, workload-to-partition
assignment, and power re-provisioning. Additionally, configurable
isolation has implications beyond faults, to performance and
security isolation. Furthermore, this architecture can enable
tradeoffs between availability and performance, which is a useful
characteristic in future utility computing environments. As part of
ongoing and future work, we plan to evaluate these in more detail.

In the near future, not all general purpose systems will require
such a high degree of protection from faults. Therefore, we
designed our architecture to be configurable and evaluated the
proposed architecture as it would be deployed in a high
availability configuration. Although using these techniques can
lead to 100% overhead they provide effectively 100% detection of
faults. Furthermore, the 100% overhead stays constant as the fault
rates increase in future generations, making this solution viable for
continued technology scaling. As fault rates continue to increase
in the future, we believe approaches like configurable isolation,
needing only small and non-intrusive changes to commodity
architectures to enable high availability, are likely to be an integral
part of future systems, including possibly in general-purpose
desktops and laptops.

7. ACKNOWLEDGMENTS
We are grateful for the feedback of Luiz Barroso and our
reviewers. Paolo Faraboschi’s help with the simulator and the
input from Dave Garcia and George Krejci were invaluable. We
would also like to thank Prasun Agarwal, Wendy Bartlett, Daniel
Ortega, Kewal Saluja, John Sontag, Bill Tian and Shyam
Thoziyoor for their input.

8. REFERENCES
[1] Albonesi, D.H. Selective Cache Ways: On-Demand Cache

Resource Allocation. Journal of Instruction-Level Parallelism,
Vol. 2, 2000.

[2] Austin, T. M. DIVA: A reliable substrate for deep submicron
microarchitecture design. In Proc. of the 32nd Intl. Symposium
on Microarchitecture, November 1999.

[3] Bartlett, W. and Ball, B. Tandem’s Approach to Fault Tolerance.
Tandem Systems Rev., vol. 4, no. 1, Feb. 1998, pp. 84-95.

[4] Bernick, D., Bruckert, B., Vigna, P. D., Garcia, D., Jardine, R.,
Klecka, J., and Smullen, J. NonStop® Advanced Architecture.
Conf. on Dependable Systems and Networks, 2005, 12–21.

[5] Borkar, S. Challenges in Reliable System Design in the Presence
of Transistor Variability and Degradation. IEEE Micro, vol. 25,
no. 6, Nov.-Dec. 2005, pp. 10-16.

[6] Bower, F. et al. Tolerating hard faults in microprocessor array
structures. In proceedings of the 2004 International Conference
on Dependable Systems and Networks, 2004.

480

[7] Bressoud, T. C. and Schneider, F. B. Hypervisor-based fault
tolerance. ACM Trans. Computer Systems 14, 1 (Feb. 1996), 80-
107.

[8] Constantinescu, C. Trends and challenges in VLSI circuit
reliability. IEEE Micro, 23(4):14–19, 2003.

[9] Dell, T.J. A White paper on the benefit of chipkill-correct ECC
for PC Server Main Memory, IBM white paper, http://www-
03.ibm.com/servers/eserver/pseries/campaigns/chipkill.pdf.

[10] Eagle Rock Alliance Ltd. Online survey results: 2001 cost of
downtime.
http://contingencyplanningresearch.com/2001.Survey.pdf, Aug.
2001.

[11] Fair, M.L., Conklin, C.R., Swaney, S. B., Meaney, P. J., Clarke,
W. J., Alves, L. C., Modi, I. N., Freier, F. , Fischer, W. ,and
Weber, N. E. Reliability, Availability, and Serviceability (RAS)
of the IBM eServer z990. IBM Journal of Research and
Development, Nov, 2004.

[12] Gold, B. T. et al. TRUSS: a reliable, scalable server architecture.
IEEE Micro, Nov-Dec 2005.

[13] Gold, B. T., Smolens, J. C., Falsafi, B. and Hoe, J. C. The
Granularity of Soft-Error Containment in Shared Memory
Multiprocessors, Proceedings of The Workshop on Silicon Errors
in Logic - System Effects (SELSE), 2006

[14] Gomaa, M. et al. Transient-fault recovery for chip
multiprocessors. In Proceedings of the 30th International
Symposium on Computer Architecture, June 2003.

[15] Hennessy, J. The Future of Systems Research. IEEE Computer,
vol. 32, no. 8, Aug. 1999, pp. 27-33.

[16] Joseph, R. Exploring Core Salvage Techniques for Multi-core
Architectures. Workshop on High Performance Computing
Reliability Issues, 2005

[17] Mukherjee, S. S. et al. Detailed design and evaluation of
redundant multithreading alternatives. In Proceedings of the 29th
International Symposium on Computer Architecture, May 2002,
99–110.

[18] Nakano, J. et al. ReViveI/O: Efficient handling of I/O in highly-
available rollback-recovery servers. In HPCA, 2006.

[19] Qureshi, M. K. et al. Microarchitecture-based introspection: A
technique for transient-fault tolerance in microprocessors. In
Proc. of 32nd Intl. Symp. on Comp. Arch. (ISCA-32), June
2005.

[20] Ranganathan, P., Adve, S., and Jouppi, N. P. Reconfigurable
Cache and their Application to Media Processing, Proceedings of
the 27th International Symposium on Computer Architecture
(ISCA-27), June 2000.

[21] Ray, J. et al. Dual use of superscalar datapath for transient-fault
detection and recovery. In Proceedings of the 34th International
Symposium on Microarchitecture, December 2001.

[22] Reinhardt, S. K. and Mukherjee, S. S. Transient fault detection
via simultaneous multithreading. In Proceedings of the 27th
International Symposium on Computer Architecture, June 2000.

[23] Rotenberg, E.. AR-SMT: A microarchitectural approach to fault
tolerance in microprocessors. In Proceedings of the 29th
International Symposium on Fault-Tolerant Computing, June
1999.

[24] Shivakumar, P. et al. Modeling the effect of technology trends on
the soft error rate of combinational logic. In Proceedings of the
International Conference on Dependable Systems and Networks,
June 2002, 389–398.

[25] Shivakumar, P. Keckler, S. W., Moore, C. R., and Burger, D.
Exploiting Microarchitectural Redundancy for Defect Tolerance.
The 21st International Conference on Computer Design (ICCD),
October, 2003

[26] Slegel, T.J. et al. IBM’s S/390 G5 Microprocessor Design. IEEE
Micro, vol. 19, no. 2, Mar./Apr. 1999, pp. 12-23

[27] Smolens, J. C. et al. Efficient resource sharing in concurrent error
detecting superscalar microarchitectures. In Proc. of 37th
IEEE/ACM Intl. Symp. on Microarch. (MICRO 37), December
2004.

[28] Sorin, D. J. et al. SafetyNet: improving the availability of shared
memory multiprocessors with global checkpoint/recovery. In
Proc. of 29th Intl. Symp. on Comp. Arch. (ISCA-29), June 2002.

[29] Srinivasan, J., Adve, S.V., Bose, P., Rivers, J.A. The Impact of
Technology Scaling on Lifetime Reliability. Proceedings of
International Conference on Dependable Systems and Networks
(DSN '04) June 2004.

[30] Srinivasan, J., Adve, S. V., Bose, P., and Rivers, J. A. The Case
for Lifetime Reliability-Aware Microprocessors. Proceedings of
31st International Symposium on Computer Architecture (ISCA
'04) June 2004.

[31] Srinivasan, J., Adve, S. V., Bose, P., and Rivers, J. A. Exploiting
Structural Duplication for Lifetime Reliability Enhancement. In
Proceedings of the 32nd International Symposium on Computer
Architecture (ISCA'05), June 2005.

[32] Sundaramoorthy, K. et al. Slipstream processors: Improving both
performance and fault tolerance. In ASPLOS, October 2000.

[33] Vijaykumar, T. N. et al. Transient-fault recovery using
simultaneous multithreading. In Proceedings of the 29th
International Symposium on Computer Architecture, May 2002.

[34] Wunderlich, R. E., Wenisch, T. F., Falsafi, B., and Hoe, J. C.
2003. SMARTS: accelerating microarchitecture simulation via
rigorous statistical sampling. In Proceedings of the 30th Annual
international Symposium on Computer Architecture, June 2003.

[35] SPEC Benchmark Suite. http://www.spec.org and
http://www.spec.org/cpu/analysis/memory/

[36] International Technology Roadmap for Semiconductors.
http://www.itrs.net/

[37] Falcon, A. Faraboschi, P., and Ortega, D. Combining Simulation
and Virtualization through Dynamic Sampling. ISPASS-2007.

[38] Foxton Technology,
http://www.intel.com/technology/magazine/computing/foxton-
technology-0905.htm

[39] Barroso, L. A., Gharachorloo, K., McNamara, R., Nowatzyk, A.,
Qadeer, S., Sano, B., Smith, S., Stets, R., and Verghese, B.
Piranha: A scalable architecture based on single-chip
multiprocessing. In Proceedings of the 27th International
Symposium on Computer Architecture, June 2000.

[40] Kongetira, P., Aingaran, K., and Olukotun, K. Niagara: A 32-
way multithreaded SPARC processor. IEEE Micro, 25(2):21–29,
2005.

[41] Tendler, J. M., Dodson, J. S., Fields Jr., J. S., Le, H., and
Sinharoy, B. IBM Power4 system microarchitecture. IBM
Journal of Research and Development, 46(1):5–26, 2002.

481

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

