
Real-Time Systems
Lab 6: Reentrancy

Due: April 12, 2018 (Before Class)

Introduction

In this lab we will address reentrancy in our RTS. So far we’ve been using whatever functions, libraries, etc.
were helpful to achieve our objectives. But these functions likely are not reentrant, indicating they cannot
be guaranteed to operate properly under all timing conditions. So to complete our Ringo software stack we
need to remove our dependence on Plum Geek’s software and ensure all our code is reentrant. As a result,
in this lab you will:

1. remove all Plum Geek and any other external support libraries. The only libraries/files you may keep
are Adafruit_NeoPixel, and Arduino_FreeRTOS library as long as any functions you use from
those libraries are reentrant. It is safe to assume that functions in Arduino_FreeRTOS are reentrant.

2. rewrite all the additional functionality you need as reentrant functions that can be called by your tasks

3. demonstrate that you can still accomplish the mission from Lab 4 and Lab 5 with all your reentrant
functions

Possible Approaches

As an example, consider the function in the Plum Geek API that sets the motor speed
Motors(int LeftMotorSpeed, int RightMotorSpeed) in the RingoHardware library. This func-
tion accesses a shared resource and a shared variable and hence is not reentrant. Here are a few possible
approaches you could take:

• Copy this function into your code and modify it to be reentrant.

– You would also need to do that with any functions called by the Motors(int LeftMotorSpeed,
int RightMotorSpeed) since a reentrant function can’t call a non-reentrant function.

• You can write new (improved) functions that do whatever you want them to do as long as any func-
tions in the code are reentrant.

• You can more aggressively reconsider your code design. That is, maybe in your code the motors are
only called by one task, which means they don’t really need to be in a function at all. You could move
that functionality directly into the task. You can move functionality between “functions” and “tasks”
as you like. Recognize, however, this increases your odds of introducing new bugs.

Requirements

No matter which method you use, here are the requirements for the lab:

• The code you’ve written this semester using FreeRTOS, that is, the controller, planner, and guidance,
all needs to run without any external libraries except

1. Adafruit_NeoPixel

Updated: March 14, 2018 Real-Time Systems 1



2. Arduino_FreeRTOS

• Ringo will need to accomplish its mission from the past two labs without using any Plum Geek li-
braries.

• You need to have at least 5 reentrant functions even if you refactor your code to move some function-
ality previously in a function into a task.

– This means you can’t just move all the code from the various Plum Geek libraries into your
existing tasks (though this wouldn’t help with the shared data problem anyway).

Protips

• Start this lab early and come up with a plan of attack. This lab could be very difficult since you will
likely need to drill down the function call chain all the way to the functions that interact with the
hardware directly.

• I think the best route to success will be to modify existing functions (rather than write all new ones)
as this will minimize debugging. However, we know there are some suboptimal design choices in the
existing functions, so you may want to fix some of them as well to make your life easier.

Reminder on Reentrancy

If a function can be safely executed concurrently, then it’s called reentrant. In class we narrowed this down
to a few requirements. A function:

• Must not hold or return pointer any static (or global) non-constant data.

• Must work only on local data and the arguments provided by the caller.

• Must not call non-reentrant functions.

• Must not rely on locks to singleton resources.

Remember that timing bugs don’t always show up predictably. A non-reentrant function might be called
millions of times without a problem, but then one time the timing of a task preemption could lead to a
shared data bug. This is why it’s important to follow real-time programming best-practices and write your
functions to be reentrant in the first place.

What to submit

1. (35 points) Zip the entire Arduino project so that we can just unzip and execute the source code.

• Please include a diff of the source code between this lab and previous one. Please use a “diff” tool
of some kind that highlights the changes from previous files (e.g. https://www.diffchecker.
com/, meld, github, etc.).

• Your code cannot use any Plum Geek libraries. If I see them in the code or zipped folder I will
dock points.

2. (30 points) Documentation of the task(s) you have implemented for this lab. (0.5-1 page long)

Updated: March 14, 2018 Real-Time Systems 2

https://www.diffchecker.com/
https://www.diffchecker.com/


• Provide a one paragraph explanation of how you made your functions reentrant as well as your
overall approach for this lab in removing Plum Geek’s libraries. That is, what functionality did
you move into tasks vs. writing new functions, etc.

• Please list in your writeup all the new reentrant functions you wrote so I can identify them in the
code.

• If for some reason you can’t finish the lab and you still need some functionality from Plum Geek’s
libraries, tell me what functions you use and I will give you partial credit. Make sure you turn
something in for partial credit at least!

3. (35 points) Record a short video of Ringo achieving the same mission you did in the video for Lab 4
and 5. To help me know you aren’t just submitting the same video include some audio or timestamp
in the video with the date you recorded the video.

• Be sure to describe or narrate the test that Ringo is doing that demonstrates that you have ac-
complished the objectives of the lab.

• Please upload the video to YouTube, Vimeo, or something similar and then provide me with a
link. Just put the link somewhere in the writeup you did in #2 above.

4. Upload all of this into “handin” at https://cse-apps.unl.edu/handin

Updated: March 14, 2018 Real-Time Systems 3

https://cse-apps.unl.edu/handin

