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ABSTRACT
A survey is a common method to elicit behavioral data. The col-

lected data provides a noisy representation of the actions of a sam-

pled population. Direct access to individual responses is rare, for

many obvious reasons. Instead, most of us would only have access

to aggregated information about the percentage of individuals who

reportedly took certain actions. Public-health data on populations’

vaccination rates collected by government officials is such exam-

ple and will be the focus of this paper. Naturally, behavioral data

capture implicit interdependencies governing the decision-making

process of the sampled population. In this work, we undertake the

challenging task of uncovering such independencies of the data

and use computational game theory (CGT) to model data as the

result of distributed decision-making at the reported granularity

level (e.g., nations, states, districts, and towns). Indeed, CGT has

increasingly gained popularity as both a formal and practical frame-

work in which to study the potential effect of policy making of

agents in a variety of settings, like the vaccination setting we study

here. To achieve our task, in this paper, we posit the view of aggre-

gated behavioral data as jointly randomized, or mixed, strategies

of multiple agents. We propose a novel general machine-learning

approach to infer game-theoretic models from a potentially noisy

dataset of mixed strategies. Our goal is to learn instantiations of

game-theoretic models from the data that would best explain and

compactly represent the global behavior of the population within a

given hypothesis class of games. Ultimately, we want to employ the

learned models for policy analysis on the underlying system as a

whole, which cannot be achieved using other existing approaches.

We illustrate our framework in a health-policy setting using pub-

licly available data on vaccination rates in the continental USA.
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1 INTRODUCTION
Computational game theory (CGT) has become an important tool in

science and engineering. Its use has increased considerably in recent

decades. A major reason for its popularity comes from the strong

mathematical foundation it provides for settings of distributed

Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), M. Dastani, G. Sukthankar, E. André, S. Koenig (eds.), July 10–15, 2018,
Stockholm, Sweden. © 2018 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

decision-making. Security games (see, e.g., a survey by [21]), net-

work security games (see, e.g., surveys by [26] and [23]), influence

games [17], and vaccination games [15], among others, exemplify

models used to describe and help predict joint global behavior of in-

dividual entities in complex systems. Largely motivated by datasets

from the USA’s Center for Disease Control and Prevention (CDC),
here we apply CGT, AI, and ML to a vaccination setting at a new

scale and abstraction level.

The CDC collects and reports aggregate data about vaccination

rates, along with standard deviations, for each state (of the U.S.)

yearly. Each vaccination percentages represent the state-wide be-

havior of the people living in the State. Alternatively, we can view

each state’s vaccination percentage as a proxy measure of the state

government’s achievement from effort to raise its population vacci-

nation rate for some disease or epidemic (e.g., influenza and Ebola).

For instance, this can be done by increasing the awareness through

state CDC newsletters and websites
1
. As a result, we can view those

vaccination rates of the states as the joint-behavior of the states (i.e.,

the outcome of their efforts). Given these state vaccination rates,

we want to understand how the epidemic vaccination decisions of

the states affect each other by modeling the strategic interaction as

vaccination games (the variant used here is defined in Section 4).

More generally, our main interest is to infer interdependent

characteristics inherent in the system from just the state vaccination

data we have available. We seek to address a couple of fundamental

scientific and engineering questions for this type of data. One is

the “the learning question," how much can we learn in terms of

compact representation of global behavior exclusively from the

aggregate reports we have available about each entity in the system

in isolation, by exploiting implicit interdependencies encoded in

those pieces of aggregate information? The other is the “inference

question," what type of questions we can study, particularly in

terms of state policy making and evaluation? In this paper, we

mostly focus on the learning question, and provide an illustration

addressing the inference question.

Contribution. We conclude the introduction with a summary

of our contributions. Our interest in this work is learning games

from observed high-dimensional mixed-strategy data. In contrast to

previous work, in which the data are the actions or pure strategies

of the players [16], we are dealing with data that summarizes the

actions of all the individuals within a state’s population. In our

model, we view each vaccination rate as representing the mixed-

strategy of each state agent. In game-theoretic terms, we view these

probabilities collectively as possibly approximate mixed-strategy

Nash equilibrium (MSNE) to account for noises. In particular, we

1
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• propose and introduce amachine learning (generative) frame-

work to learn a game given the behavioral data;

• use our framework to derive a heuristic to learn α-IDS games

given the CDC vaccination data; and

• experimentally show that our framework and learning heuris-

tic are effective for inferring α-IDS games for understanding

“global” strategic behavior and illustrate policy analysis of

the states in the U.S.

Related Work. The closest work to ours is that of Honorio and

Ortiz [16], in which they provide a general machine-learning frame-

work to learn the structure and parameters of games from discrete

behavioral data (e.g., “Yes/No"-type responses). Moreover, they

demonstrate their framework on learning some classes of games.

We refer the reader to the related-work section of Honorio and Ortiz

[16] for a more detailed discussion. For brevity, all other previous

methods assume that the actions and payoffs are observable in the

data [6, 7, 9, 12, 28–30] while others are interested in predicting

future behavior from the past behavior (system dynamics) [20, 31].

2 PRELIMINARIES
We refer the reader to [11] for an introduction to basic concepts

in game theory. Let V = {1, 2, ...,n} be a set of players/agents. For
each i ∈ V , let Ai be the set of actions/pure-strategies available to i ,
andA = ×i ∈VAi the set of joint-actions/joint-pure-strategies. Denote
by ui : A→ R the payoff of i for each joint-action in A. Similarly,

let Xi be the set of mixed-strategies of i , and X ≡ ×i ∈VXi be the
set of joint-mixed-strategies, which is a probability simplex over

Ai . Given the context of this paper and the application domain

(i.e., the CDC dataset), we assume that Ai = {0, 1} for all i , so
that we can represent Xi = [0, 1], and interpret each xi ∈ Xi
as the probability that agent i plays ai = 1. We also assume that

for all i , the maximum and minimum payoff value of ui is 1 and
0, respectively. Using the standard abuse of notation, we denote

by ui (x ) ≡ Ea∼x [ui (a)] =
∑
a∈A

[∏
j ∈V x

aj
j (1 − x j )

(1−aj )
]
ui (a)

is the expected payoff of player i with respect to x ∈ X . Given ϵ ≥
0, a mixed-strategy profile x∗ ∈ X is an ϵ-approximate mixed-
strategy Nash equilibrium, or ϵ-MSNE for short, of a non-cooperative
game [27], defined by the tuple (V ,A, {ui }i ∈V ) if, for each player i ∈
V ,ui (x

∗
i ,x
∗
−i ) ≥ ui (xi ,x

∗
−i )−ϵ for all xi ∈ Xi . Moreover, we denote

the set of all ϵ-MSNE of a game G as NEϵ (G) ≡ {x∗ ∈ [0, 1]n |

∀i, ui (x
∗
i ,x
∗
−i ) ≥ ui (0,x

∗
−i ) − ϵ and ui (x

∗
i ,x
∗
−i ) ≥ ui (1,x

∗
−i ) − ϵ } .

A 0-MSNE is an exact MSNE, which always exists for any non-

cooperative game [24].

3 A FRAMEWORK TO LEARN GAMES
We now present our general framework to learn games from joint-

mixed-strategy behavioral data.

3.1 A Generative Model for Behavioral Data
Motivated in part by the CDC data, we propose a generative model

of behavioral data over the set of mixed-strategy profiles. We build

on the work of [16], in which they provide a general machine-

learning framework to learn the structure and parameters of games

from discrete behavioral data (e.g., “Yes/No"-type responses). This

will present a number of challenges, which we will discuss after

formally presenting our proposed generative model.

We assume (as in [16]) the statistical process generating the

data is a simple mixture model: i.e., with probability q ∈ (0, 1), the
process generates/outputs a mixed-strategy profile x by drawing

uniformly at random from the set NEϵ (G); with probability 1 −

q, the process generates a mixed-strategy profile x by drawing

uniformly at random from its complement set [0, 1]n − NEϵ (G),
the complement ofNEϵ (G). Said differently, our generative model

of behavioral data for mixed-strategy profiles is a mixture model

with mixture parameter q and mixture components defined in terms

of the approximation parameter ϵ > 0 and a game G. Even though

we view each reported vaccination rate as a mixed-strategy, we do

not assume that it corresponds to an exact MSNE. For instance, in

the context of state-level vaccination rates, noise is common on

the type of aggregate data that the CDC collects and reports. As a

result, ϵ is a way to account for noises in the data.

Let µ be the standard Borel measure. (We refer the reader to

a standard textbook [1] for an introduction to measure-theoretic

concepts.) Note that, in our context, because the outcome space is

[0, 1]n and µ ([0, 1]n ) = 1, we can view the Borel measure µ as the

uniform probability measure. More formally, the probability density
function (PDF) f for the generative model with parameters (q,G, ϵ )
over the hypercube of joint-mixed-strategies [0, 1]n is

f(q,G,ϵ ) (x ) ≡ q
1[x ∈ NEϵ (G)]

µ (NEϵ (G))
+ (1 − q)

1[x < NEϵ (G)]

1 − µ (NEϵ (G))
, (1)

for all x ∈ [0, 1]n . Our generative model was adapted from the

early work in [16] and it has already been shown to be effective

in learning games. Note that our definition of f(q,G,ϵ ) requires us
to deal with a few subtle but crucial potential measure-theoretic

obstacles that [16] did not have to face because their generative

model was a probability mass function. Key among those obstacles

is that our model requires the (Borel) measurability of NEϵ (G).
Another potential obstacle is the a priori possibility that NEϵ (G)
might have measure zero. The following lemma gets us around the

first roadblock.

Lemma 3.1. The set NEϵ (G) is Borel µ-measurable for any game
G and any ϵ ≥ 0.

Proof. Recall that NEϵ (G)

≡ {x∗ | ∀i, ui (x
∗
i ,x
∗
−i ) ≥ ui (0,x

∗
−i ) − ϵ

and ui (x
∗
i ,x
∗
−i ) ≥ ui (1,x

∗
−i ) − ϵ }

≡ BRϵ
1
(G) ∩ BRϵ

2
(G) ∩ · · · ∩ BRϵn (G),

where

BRϵi (G) = {x | ui (xi ,x−i ) ≥ ui (0,x−i ) − ϵ

and ui (xi ,x−i ) ≥ ui (1,x−i ) − ϵ }

for i ∈ V . The BRϵi (G) of each player i is formed by two continu-

ous multilinear/polynomial inequalities and BRϵi (G) ⊆ [0, 1]n . It

follows that NEϵ (G) ⊆ [0, 1]n is a semialgebraic set. The semial-

gebraic set is closed, and therefore NEϵ (G) is measurable. □

It turns out that we can also get around the second obstacle.

Proposition 3.2. For any ϵ > 0, we have µ (NEϵ (G)) > 0.



While it is possible that the measure of NEϵ (G) is zero for ϵ = 0,

its measure will be positive for ϵ > 0. The key to show this fact is to

realize that there is at least one MSNE inNEϵ (G) for any ϵ > 0. Us-

ing that MSNE, we can find a region surrounding it and this region

is determined by the value of ϵ . We do not present a formal proof

here because this is not our main focus. Instead, we concentrate

on learning parameters for games with µ (NEϵ (G)) > 0 for ϵ > 0.

Therefore, ϵ-MSNE is not only a natural and reasonable solution

concept to use for the type of data captured by the CDC data but

also it is convenient. The derivation of our proposed framework

went through smoothly only after we solved those potential pit-

falls. Indeed, we can derive technical results analogous to those

of Honorio and Ortiz [16] but in our context; we present those that

are most relevant to this paper. For Eqn. 1 to be valid, if ϵ = 1 or

NEϵ (G) = [0, 1]n , then we need to require that q = 1. Note that

NEϵ (G) , ∅ since every game has at least one MSNE [24].

3.2 Learning Games via Maximum-Likelihood
In this section, we present away to infer games from behavioral data

on mixed strategies. Let πϵ (G) be the true proportion of ϵ-MSNE
in the game G where πϵ (G) ≡ µ (NEϵ (G)) . Given a dataset D =

{x (1) , ...,x (m) }, where each x (l ) ∼ fq,G,ϵ , i.i.d., let π̂
ϵ (G) be the em-

pirical proportion of ϵ-MSNE: π̂ϵ (G) ≡ 1

m
∑m
l=1 1

[
x (l ) ∈ NEϵ (G)

]
.

Recall the Kullback-Leibler (KL) divergence between two Bernoulli

distributions with parameters p1,p2 ∈ (0, 1), which, following

standard practice, we denote by KL(p1∥p2) ≡ p1 log
p1
p2 + (1 −

p1) log
1−p1
1−p2 . The following definition will be useful.

Definition 3.3. (Trivial/Non-trivial Games)AgameG is trivial
iff µ (NEϵ (G)) ∈ {0, 1} and non-trivial iff µ (NEϵ (G)) ∈ (0, 1).

Proposition 3.4. (Maximum-likelihood Estimation) The tu-
ple ( ˆG, q̂, ϵ̂ ) is a maximum likelihood estimator (MLE), with respect
to dataset D, for the parameters of the generative model f(q,G,ϵ ) ,

as defined in Eqn. 1 if and only if (iff) q̂ = π̂ ϵ̂ (Ĝ), and (Ĝ, ϵ̂ ) ∈
arg max(G,ϵ ) KL(π̂

ϵ (G)∥πϵ (G)) .

Proof. For simplicity, we denoteNEϵ = NEϵ (G),πϵ ≡ πϵ (G),

and π̂ϵ ≡ π̂ϵ (G). For a non-trivialG, log f(G,q,ϵ ) (x
(l ) ) = log

q
µ (N Eϵ )

for x (l ) ∈ NEϵ and log f(G,q,ϵ ) (x
(l ) ) = log

1−q
1−µ (N Eϵ ) for x

(l ) <

NEϵ . The average log-likelihood

ˆL(G,q, ϵ ) =
1

m

m∑
l=1

log f(G,q,ϵ ) (x
(l ) )

= π̂ϵ log
q

µ (NEϵ )
+ (1 − π̂ϵ ) log

1 − q

1 − µ (NEϵ )

= π̂ϵ log
q

πϵ
+ (1 − π̂ϵ ) log

1 − q

1 − πϵ
.

Noting that q = q̂ ≡ q̂(G, ϵ ) ≡ π̂ϵ (G) = π̂ϵ maximizes
ˆL(G,q, ϵ )

for anyG and ϵ , we obtain ˆL(G, q̂, ϵ ) = π̂ϵ log π̂ ϵ
π ϵ +(1−π̂

ϵ ) log 1−π̂ ϵ
1−π ϵ

= KL(π̂ϵ ∥πϵ ). □

Let us make a few observations that follow from the MLE expres-

sion. First, if ϵ ≥ 1, then πϵ (G) = 1 for all games G, which implies

then π̂ϵ (G) = 1 for all games G. Hence, if ϵ̂ ≥ 1 the resulting KL

value is zero, so that
ˆG could be any game. Similarly, if π ϵ̂ (Ĝ) = 0

then we have π̂ ϵ̂ (Ĝ) = 0, so that once again the resulting KL value

is zero. Hence,
ˆG could be any game. If any trivial game is an MLE,

then every game, trivial or non-trivial, is also an MLE. Therefore,

we can always find non-trivial games corresponding to some MLE:

there are always non-trivial game MLEs.

An informal interpretation of the MLE problem is that, assum-

ing we can keep the true proportion of ϵ-MSNE low, the learning

problem simplifies to inferring a game that captures as many mixed-

strategy examples in the dataset as ϵ-MSNE, but without implicitly

adding more ϵ-MSNE than it needs to. Thus, formulating the learn-

ing problem using MLE brings out the fundamental tradeoff in

machine learning between model complexity and “goodness-of-fit,”

despite the simplicity of our model.

In fact, in most practical machine-learning (ML) applications

the MLE is typically non-unique (i.e., games with different parame-

ter values have the same ϵ-MSNE set). Common causes are finite
data and non-identifiability in terms of model parameters. This non-
uniqueness of the MLE is not exclusive to game hypothesis classes.

Bayesian networks, for example, have the same property in general,

for exactly the same reasons. Just like there are different Bayesian

networks that compactly represent the same joint probability dis-

tribution, there are different games that compactly represent the

same set of ϵ-MSNE. In both cases, the model parameters are non-

identifiable via MLE, regardless of the amount of data available.

The standard way to deal with this multiplicity of models in ML is

to invoke the Principle of Ockham’s Razor for model selection. In

general, experts in the respective field (e.g., epidemiology) would

provide the necessary bias for learning. It is important to note how-

ever that, just like Bayesian networks are identifiable in terms of

their joint probability distribution, games are identifiable in terms

of their ϵ-MSNE. In both cases, inference is sound because it re-

sults from queries computed based on the object being represented,

joint probability distributions or equilibria in the case of Bayesian

networks or games, respectively.

3.3 Reducing MLE to Classification
One problem with the exact KL-based formulation of the MLE

presented above is dealing with πϵ (G), even if it is well-defined

(i.e., µ (NEϵ (G)) > 0). Indeed, dealing with πϵ (G) directly would

require us to compute all ϵ-MSNE of G; computing only one ϵ-
MSNE is PPAD-hard in general [4, 5].

The following lemma provides bounds on the KL divergence that

will be useful in our setting.

Lemma 3.5. Given a non-trivial game G with 0 < πϵ (G) <
π̂ϵ (G), we can upper and lower bound the KL divergence as

−π̂ ϵ (G) log π ϵ (G) − log 2 < KL(π̂ ϵ (G) ∥π ϵ (G)) < −π̂ ϵ (G) log π ϵ (G) .

Proof. For simplicity, we denote πϵ ≡ πϵ (G) and π̂ϵ ≡ π̂ϵ (G).
From the definition of KL, we have

KL(π̂ϵ ∥πϵ ) = π̂ϵ log
π̂ϵ

πϵ
+ (1 − π̂ϵ ) log

1 − π̂ϵ

1 − πϵ
.

Noting that 0 < πϵ < π̂ϵ , we upper bound our KL expression by

KL(π̂ϵ ∥πϵ ) < π̂ϵ log
π̂ϵ

πϵ
< π̂ϵ log

1

πϵ



because log
1−π̂ ϵ
1−π ϵ < 0 and π̂ϵ < 1. For the lower bound, first note

that

KL(π̂ϵ ∥πϵ ) = π̂ϵ log
1

πϵ
+ (1 − π̂ϵ ) log

1

1 − πϵ
− H (π̂ϵ )

where H (π̂ϵ ) ≡ −π̂ϵ log π̂ϵ − (1 − π̂ϵ ) log(1 − π̂ϵ ) is the value of
Shannon’s entropy function evaluated at π̂ϵ . We obtain the lower

bound becauseH (π̂ϵ ) ≤ log 2, by properties of the entropy function,

and log
1

1−π ϵ > 0. This shows that we can bound the KL using the

upper/lower bound as claimed. □

From the last lemma, it is easy to see that when πϵ (G) is “low
enough,” we can obtain an approximation to the MLE by sim-

ply maximizing π̂ϵ (G) only: i.e., arg maxG KL(π̂ϵ (G)∥πϵ (G)) ≈
arg maxG π̂

ϵ (G). We implicitly enforce the constraint that πϵ (G)
is “low enough” via regularization or some other way that allows

us to introduce bias into the model selection. Therefore, we aim to

develop techniques to maximize the number of ϵ-MSNE in the data

while keeping ϵ small.

4 APPLICATION: GENERALIZED IDS GAMES
Given the CDC State vaccination data, we want to learn a game

that would explain the behavior of the state-agents and how the

behavior of the state-agents, possibly indirectly, affect the joint

behavior of other state-agents within the U.S. Therefore, we want

to look at reasonable games to effectively model such interaction.

Generalized IDS (α-IDS) games are well-studied games to model

the investment decisions of agents when facing transfer risks (i.e.,

epidemics) from other agents (states). As discussed in [3, 14], α-IDS
games have applicability in fire protection [19], and in vaccination

settings [15]. We refer the reader to [21] for a recent survey on the

broader concept of interdependent security.

In the vaccination setting, each agent decides whether or not

to “invest in vaccination” (i.e., state’s effort in enforcing its popu-

lation to vaccinate) given (1) the agent’s implicit and explicit cost

of vaccination/effort and loss from illness of its population, (2)

the vaccination decisions of other state-agents, and (3) the poten-

tial transfer probabilities/risks from other state-agents. The CDC

state vaccination data captures the investment behavior each State

through the vaccination rates, but does not explicitly contain the

costs or losses of any state, nor the transfer risks between states.

Moreover, it does not include the “average” costs, losses, or transfer

risks. Below, we propose an approach to learn models involving

them that best represent the CDC data at the State level.

4.1 Background
In α-IDS games with n state-agents, each state-agent i determines

whether or not to invest in protection (against epidemics). There-

fore, there are two actions i can play, and we denote ai = 1 if i
invests and ai = 0 if i does not invest. We let a = (a1, ...,an ) to be

the joint-action profile of all agents and a−S to be the joint-action

profile of all agents that are not in S , where for simplicity, if S = {i},
a−S ≡ a−i . There is a cost of investment Ci and loss Li associated
with the bad event occurring, either through a direct or indirect

(transferred) contamination. We denote by pi the probability that

agent i will experience the bad event from a direct contamination

and by qji the probability that agent i will experience the bad event
due to transfer exposure from agent j (i.e., the probability that agent
j will transfer/spread the contamination/epidemics to i). Moreover,

the parameter αi ∈ [0, 1] specifies the probability that agent i’s
investment will not protect i against transfers of a bad event. Given
the parameters, the cost function of agent i is

Mi (ai , a−i ) ≡ ai [Ci + αi ri (a−i )Li ] + (1 − ai )[pi + (1 − pi )ri (a−i )]Li ,

where ri (a−i ) ≡ 1−si (a−i ) and si (a−i ) ≡
∏

j,i (aj+(1−aj ) (1−qji ))
are i’s overall risk and safety functions, respectively. We aim to

learn an α-IDS game from a given set of observed mixed-strategy

profiles, which contain hopefully many, but not necessarily all, ϵ-
MSNE. We need look at the cost function of the agents in terms of

mixed-strategies. Roughly speaking, we can do this by letting xi be
the probability thatai = 1 and take the expectation of the above cost

function (i.e., replace all a terms by x). Comparing the cost when

ai = 1 and ai = 0, we can derive a best-response correspondence

for i . Therefore, the expected cost function of player i with respect

to mixed-strategy x is Mi (xi ,x−i ) ≡ xi [Ci + αiri (x−i )Li ] + (1 −
xi )[pi + (1−pi )ri (x−i )]Li . By definition, an ϵ-MSNE x of an α-IDS
game satisfies

Mi (xi , x−i ) − ϵ ≤ Mi (0, x−i ) and Mi (xi , x−i ) − ϵ ≤ Mi (1, x−i ). (2)

It follows from Eqns. 2 that xi [Ci + αiri (xPa(i ) )Li − (pi + (1 −
pi )ri (xPa(i ) ))Li ] ≤ ϵ and −(1 − xi )[Ci + αiri (xPa(i ) )Li − (pi + (1 −
pi )ri (xPa(i ) ))Li ] ≤ ϵ . For simplicity, we let ∆i ≡ ∆i (xPa(i ) ) ≡
Ci + αiri (xPa(i ) )Li − (pi + (1 − pi )ri (xPa(i ) ))Li .

4.2 Learning
We begin by discussing the true proportion of ϵ-MSNE to justify

the use of Lemma 3.5 and then present our loss function to infer

parameters for maximizing the number of ϵ-MSNE in α-IDS games.

4.3 Proportion of ϵ-MSNE in α-IDS Games
As we argue in the previous section, we can approximate our MLE

objective by maximizing the number of ϵ-MSNE in the data, or

equivalently, maximizing π̂ϵ (G) over ϵ and G when the true pro-

portion of ϵ-MSNE of the game is less than the empirical proportion

of ϵ-MSNE in the dataset: 0 < πϵ (G) < π̂ϵ (G). Below, we empiri-
cally show that the true proportion of ϵ-MSNE in α -IDS games is very
low. This would justify Lemma 3.5 and our method of finding an

α-IDS game that maximizes the number of ϵ-MSNE.

Fig. 1 shows the sampled proportional of randomly generated

48-player α-IDS games in various graph structures. In particular, we

consider two basic graph structures that specify the transfer risks

among the players. The first graph structure results from the geo-

spatial adjacency of all states in the U.S.A continental (i.e., excluding

Alaska and Hawaii), where each of the 48 players corresponds

to a state of the US and the potential transfer risks occur from

neighboring states/players. The second graph structure is based on

the random graph generation of [8]. We refer to the latter type of

graphs as ER graphs. To generate an ER graph, we need to specify

the number of nodes and a probability p ∈ [0, 1] that denotes the
probability that the drawn ER graph will have an edge between any

two nodes. Clearly, a higher p value corresponds to a higher density

of the graph. In our case, we use ER graph as a way to generate

different structures among the 48 players with p ∈ {0.1, 0.2, ..., 0.9}.
Given the graphs, we generate the values of the parameters of α-
IDS games uniformly at random between zero and one. Finally,

we randomly sample 100,000 mixed-strategies and check to see

how many out of the 100,000 are ϵ-MSNE for ϵ ∈ {0.1, 0.2, ..., 0.9}.
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Figure 1: Sampled proportional of ϵ-MSNE in random α-IDS
games. The plots show the sampled proportion of ϵ-MSNE of
a fixed U.S. State topology (left) and random topology with
various density (right) of random α-IDS games of 48 players.
The x-axis represents the ϵ values and the y-axis represents
the proportion of ϵ-MSNE.

For the random state α-IDS games, we generate 100 of them, and

for each of them we compute the sampled proportion of ϵ-MSNE

for each ϵ ∈ {0.1, 0.2, ..., 0.9}. Using this data, we construct the

left boxplot of Fig. 1. For this plot, we observe that as ϵ goes to

zero the sampled proportion of ϵ-MSNE decreases exponentially.

This suggests that the true proportion of ϵ-MSNE is very small.

Similarly for the random ER α-IDS games, we consider different

p ∈ {0.1, 0.2, ..., 0.9}, and for each fixed p, we generate 20 α-IDS
games and compute the sampled proportion of ϵ-MSNE of each of

them. Using this data, we construct the right boxplot of Fig. 1. We

observe that as ϵ goes to zero the sampled proportion of ϵ-MSNE

decreases exponentially regardless of the density and structure of

the game graphs. Our results justify Lemma 3.5 and our method of

finding an α-IDS game that maximizes the number of ϵ-MSNE.

4.4 Maximizing the Number of ϵ-MSNE
In our approach, we subdivide the optimization by first optimiz-

ing over G, and then optimizing over ϵ . For any ϵ , we would

like to apply a simple gradient-ascent optimization technique to

learn the game G. Unfortunately, even the latter maximization

is non-trivial due to the discontinuities induced by the indica-

tor functions 1[.] defining the ϵ-MSNE constraints. Our goal is

then to further approximate π̂ϵ (G). First, we use an upper bound

by applying Eqn. 2: π̂ϵ (G) = maxG
1

m
∑m
l=1 1

[
x l ∈ NEϵ (G)

]
≤

maxG
1

m
∑m,n
l=1,i=1 1

[
x li∆

l
i ≤ ϵ

]
+1

[
−(1 − x li )∆

l
i ≤ ϵ

]
. Then, we ap-

proximate the indicator function in the last upper bound using a

sigmoid function S , which is the standard approach leading to the

BackProp algorithm in neural networks (see, e.g., [13]).

To avoid overfitting and to introduce our bias for “sparse” (graph-

ical) game structures, we regularize the transfer parameters qji . In
particular, those transfer probabilities implicitly define the struc-

ture of the α-IDS games. That is, viewing an α-IDS game from the

perspective of a (directed, parametric) graphical game [18], the di-

rected graph captures the direct transfer risks between the players

where each node in the graph represents a player in the game, and

there is a directed edge (i.e., an arc) from node j to node i if and only
if qji > 0. The typical regularizer used to induce sparsity in the

learned structure is the L1-regularizer, which we impose over the

qji ’s. We denote by λ > 0 the regularization parameter quantifying

the amount of penalization for large values of the qji ’s.
Before continuing, recall that for ϵ-MSNE to be meaningful, the

cost functions should be normalized as M̃i (xi ,x−i ) ≡
Mi (xi ,x−i )−mini

maxi −mini
where mini = {Ci ,piLi }, maxi = {Ci + αiri (0−i )Li , [pi + (1 −
pi )ri (0−i )]Li }, and 0−i stands for the vector that sets all the ele-

ments of x−i to the value 0, so that ri (0−i ) = 1 −
∏

j,i (1 − qji ).

Unfortunately, working with the M̃i ’s is cumbersome. Instead, we

keep the ϵ-MSNE constraints in terms of the original unnormalized

cost functionsMi ’s and introduce additional constraints based on

the expressions for mini and maxi .

Using standard primal-dual optimization, and denoting the cor-

responding dual-variables/Lagrange-multipliers βi and γi for each
additional cost-function normalization of each player i , we obtain
the following minimax program:

min

δ,β
max

G

1

m

m∑
l=1

n∑
i=1

S (−x li∆
l
i + ϵ ) + S ((1 − x

l
i )∆

l
i + ϵ )

+ λ
n∑
j=1

qji − δi (Ci − 1) (piLi − 1) − γi (2 − (Ci + αiri (0−i )Li ))

× (2 − ([pi + (1 − pi )ri (0−i )]Li )), (3)

where β = (β1, ..., βn ) and γ = (γ1, ..,γn ). We intentionally enforce

that mini = {Ci ,piLi } = 1 and maxi = {Ci +αiri (0−i )Li , [pi + (1−
pi )ri (0−i )]Li } = 2 to avoid computational issues. As long as the dif-

ference of the mini and maxi is ≈ 1, then we can easily see that the

ϵ-MSNE definition will be meaningful. Our goal now is to solve the

non-linear program in Eqn. 3 subject to the respective constraints

on each of the variables. As stated previously, we follow the tradi-

tional approach of using gradient-ascent/descent optimization as a

heuristic to update the game parameters. The process terminates

when the cost functions are normalized (i.e., mini = {Ci ,piLi } = 1

and maxi = {Ci +αiri (0−i )Li , [pi + (1−pi )ri (0−i )]Li } = 2 for every

i) and after exceeding some threshold based on the total running

time (i.e., ≈ 5 hours for the CDC dataset).

5 EXPERIMENTS ON VACCINATION DATA
Viewing each State as a player in the network, we interpret the

vaccination percentages as mixed-strategies and generatem sam-

ples i.i.d. according to an n-variate jointly-independent Gaussian
PDF, where n = 48, with the joint mean and standard deviations



given by each State’s reported vaccination rate and standard devia-

tion in the CDC 2009-2010 US States H1N1 data
2
. For example, in

the dataset, the state of Mississippi (MS) has a 17.5% vaccination

rate (std. 1.5%), while that for RI is 46.8% (std. 2.0%). This is our

way to account for the potential noise in the data. We consider

m ∈ {500, 1000, 1500, 2000, 2500, 5000}. It is important to note that

we do not have publicly available information about any (higher-

level) correlations among states in the CDC data. Each one of the

m samples is a joint mixed-strategy of dimension n = 48, and each

component in the joint-mixed-strategy sample is drawn indepen-

dently according to the mean and variance for the respective State.

5.1 Why “Obvious Baselines” Do Not Work
We are unaware of any other model/method we can apply or com-

pare to ours. The “obvious baseline" from the perspective of prob-

abilistic graphical models, that is, the one based on the Gaussian

Markov Network representation (i.e., MRFs or Gaussian graphical

models), or even Dirichlet-based graphical models, is clearly mean-

ingless. This is because for the CDC data we only have information

on the individual marginal probabilities of vaccination for each state

in the U.S.: there was no covariance, or other higher-order correla-

tion information between them available. Because our data consists

of independent draws for each state from a Gaussian distribution

with mean and variance as given in the data for the respective state,

as the data grows, it is clear that the best probabilistic model would

be a degenerate "graphical" model with no connection between the

nodes: a product of Gaussians! Hence, we would have no way to

infer anything about the potential interaction among the states.

Another alternatives to capture “casual non-strategic" or “strate-

gic” relationships are structural equation models (SEMs) [25], ran-

dom utility models (RUMs) [2], and quantal-response equilibrium

(QRE) models [22]. In contrast to our formulation here, learning for

those models boils down to a regression problem: linear (i.e., xi =∑
j,i w jix j+bi ) for SEMs and non-linear (i.e.,xi = S (

∑
j,i w ji (2x j−

1)+bi )) for RUMs and QRE. We refer to bi as the bias term. Because

we only have a single data point in the CDC dataset corresponding

to a mean xi and standard deviation σi for each state i , even if we

were to generate data i .i .d . according to aN (xi ,σ
2

i ), independently
for each state i , as we did for learning our model, by the law of large

numbers, the typical MSE regression used to learn the “obvious

baselines” essentially boils down to estimating the weights using

one equation (i.e. single mean) for each player. As such, the best

regression model results from simply setting all weight parameters

to zero (i.e.,w ji = 0 for all j) and the bias term bi to xi or ln
xi

1−xi
for SEMs or RUMs/QRE, respectively, which leads to meaningless

models. If we were to remove the bias term from these models,

then there would be an infinite number of weights that satisfy that

single equation, and no clear way to add further constraints or

preferences over the infinite solution space. For example, the obvi-

ous idea of using ridge regression with the smallest regularization

parameter that would lead to unique solution yields all positive

weights for the CDC dataset, which is inconsistent with the strategic

substitutability one would expect in vaccination settings. Without

regularization, the infinite number of solutions becomes evident

2
https://www.cdc.gov/flu/fluvaxview/reportshtml/reporti0910/resources/2009-10_

coverage.xlsx

as the typical MSE regression leads to very unstable values for all

the aforementioned regression models, as predicted by the math.

In short, these “obvious baselines” do not capture any meaningful

agent interactions, nor allow us to preform strategic inferences.

As a final remark, validation is impossible in settings like ours.

The same holds for other (unsupervised) settings like topic model-

ing, which have been found quite useful in practice, despite their

only validation being the ad-hoc evaluation by means of the re-

sulting representative most-likely words of a cluster appearing

qualitatively reasonable.

5.2 Learning α-IDS Games from CDC Data
We impose an a priori bias for learning where only neighboring

states may transfer the virus. Therefore, we are learning a geo-

spatially-informed continental-USA State-level α-IDS game. The

bias is plausible because state health departments monitor and pro-

vide neighboring states’ flu activity (i.e., www.health.state.mn.us).

To learn the parameters of an α-IDS game, we take partial deriva-

tives of the objective function of Prog. (3) with respect to the pa-

rametersCi , Li , αi , pi , and (qji )j ∈Pa(i ) for each player i and use the
standard gradient-ascent optimization technique. We experiment

with different regularization parameter values of β , δ , λ, and ϵ , and
with various sample sizes. We present our learned α-IDS game with

β = δ = −2, λ = 1, ϵ = 0.35, and n = 1500. We found these through

empirical observations and cross-validation. The running time (to

reach our termination conditions) of our algorithm increases as we

increase the sample sizes. We feel thatm = 1500 is a reasonable

number within a given time limit (≈ 5 hours). From our observation,

high ϵ usually results in capturing more number of ϵ-MSNE on av-

erage, while low ϵ yields the exact opposite, but both could results in
low average log-likelihood. We use ϵ = 0.35, which captures > 90%

of the data as ϵ-MSNE and seems to be a good compromise.

We now present the results of the 10 learned games based on 10

different datasets generated as described above. We select a learned

game among those we obtain within ≈ 5 hours with the highest

accuracy for each dataset. Although the 10 games have different

accuracies and log-likelihoods, they all exhibit similar behavior. We

believe this indicates that our algorithm is relatively stable, and our

empirical observations and conclusions are reasonably robust.

5.3 Learned α-IDS Games
Although the game parameters themsleves are not our main in-

terest, we would like to share some observations on our learned

α-IDS games using the CDC H1N1 vaccination dataset because they

provide anecdotal validation.

Players’ Characteristics. The first thing to note is each player’s

“type.” There are two types of players in an α-IDS game, whose char-

acterization of best-response behavior is to exhibit either strategic
complementarily (SC) or strategic substitutability (SS). An SC player

will play the action “vaccinate” if “enough" neighbors play action

“vaccinate.” On the other hand, an SS player will play the action

“vaccinate” if not “enough" neighbors vaccinate. Moreover, a player

i is SC or SS iff α > or < 1 − p, respectively. In the vaccination

setting, intuition suggest that one would expect all players to be

SS; there is no reason for a State to vaccinate if neighboring States

are protected from the virus (or epidemics). In our experiments (as

https://www.cdc.gov/flu/fluvaxview/reportshtml/reporti0910/resources/2009-10_coverage.xlsx
https://www.cdc.gov/flu/fluvaxview/reportshtml/reporti0910/resources/2009-10_coverage.xlsx


shown in Figure 2), all players in all 10 game instances we learned

were SS. We did not impose any conditions on the type of players

in our learning formulation: This behavior arose exclusively from

properties of the CDC dataset. Such empirical results provide some

partial, anecdotal evidence that the learned games are not arbitrary,

and consistent with our general intuition.
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Figure 2: Players’ Types of a Learned Game. The x-axis de-
notes the α values of the players, the y-axis denotes the 1−p
values of the players, and the line is the equation α = 1 − p.
The plot is scaled to capture the α and 1 − p values. The plot
illustrates that our learning formulation produces values of
the parameters that are consistent with vaccination scenar-
ios, where α < 1 − p.

Player’s Best-Response Correspondences. Recall that to deter-

mine the best-response of a player, we look at the players’ best-

response correspondences. In particular, the best-response corre-

spondence of a SS player i is

BRssi (x
Pa(i ) ) ≡




{0}, ∆ssi < si (xPa(i ) ),

{1}, ∆ssi > si (xPa(i ) ),

{0, 1}, ∆ssi = si (xPa(i ) ) ,

where ∆ssi ≡ 1−

Ci
Li −pi

1−pi−αi . In order for player i to have a non-trivial

response, the value of ∆ssi has to be in (0, 1). Indeed, in all of our

learned α-IDS games, the ∆ssi is in (0, 1), for all players i . The
histogram of ∆i values of each player i fall roughly between the

range of (0.010, 0.999) and is appears multi-modal, with two modes

near each extreme, and another near the middle of the range. Fig. 3

shows a histogram of the ∆i values of each player i . The values fall
roughly between the range of (0.010, 0.999).
Players’ Transfer Risks. Recall that the transfer risks of a player
are the (qji )j ∈Pa(i ) where qji is the probability that a virus will

transfer from j to i . Of course, our learned transfer risks depend on

the mixed-strategies of the players that we use to learn the values.

To show that our learned transfer risks are consistent with the

training examples, we compute the safety values of each player

from his neighbors using the vaccination-rate data (the mean rate

we used to generate the examples). More specifically, we compute

the safety value, eji = x j + (1− x j ) (1−qji ), of i from j ∈ Pa(i ). We

also compare the values of the eji to those of values using some

random mixed-strategies.

The results are shown in Fig. 4. In Fig. 4, we plot the qji and its

corresponding eji values given the mean vaccination-rate (top) and
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Figure 3: Histograms of the ∆ values. The x-axis is discretiza-
tion of the real-valued interval [0, 1] into the set of intervals
{(0, 0.1], (0.1, 0.2], ..., (0.9, 1]}, while the y-axis is the count of
∆ values that fall within each of those ranges.

a random mixed-strategy (bottom). The left plot shows an obvious

regularity not observed on the right plot. Plotting the qji and its

corresponding eji values given by the learned mean vaccination

rates and those obtained from mixed-strategies drawn uniformly

at random from [0, 1], we observe an obvious regularity for the

learned values not observed for those resulting from randomly gen-

erated mixed strategies (See Fig. 4). This suggests that the transfer

risks that we learned are not random and correlated to the training

examples. Hence, the results provide another piece of empirical evi-

dence suggesting that our learned models are not arbitrary, and that,

on the contrary, they seem consistent with our general intuition

regarding real-world vaccination settings

Players’ Equilibrium Behavior. Our main interest for learning

games is the ability they provide to potentially interpret what would

happen at an MSNE, even when the given data may not consists

of all examples being exact MSNE, or may be noisy. We want to

infer and study the behavior of the players (i.e., US states), at an

approximate MSNE of the learned game model, from noisy data,

in which not all examples may belong to the set of ϵ-MSNE of

some fixed but unknown game. Thus, given the learned games, we

can run a version of some learning-heuristics/regret-minimization

[10], in which we use the mean vaccination rates as the initial

mixed-strategy profile to compute ϵ-MSNE in these games.

Fig. 5 shows the ϵ-MSNE we obtain after the best-response-

gradient dynamics whenever it converges for ϵ ∈ {0.35, 0}. It turns
out that the mean vaccination-rates given in the CDC data is an

0.35-MSNE of the learned game. Note that this observation is non-

trivial because there is no technical a priori reason to expect such a

result: there is nothing in our learning algorithm that enforces any

such condition, and the data might have as well led our learning

algorithms to yield games for which such mean vaccination-rates

might not have been an 0.35-MSNE of the learned game. Moreover,

we are able to find an exact MSNE which is also a PSNE after

trying many initial mixed-strategies that are drawn uniformly at

random for the learning heuristic. A posteriori, the clear existence of
"free-rider" states at MSNE of the learned games provides another

piece of evidence consistent with the expectations of the behavior

of players in vaccination-type settings. For instance, according to

our learned model, at an equilibrium, NH plays the action of not



0 0.2 0.4 0.6 0.8 1

0.4

0.5

0.6

0.7

0.8

0.9

1
qji vs eij(xj) where xjs are mean of vacc. %

qji

e ij(x
j)

Student Version of MATLAB

0 0.2 0.4 0.6 0.8 10.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
qji vs eij(xj) where xjs are RANDOM

qji

e ij(x
j)

Student Version of MATLAB

Figure 4: Values of the Safety Functions. The safety func-
tions are evaluated using the mean of vaccination (Top) and
using a random mixed-strategy (Bottom). The x-axis repre-
sents the transfer risks and the y-axis represents the values
of the safety functions.

vaccinate while all of its neighbors vaccinate; we can see a similar

situation for KS.

5.4 Policy Making/Analysis: An Illustration
Although the main focus of this paper is on the “learning question,”

we want to show how the resulting models are useful for addressing

the “inference question” more thoroughly in future work. We now

provide a very brief illustration of descriptive analysis of the poten-

tial effect of increases in the vaccination rates through a targeted

public-health effort in Mississippi (MS), which the CDC report as

having on the lowest vr’s for the H1N1 flu vaccine among all states

in the continental U.S.A. Given the SS characteristics of our learned

models one would expect that increasing the rates in one state may

actually induce a lower rate on neighboring states. The question

is, what is the general magnitude of the effect? Fig. 6 provides a
possible answer to the last question within the context of our model.

We see how potential interventions to increase the rate in MS, in

absolute terms, affect equilibrium behavior. (Note that in any inter-

vention, the “set” MS rate is still an ϵ-MSNE.) Increasing the rate

in MS an additional 40% (almost 4-fold in relative terms) decreases

that of TN by 20% in absolute terms (about 23% in relative terms).

The plot suggests that increasing MS rates to about 40% may be a

good compromise. The “ripple effect” on NC, a neighbor of TN but

not MS, is as expected, but the magnitude is more moderate. Finally,

note how the uncertainty on the possible equilibrium rates at both

TN and NC increases with deliberately increasing the rate at MS.
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Figure 5: Equilibrium of the Learned α-IDS game. The ϵ-
MSNE to which best-response-gradient dynamics consis-
tently converged for ϵ ∈ {0.35, 0}. Darker regions correspond
to higher probability of vaccination (i.e., vaccination rates),
for the respective ϵ-MSNE.

Figure 6: Studying the Potential Effect on an Intervention
in MS. Approximate equilibrium vaccination rates (y-axis)
in Tennessee (TN) and North Carolina (NC) as a function of
potential interventions to increase the rates in Mississippi
(MS) by a given percentage in absolute terms (x-axis).

6 CONCLUSION
Our interest in this work is learning games from observed mixed-

strategy data. We deal with vaccination data that summarizes the

actions of all the individuals within a State’s population, which

can be viewed as vaccination efforts enforced by state government



officials. In our model, we view each vaccination rate as represent-

ing the mixed-strategy of each State agent, and the State agents

play a variant of vaccination games among themselves. We propose

and introduce a general novel ML framework to learn games from

mixed-strategy data. We show how to reduce MLE to classification

in our framework. We propose methods to learn α-IDS (vaccina-

tion) games from the CDC dataset. We show the effectiveness of

our framework and heuristics experimentally, and illustrate policy

analysis, thus providing a start to addressing this behavioral data.

Our framework is general enough to learn other hypothesis class

of games given a mixed-strategy dataset. While our main interest

in this work is to learn vaccination games with the given CDC

dataset, our framework can be applied to other applications such as

learning different types of security games given the available data.
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