
Real-Time Systems
Lab 3: Writing a Controller

Due: February 9, 2017 (Before Class)

Introduction

Now that you’ve had enough experience with the basics of Ringo and you have also played with FreeRTOS.
It’s time to write controller tasks for Ringo. You will be writing two controller tasks to perform a) following
a straight line, and b) a turning or rotating movement. You will demonstrate your controllers by making
the Ringo carve out a square (or rectangle) in its motion. The square must be at least 1 ft × 1 ft. You can
include another task that will switch the controller to straight from rotation and vice versa. Note: your
controller should be able to take either a rotation value and rotate to the desired value or take a distance
value and move that far in a straight line.

You can write a controller of your choice, using any control law of your choice as long as you document
and justify why you did what you did. You are not allowed to use PlumGeek’s predefined behaviors and
functions for this task (those in “Behaviors.h” for example), however you can use their sensor sampling
functions to obtain the current heading and rotation values of the robot as well the function to cause the
motors to move.

Example

An example an appropriate control law is PID control. A continuous PID controller continuously calculates
an error value e(t) as the difference between a desired set point and a measured point and applies a cor-
rection based on proportional, integral, and derivative terms. This law can be mathematically represented
as:

u(t) = Kpe(t) +Ki

∫ t

0

e(τ)dτ +Kd
de(t)

dt

The reason to choose such a controller is that it’s easier to understand and implement. So if you don’t
have experience with controller development I recommend implementing a PID controller. If you get done
sooner, you can go the extra mile and derive equations of motion and implement a more sophisticated
(e.g. state-space) controller. For the purpose of this lab, a PID controller is sufficient but you will want
to make sure you tune the gains to get an appropriate amount of accuracy. You should recognize that the
PID equation above is in continuous time. Obviously, working in the discrete computational world, that
equation won’t work as is.

What to submit

1. (35 points) Zip the entire Arduino project so that we can just unzip and execute the source code.

• Please include a diff of the source code between this lab and previous one. Please use a “diff” tool
of some kind that highlights the changes from previous files (e.g. https://www.diffchecker.
com/, meld, github, etc.)

2. (30 points) Documentation of the task(s) you have implemented for this lab. (0.5 - 1 page long)

• Clearly state the control law you have implemented and why. Include the equation for the con-
trol law.

Updated: January 26, 2017 Real-Time Systems 1

https://www.diffchecker.com/
https://www.diffchecker.com/


• Describe each implemented task briefly and how you decided how to break up the behaviors
into different tasks (or why you chose to use a single task). Classify any tasks into periodic,
aperiodic, or sporadic, and provide justifications on why a task is of a certain type and what
were the thoughts while deciding the frequency of the tasks.

3. (35 points) Record a short video of the robot going around the square/rectangle doing right turns,
and then again doing left turns. This verifies you can rotate in both directions.

• Please upload the video to YouTube, Vimeo, or something similar and then provide me with a
link. Just put the link somewhere in the writeup you did in #2 above.

4. Upload all of this into “handin” at https://cse-apps.unl.edu/handin

Updated: January 26, 2017 Real-Time Systems 2

https://cse-apps.unl.edu/handin

