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Abstract—Alloy is a declarative formal modeling language with
syntax derived from notations common to object-oriented design
and first-order relational logic semantics. To better understand
the usability of Alloy, the paper presents the results of an
empirical study with 30 participants assessing two types of
modeling tasks: bug fixing and model building based on natural
language specifications. The participants consisted of both novices
and non-novices. Besides accuracy and time to complete tasks,
we also examined the correlation between the performance of
two cognitive tasks and task performance. Results indicate that
overall, non-novices completed the tasks with significantly higher
accuracy (54% more accurate) than novices. In the novice group,
performing more actions using the Alloy analyzer led to more
edits and, eventually, higher scores in the bug fixing tasks. We
found that participants of all levels had much difficulty writing
a model from scratch, and they did not utilize the analyzer to
improve their models. On average, non-novices completed all the
tasks 32 minutes faster than novices. Non-novices who performed
better on the Alloy tasks had higher mental rotation scores, which
indicates the importance of spatial cognition ability in solving
Alloy tasks. Overall, we find that there is a definite need to
improve the usability of the visualizations in the Alloy Analyzer.

Index Terms—Alloy Specification Language, Bug Fixing, Em-
pirical Study, Software Modeling, Usability

I. INTRODUCTION

The Alloy formal specification language [1] aids in con-
structing models in the software design phase and checking
whether specific properties of systems hold. Its back-end
tool, the Alloy Analyzer [2], performs automated analysis on
models, checks assertions, and generates counterexamples to
those assertions if they do not hold. Alloy has been used in
a wide range of applications, such as test case generation [3],
security analysis of Android [4], [5], IoT devices [6], and
verification of critical properties of real systems [7], [8].
Traditionally, working with formal specification languages
has required in-depth mathematical knowledge due to their
complexity, and the learning curve is very steep for non-
mathematicians. In dealing with formal methods and designing

formal specification languages, the most important factors have
been soundness and correctness, and factors like readability,
usability, and comprehension were often overlooked [9]–[13].

Alloy’s design seeks to alleviate this problem with its
easy-to-understand syntax and use of familiar mathematical
concepts such as sets. However, there is very little research
on the usability and comprehension of Alloy as a language
from the user perspective and how it can be best taught to
novices. Krishnamurthi et al. make a case for paying more
attention to human factors in formal methods and state that
performing more user focused research can be beneficial for
building better tools and encouraging more people to learn
formal methods [10]. There has been some work on how
students use Alloy Analyzer in different contexts [14], [15].
However, none of this work is focused on the comprehension
of the Alloy language. This is important to study because
even though the Alloy Analyzer is helpful, its use does not
indicate comprehension of the actual Alloy model specifica-
tions. Moreover, almost all of the prior work is done with non-
novices. There is a clear existing gap of human factor studies
in the literature to understand how expertise plays a role in the
comprehension of Alloy specifications. It has been shown that
including varied expertise in program comprehension studies
can give interesting insights on how developers think about
problem solving [16].

To better understand the usability aspect of Alloy, the paper
presents an empirical study on the comprehension of the
Alloy language in two contexts: fixing bugs and building
models. Both novices and non-novices participated in the
experiment. For the bug fixing tasks, participants were given
natural language specifications for problems and their corre-
sponding Alloy models, which included buggy statements. The
participants were tasked with fixing the problems within the
models so they matched their specifications. To the best of
our knowledge, this is the first study to assess the impact of
experience on the ability to fix syntactic and semantic bugs in



Alloy models to match specifications. For the model building
task, we presented the participants with a natural language
specification and a blueprint of an Alloy specification for
them to complete. Research has shown that cognitive skills
such as spatial cognition and working memory capacity are
correlated with mathematical ability [17], [18]. In software
engineering studies, a moderate correlation between working
memory capacity and fixing bugs was found by Baum et
al. [19]. Sharafi et al. found that spatial ability and data
structure manipulation are correlated [20]. We wanted to test
whether such correlations exist between cognitive skills and
fixing bugs/building models in Alloy. To do this, we performed
two sets of cognitive tests (mental rotation [21] and operation
span [22]) to explore the correlation between memory capacity
and solving Alloy problems. The contributions of this paper
are as follows:
• An empirical study that explores comprehension of the

Alloy specification language in bug fixing tasks (syntax
and semantic) and a model building task.

• Comprehension pattern differences between novice and
non-novices in Alloy, which has not been studied before.

• A detailed analysis of Alloy Analyzer usage patterns
during the tasks.

• Cognitive tests to investigate the relationship between
working memory capacity and spatial cognition ability
with software modeling, also not studied before.

• Usability guidelines to improve future Alloy releases.
• A complete replication package for verifiability and repli-

cation purposes.
Results indicate that non-novices find and fix Alloy bugs

with significantly higher accuracy (54% more on average) and
complete the bug fixing tasks 32 minutes faster than novices.
These results show that even a few months of familiarity and
working with the Alloy language can make a big difference
in levels of comprehension. We found that building a model
from scratch is difficult for both novices and non-novices.
Many non-novices were not successful in adding the specified
dynamic properties to their model. For the bug fixing tasks, we
found that the number of Alloy Analyzer actions and model
edits correlated, which predicted the accuracy score of novices.
We found that novices and non-novices make incremental
changes before running the model to check whether they
can see a correct instance or fix the issues that generate
counterexamples. On average, novices make more changes
to the Alloy models to get to the correct specification (an
average of 12 more edits for novices compared to non-
novices over all the tasks). We found that spatial cognition and
Alloy bug fixing ability correlated, indicating the importance
of this cognitive skill in understanding Alloy’s underlying
mathematical concepts.

II. RESEARCH QUESTIONS

The paper addresses the following research questions:
• RQ1: What is the difference in accuracy and speed

between novices and non-novices for bug fixings tasks
in Alloy models?

• RQ2: What is the difference in accuracy and speed be-
tween novices and non-novices for building Alloy models
from a requirements specification?

• RQ3: What patterns do we observe in user behavior
during bug fixing and model building tasks?

• RQ4: How do working memory and spatial cognition
ability relate to task correctness?

The results from RQ1 help us explore the differences
between the novices’ and non-novices’ understanding of the
Alloy tasks regarding accuracy and speed in fixing bugs.
RQ2 helps understand how novices and non-novices work
on the model building task. Both these questions can help
us understand how prior exposure to Alloy makes a differ-
ence in problem solving. RQ3 helps us understand detailed
patterns of bug finding and model building in both groups via
recorded snapshots of the specification every time a participant
performed an action using the Analyzer. Finally, RQ4 explores
the relationship between performance on the Alloy tasks,
spatial cognition ability and working memory capacity, which
are two different cognitive skills related to mathematical and
programming abilities.

III. RELATED WORK

The two studies most related to ours are Li et al. [15] and
Danas et al. [14], who performed empirical studies on the
Alloy language in novices. Li et al. [15] explored how the
Alloy tool is used in practice by beginners by logging some
of the user interaction with the Alloy tool when students were
building Alloy models. The students are asked to build Alloy
models, which can indicate their language comprehension. In
contrast, our study is focused on exploring comprehension
by using both bug fixing and model building tasks, which
can give us more detailed information about the participants’
comprehension. Unlike their study, we focus on both novices
and non-novices.

Danas et al. [14] performed studies on both students and
Mechanical Turk participants to explore how different types
of outputs of the Alloy Analyzer model finder are used
in practice. They explored principled output forms (such as
minimal and maximal forms), provenance, and unsatisfiable
cores. Their goal was to see how the different types of outputs
help users understand and debug Alloy models.

Our work is complementary to both of these studies. We
focus on how users find and fix different kinds of bugs
(syntactic and semantic) in Alloy models based on their natural
language specifications. This can indicate how comfortable
the participants are in understanding the Alloy syntax and
language and how they work with the Alloy Analyzer. This
is one of the first works we know of that includes both
novices (N=17) and non-novices (N=13) in an empirical study
on Alloy. The comprehension model and patterns of using
the Alloy Analyzer can be observed in both groups and be
compared to the findings of Li et al. [15]. To our knowledge,
this is also the first study to explore the relationship between
specific cognitive abilities and comprehension of a lightweight
formal language such as Alloy. Exploring these relationships



TABLE I: Experiment Overview

Goal Study Alloy specification
language comprehension

Independent Variable Experience (novice and non-novice)

Tasks
Cognitive: Operation Span, Mental Rotation
Alloy Tasks: Syntactic Alloy Error,
Semantic Alloy Bug, Model Building

Dependent Variables
Accuracy, Speed, Usage of Analyzer,
Number of Analyzer Actions,
Number of Edits

can give us insight into what skills are more indicative of
better comprehension of specification languages.

IV. EXPERIMENTAL DESIGN

We describe the experimental design of the study, including
participants, tasks, study instrumentation, and measures. A
complete replication package [23] is available.

A. Experiment Overview

The goal of our controlled experiment [24], [25] is to
explore comprehension of the Alloy specification language in
novices and non-novices in evaluating syntactic and semantic
bug fixing and model building. We designed two different task
categories: cognitive tasks and Alloy tasks. The cognitive tasks
measure working memory capacity and spatial recognition
ability (RQ4) to determine if these abilities play a role in
bug fixing and model building performance. The Alloy tasks
are designed for the participants to locate and fix syntactic
and semantic bugs in the Alloy models and build models
based on a specification. We measure comprehension using
accuracy, speed, number of Analyzer actions, and number of
edits. An overview of the experiment is shown in Table I. The
university’s institutional review board approved the study.

B. Participants and Experience

We recruited 30 participants from different universities and
institutions worldwide. Each potential participant was sent
an email inviting them to participate in the study. If they
accepted the invitation, they were assigned an ID for the pre
and post questionnaires and were sent the study package and
the consent form via email. When the participants submitted
the study, they were compensated with a $10 Amazon e-gift
card.

Our participants had different levels of expertise in Alloy,
ranging from beginners who had recently started learning the
language to experts who had been working with the language
for years. Participants were recruited through emails to class
mailing lists, posts on Alloy messaging boards, and profes-
sional contacts. They were asked to fill out a demographic
questionnaire before the start of the study, which asked them
about their age, gender, affiliation, degree, native language, and
proficiency in English. There were 19 male participants and 11
female participants. Eleven participants were between the ages
of 21-25, nine were between 26-30, seven were between 31-35,
two were 36-40, and one was over 40 years old. Twenty-nine
participants were either pursuing or had Computer Science,

Computer Engineering, or Software Engineering degrees, and
one was pursuing an Industrial and Labor Relations degree.
Three participants were either pursuing a Bachelor’s degree
or held one. The rest of the participants were either pursuing
a graduate degree or held Masters or Doctorate degrees.

We asked the participants to self-report their experience
level, as it has been established [26] that self estimation is
a reliable measurement for programming experience. Partici-
pants completed a post-questionnaire (after they completed the
study to avoid any imposter syndrome bias) that asked them
to rate their programming skills, design skills, knowledge of
set theory, first-order logic, and object-oriented programming
skills. They were also asked to rate their comprehension
level of Alloy syntax and their level of comfort using the
Alloy Analyzer. The post-questionnaire showed us that some
participants were more familiar with Alloy despite only using
it for less than a year, specifically participants who were using
Alloy for research. We decided not to group these participants
with novices, as they had a deeper understanding of Alloy
due to extensive use. Thus, we defined non-novices in Alloy
as having more than one year of experience or having less
than one year of experience but having familiarity with the
language and rating their comfort level in understanding Alloy
syntax higher or equal to 3 out of 5. With this criteria, our
novice group consisted of N=17 and non-novices of N=13.

C. Tasks

The first category of tasks are the cognitive tasks. The
two cognitive tasks were the Operation Span Task [22],
[27] and the 3D Mental Rotation Task [21], which measure
working memory and spatial cognition ability, respectively.
Prior research [19], [20] has shown a correlation between
cognitive tasks and software comprehension tasks. We aimed
to explore whether these correlations exist for bug fixing and
model building tasks in Alloy.

We used a Python version of the Operation Span task [28]
for our study. This task shows a number of letters to the
participant, with a distractor math task between each letter,
and asks them to recall all the letters they have seen in order.
The final calculated score by the application (partial-credit
unit score) is between 0 and 1, with a score of 1 indicating
that the participant has recalled all the letters correctly. Each
participant completed four practice trials and 12 task trials.

We implemented a Java desktop application for the 3D
Mental Rotation task [29]. The task shows an image of a 3D
object to the participant and asks them to choose the correct
rotations of the 3D object from four different images presented
to them. For this task, each participant completed five practice
trials and 20 task trials. Since the participants had to choose
two correct rotations of the 3D object, we gave them 1 point
for each correct choice they made. With this scoring criteria,
the max score for this task would be 40.

The second category of tasks were Alloy tasks. The first
set of Alloy tasks were bug fixing tasks contained in three
models. The second set consisted of a single task asking
participants to build an Alloy model according to a natural



TABLE II: Semantic bugs in Alloy models’ predicates

Model
Semantic Bugs
Fix a predicate

Original Specification Altered Specification
grade.als s !in a.assigned to s in a.assigned to

balancedBST.als
all nl: n.left.*(left + right) | nl.elem <n.elem
all nr: n.right.*(left + right) | nr.elem >n.elem

some n.left =>n.left.elem <n.elem
some n.right =>n.right.elem >n.elem

(HasAtMostOneChild[n1] &&
HasAtMostOneChild[n2]) =>
(let diff = minus[Depth[n1], Depth[n2]] —
-1 <= diff && diff <= 1)

(HasAtMostOneChild[n1] &&
HasAtMostOneChild[n2]) =>
(let diff = minus[Depth[n1], Depth[n2]] —
-1 <= diff || diff <= 1)

farmer.als
(one item : from - Farmer | {
from’ = from - Farmer - item - from’.eats
to’ = to + Farmer + item })

(one item : from - Farmer | {
from’ = from - Farmer - item
to’ = to - to.eats + Farmer + item })

language specification. We chose three Alloy models from the
GitHub repository by Wang et al. [30], located at [31] for the
bug fixing tasks. The three models we chose are grade.als,
balancedBST.als, farmer.als. The Grade model describes a
gradebook designed to include constraints about the graders
and classes, the BST model specifies a balanced binary search
tree, and the Farmer model seeks to solve the classic River
Crossing Puzzle [32]. Due to their various levels of com-
plexity, we label these models as easy, medium, and difficult,
respectively. We also provide natural language specifications
explaining what problems these Alloy specifications are mod-
eling. The participant was instructed to fix the model in a
way that would adhere to the natural language specification.
We used some of the bugs in ARepair’s [30] buggy models
but introduced some other bugs to fit our task types: syntactic
bugs and semantic bugs. In introducing each syntactic bug,
one line in an Alloy model was changed. These bugs elicit
errors from the Alloy Analyzer that would help the user in
detecting and fixing them, and fixing the bugs requires a
level of understanding of Alloy syntax. We also introduced
semantic bugs into the models. We changed either facts or
constraints within a signature to modify the constraints of
the model. And finally, we also changed some predicates in
the models to change their meanings. The semantic changes
resulted in the Alloy Analyzer showing incorrect instances
or counterexamples to assertions, and the participants were
expected to find and correct these bugs. Table II shows the
semantic bugs in Alloy models’ predicates. The rest of the
tasks can be found in the replication package.

The second set of Alloy tasks was on model building.
After working on the bug fixing tasks, the participants were
asked to build an Alloy model to describe a Linked List.
The natural language specification described the structure and
constraints of the linked list. The specification and the partial
model containing a blueprint of a linked list and its functions
provided to the participants can be found in the replication
package [23].

The participants were always asked to do the cognitive
tasks first and then work on the two sets of Alloy tasks, but
the order of the tasks was randomized within each category
(Alloy or Cognitive). Since the models had different levels of
difficulty, we permuted the order of the tasks to control for
order effects (3! Alloy tasks × 2! Cognitive tasks), ending up
with 12 different variations of the study. Each participant had

to complete two cognitive tasks, fix 10 Alloy bugs in total, and
a subset (who volunteered) were asked to work on the model
building task. The participants were not aware of how many
Alloy bugs there were. The only instructions given to them
were to make sure the Alloy model conforms to the natural
language specification.

D. Dependent Variables

We modified the Alloy Analyzer and instructed the par-
ticipants to use it while working on the tasks. The modified
Analyzer logged snapshots of the open Alloy specification
file every time the user executed a command. The logged
timestamped user actions are as follows.
• Execute: Runs the most recent or the first written com-

mand if no command has been executed so far. The com-
mands can be either “assert” for generating counterexam-
ples to an assertion or “run” for generating instances of
a predicate. The command “run” can be combined with
“show” to show an instance of the model.

• Show Instance: Displays the most recent instance or
counterexample.

• Show MetaModel: Displays a meta model of the currently
open Alloy specification [1], which shows the relation-
ships between different elements (e.g., signatures) of the
specification as an object model.

We derived the following dependent variables.
• Accuracy: Accuracy for bug fixing tasks is calculated

by assigning 1 point to each correct bug fix and half
a point for localizing a bug. There were cases where a
participant would localize the line of the bug but could
not correct it. The maximum score a participant could
receive from all the tasks was 10 points. Tasks for models
Grade and Farmer had a maximum of 3 points, and tasks
for the Balanced BST model had a maximum of 4 points.
Accuracy for the model building task is determined by
how participants solved the subproblems of the tasks. In
the model building task, we asked the participants to build
an Alloy model of a linked list, which included specifying
the properties of connectivity of all nodes and ensuring
that no node points to the linked list head. We also
asked the participants to write predicates for adding and
removing nodes from a linked list and different assertions
to ensure the aforementioned properties hold. We also



gave points to the participants for building the correct
signatures and relationships in the model.

• Speed: Speed is calculated by looking at the start time
and finish time of the tasks.

• Number of Analyzer Actions: We used the information
from the logs to calculate how many times they performed
an action (Execute, Show Instance, etc.) on each model
to see instances or check assertions.

• Number of Edits: We used the log information to calculate
the number of times the participants edited each model
in the bug fixing task.

E. Study Instrumentation

We sent emails to potential participants inviting them to
participate in the study. Once they accepted the invitation,
another email was sent, which contained the link to the
study package. The participants did the study remotely in
the location of their choice. The study package included the
cognitive and Alloy tasks, a modified version of the Alloy
Analyzer, a tutorial on Alloy for participants to remember the
language syntax and structure, a sample task on Alloy with
the correct answers, and a ReadMe file detailing the steps
to do the study. We also asked the participants to fill out
pre and post questionnaires to gather demographic and self-
reported experience data. Participants were instructed to read
through the ReadMe file that walked them through the steps
of the study. The participants were not given a time limit to
complete the tasks, but they were asked to do the study in one
sitting and without interruption. Finally, they had to submit
the study package, containing all their changed files and the
generated logs, back to the researchers. Note that the study
was not conducted via a web browser since we wanted to take
full advantage of all the Alloy Analyzer functionalities (not
available on web).

V. EXPERIMENTAL RESULTS

A. Pre-processing

We created a master file that included each participant’s
cognitive and Alloy tasks data. For the operation span task,
we gathered the automatically graded scores of the working
memory tasks from the generated files. For the mental rotation
task, a Python script was written to grade the result files.
The automated nature of grading these two tasks eliminates
the possibility of errors in grading. For the Alloy bug fixing
task data, a Python script was written to show the differences
between the Alloy logs generated by each action by creating
HTML files highlighting the differences between each run.
We used the highlighted differences to grade each submission
by looking at the submitted version of the model next to the
original version that included the bugs. One of the authors
ran each of the submissions to make sure they passed all the
checks. We did not auto grade Alloy tasks via a script since
there were multiple ways of fixing a bug in some cases. The
manual nature of running all the submissions shows that the
bug was either fixed or not fixed, leaving no subjective nature
to the grading. When looking at the differences between the

original and submitted files, if a change was made to a buggy
line, we consider this as bug localization. Some participants
also commented on the lines with “bug detected”. Section IV-D
lists the scoring criteria.

Aside from the submitted models from each participant, a
number of files were generated by the Analyzer if the par-
ticipant performed an action. These files include the snapshot
of the Alloy model at the time of action, the type of action
performed (execute, show instance, show metamodel), and the
timestamp of the snapshot. We refer to these snapshots as
“logs”. Due to technical difficulties, we could not process 3
participants’ log files. We also wrote a Python script to extract
the action sequence and time spent between each action. We
used the difference finder to go through all the logs submitted
by the user for each model to show the differences between
the snapshots after each action was performed. For every set
of logs we had (for different participants and models), we
generated an HTML file highlighting the steps they took to
localize and fix the Alloy bugs. From these HTML files,
we acquired information about the number of edits. We used
JASP [33] to run the statistical tests.

B. RQ1 Results: Accuracy and Speed in Bug Fixing Tasks

Research question 1 asks about the accuracy and speed of
novices and non-novices when fixing Alloy bugs. The null and
alternate hypotheses are as follows.
AH0 Having experience (non-novices) working with the

Alloy specification language does not have an effect on the
accuracy of solving the tasks.
AHA Having experience (non-novices) working with the

Alloy specification language has an effect on the accuracy of
solving the tasks.
TH0 Having experience (non-novices) working with the

Alloy specification language does not have an effect on the
speed of solving the tasks.
THA Having experience (non-novices) working with

the Alloy specification language has an effect on the speed of
solving the tasks.

To test the AH hypothesis, we used the participants’
accuracy score on the Alloy bug fixing tasks as a measure
of program comprehension. For each syntactic or semantic
bug, if the participant changed the buggy line, they received
a score of 0.5 for bug localization. If the participant changed
the buggy line and corrected the bug, they received a score
of 1 for that task. There were overall three syntactic bugs and
seven semantic bugs across the three Alloy models, and the
maximum score a participant could receive was 10.

Table III presents the descriptive statistics. Overall, non-
novices performed better on the tasks, and the average accu-
racy score for non-novices (M = 8.615 ± 1.024, N = 13) is
54.17% higher than the average accuracy score for novices
(M = 5.588 ± 2.386, N = 17). We observe the same pattern
in individual models and on different types of tasks as well.
Figure 1 shows the box plots of the overall accuracy score in
both groups. We can see that the scores are widely dispersed
in the novice group, ranging from 1.5 to 8.5, whereas the



TABLE III: Descriptive Statistics for Accuracy Across the Tasks and Models

AccuracySyntactic AccuracySemantic AccuracyGrade AccuracyBST AccuracyFarmer AccuracyScore

Novice Non-novice Novice Non-novice Novice Non-novice Novice Non-novice Novice Non-novice Novice Non-novice

Valid 17 13 17 13 17 13 17 13 17 13 17 13
Mean 2.382 2.923 3.206 5.692 2.147 2.731 1.735 3.308 1.706 2.577 5.588 8.615
Std. Deviation 0.740 0.188 1.937 0.925 0.880 0.599 0.970 0.855 0.902 0.277 2.386 1.024

Note. AccuracySyntactic and AccuracySemantic are the scores received in semantic and syntactic task types, respectively. AccuracyGrade, AccuracyBST, and
AccuracyFarmer are the scores received from solving the tasks in each model. AccuracyScore is the overall score the participants received for all the tasks
in all the models.

TABLE IV: Descriptive Statistics for Speed (in minutes) for Each Model and Overall

Grade BST Farmer Overall

Novice Non-novice Novice Non-novice Novice Non-novice Novice Non-novice

Valid 17 13 17 13 17 13 17 13
Mean 16.471 12.769 23.471 20.923 41.294 15.385 81.235 49.077
Std. Deviation 10.026 5.761 15.399 8.067 61.531 7.911 66.390 15.787

non-novice group’s scores range from 6 to 9.5, with the
minimum score of 6 being an outlier in this group. We were
also interested in the differences between the scores of all
participants in syntactic and semantic task types. We observe
that the participants performed better in syntactic bug fixing
tasks in general, with the average of M = 2.61 ± 0.625
(maximum score of 3) compared to semantic tasks, with the
average score of M = 4.283± 1.99 (maximum score of 7).

Fig. 1: Box plot of overall accuracy across Alloy tasks.

For the statistical tests, we first tested normality with the
Shapiro-Wilk test. We found the data was not normal in all
the groups. For the non-normal data, we chose to perform the
Mann–Whitney U test, a non-parametric test to compare the
accuracy scores of novice and non-novice groups. Table V
shows that there are significant differences between the total
accuracy scores of two groups (p < .001), Grade tasks
(p = .032), BST tasks (p < .001), and Farmer tasks
(p = .005). We also observed that a significant difference
could be seen between novice and non-novice groups in fixing
syntactic (p = 0.006) and semantic (p < .001) bugs as well.
The significant differences between the two groups give us
evidence to reject the null hypothesis (AH0), meaning that
experience makes a difference in solving Alloy tasks.

To test the TH hypothesis, we measured participants’
speed in completing the bug fixing tasks in each model.
Table IV shows the descriptive statistics for the speed for
each specification and overall for both groups. On average,
novices (Overall column, M = 81.235± 66.39, N = 17) took
32 more minutes to finish the Alloy tasks compared to non-

novices (Overall column, M = 49.077 ± 15.78, N = 13). We
can observe the same pattern in individual models as well.
We ran the Shapiro-Wilk normality test for this data. The
distribution of the Grade model duration was the only normal
distribution, and the t-test was used. For the rest of the tasks
and the overall speed, we used the Mann-Whitney U test to
check for significant differences between the groups, but the
test did not show any significant differences. This indicates a
lack of evidence to reject the null hypothesis (Grade t-test p =
0.24, BST Mann-Whitney U p = 0.85, Farmer Mann-Whitney
U p = 0.18, Overall Mann-Whitney U p = 0.28).

RQ1 Finding: Non-novices performed significantly better
in all task types than novices. Participants received higher
scores on syntactic tasks compared to semantic tasks. We
found that, on average, non-novices finished the bug fixing
tasks 32 minutes faster than novices.

TABLE V: Mann-Whitney U Test Results for Accuracy in
Two Groups

W p Rank-Biserial Correlation

AccuracyScore 18.500 < .001 −0.833
AccuracyGrade 63.000 0.032 −0.430
AccuracyBST 23.500 < .001 −0.787
AccuracyFarmer 46.500 0.005 −0.579
Syntactic 52.000 0.006 −0.529
Semantic 18.000 < .001 −0.837

Note. For the Mann-Whitney test, effect size is given by the
rank biserial correlation. W is The Mann-Whitney statistic (W-
Value) is the sum of the ranks of the first sample

C. RQ2 Results: Accuracy and Speed in Model Building

Of the thirty participants who participated in the study, only
sixteen received a model building task to create an Alloy spec-
ification for a Linked List. We did not send the model building
task to the rest of the participants because we received feed-
back that building models from scratch is complex and very
time consuming for the participants. To answer the research
question about accuracy in model building, we checked their
submitted model to see whether it satisfied the requirements
of a linked list and whether it showed a correct instance. We
gave the participants a partial Alloy model, which included
the blueprint of two predicates (add and remove) and some
signatures that contained incomplete relations (Listing 1). We
graded the accuracy of the subproblems we expected the



TABLE VI: Participants’ Performance in the Model Building Exercise. (0=incorrect, 0.5=partially correct, 1=correct.)

Participant Signatures Insert Remove Acyclic Connectivity Show Acyclic No Pointer Number of
ID Node Node Property Instance Assertion to Head Actions

Assertion
N3 0 0 0 0 0 0 0 0 -
N4 1 0 0 1 1 1 1 1 71
N5 0 0 0 0 0 0 0 0 -
N6 1 0 0 0 1 1 1 1 37
N7 0.5 0 0 1 0 0 0 0 1
N12 0 0 0 0 0 0 0 0 6
N15 0.5 0 0 0 1 0 0 1 32
N17 0.5 0 0 1 0 0 0 0 31
E4 1 1 1 0 0 1 1 1 1
E5 1 0 0 1 0 1 1 0 -
E6 1 0 0 1 1 1 1 1 36
E7 0 0 0 0 0 0 0 0 10
E8 1 0 1 1 1 1 1 1 13
E9 1 0 0 1 1 1 1 1 -
E10 1 0 1 1 0 1 1 1 75
E11 1 1 0 1 1 1 1 1 68

participants to solve. Table VI describes the accuracy scores
of the novice and non-novice group participants (Novice: N3-
N17, Non-novice: E4-E11). We gave each participant a score
of 1 for each subproblem if it was entirely correct, a score of
0.5 for the signatures if they were partially correct, or a score
of 0 for incomplete or incorrect answers. We ran the models
to see the generated instances of linked lists to confirm their
correctness, and two of the authors graded each subproblem
and met to dispute disagreement on the scores.

Out of all the non-novice participants, only one could
not complete the signatures. Three novice participants could
not complete the signatures and relations inside of them
correctly, three completed half of the relations correctly, and
two completed the signatures. None of the novice participants
could successfully write the Insert Node or Remove Node
predicates. In contrast, two non-novices completed Insert Node
predicate, and three non-novices correctly wrote Remove Node.
Furthermore, three novices and four non-novices correctly
ensured the connectivity property. Seven non-novices and two
novices wrote the correct predicate to show an instance of a
linked list. We also checked how the novice and non-novice
participants wrote assertions to verify the properties in their
models (detailed in Table VI).

The difference between the speed of the two groups was
not statistically significant, but on average, novices spent less
time working on the model building task (M = 37.12±20.87,
N = 8) compared to non-novices (M = 45±24, N = 8).

RQ2 Finding: Overall, we observed that the model building
task was difficult for even the non-novices, especially writing
predicates to create dynamic properties such as adding and
removing a node from the linked list. Non-novices did better
in ensuring the acyclic property, connectivity, showing the
instance, and the assertions to verify the model.

D. RQ3 Results: Behavior Patterns

The null and alternate hypotheses for RQ3 are as follows.
PH0 Having experience (non-novices) working with the

Alloy specification language does not have an effect on the
behavioral patterns of problem solving in Alloy.

PHA Having experience (non-novices) working with the
Alloy specification language has an effect on the behavioral
patterns of problem solving in Alloy.

1 s i g L i n k e d L i s t {
2 head : l one Node
3 }
4 s i g O b j e c t {}
5 s i g Node {
6 d a t a : . . .
7 n e x t : . . .
8 }
9 / / This p r e d i c a t e should i n s e r t a v a l i d item to the l i s t

10 pred add ( l : L i n k e d L i s t , l ’ : L i n k e d L i s t , new : Node ){}
11
12 pred remove ( l : L i n k e d L i s t , l ’ : L i n k e d L i s t , new : Node ){}
13
14 / / A c y c l i c property
15 / / C o n n e c t i v i t y between a l l nodes
16 / / show i n s t a n c e s o f the l i n k e d l i s t
17 / / a s s e r t whether the a c y c l i c property ho lds
18 / / a s s e r t t h a t no node p o i n t s to the l i s t head

Listing 1: Blueprint for Model Building Task

To address RQ3, we explored the data we gathered from the
participant logs to find patterns in the number of actions and
the number of edits in the bug fixing tasks, as well as for the
model building task. We believe that the number of actions
and edits are useful quantitative measures of using the Ana-
lyzer and the work patterns of the participants. The Analyzer
provides an interactive environment for the participants and
gives us data on the number of actions (execute, show model,
show metamodel) performed. Table VII shows the average
number of actions and edits performed by the participants. The
data shows that on average (rounded up to the nearest whole
number), novices performed more actions (M = 58 ± 51, N
= 16) compared to non-novices (M = 31± 23, N = 11). The
same pattern can be observed in the Grade, Farmer, and BST
logs as well. Since the data was not normally distributed, we
used the Mann-Whitney U test but did not see a statistically
significant difference between the number of actions across
each model and overall.

Figures 2a, 2b, 2c show the categorical scatter plots of the
sequence of actions performed by participants. We can see
that as the tasks get more difficult (Difficulty: Grade < BST
< Farmer), the number of actions performed by non-novices
is reduced compared to the number of actions by novices.
We can also see that “Execute” is the most popular action
overall between both groups. Interestingly, participants used
“Show Instance” while working on the BST model the most,
to see valid instances of the balanced binary search tree. We



TABLE VII: Descriptive Statistics For Number of Logs (Number of Performed Actions) and Edits

GradeLogsNum BSTLogsNum FarmerLogsNum TotalLogs

Novice Non-novice Novice Non-novice Novice Non-novice Novice Non-novice

Valid 16 10 15 11 16 11 16 11
Missing 1 3 2 2 1 2 1 2
Mean 9.375 8.800 26.333 15.818 24.750 7.909 58.813 31.727
Std. Deviation 8.921 6.909 26.351 15.823 32.460 5.467 51.763 23.946

GradeNumberOfEdits BSTNumberofEdits FarmerNumberofEdits NumberOfEdits

Novice Non-novice Novice Non-novice Novice Non-novice Novice Non-novice

Valid 16 10 15 11 16 11 16 11
Missing 1 3 2 2 1 2 1 2
Mean 6.500 9.200 17.600 16.091 20.875 7.273 43.875 31.727
Std. Deviation 5.633 7.525 18.212 16.802 30.785 6.389 39.673 24.816

observe that most of the actions are performed close to the one
before. We also noticed that changes were mostly incremental:
participants only changed one line and performed an action.

We could not find any specific patterns in the differences
between the number of edits in different models. Overall, we
observe that novices make more edits than non-novices on
average (Novice: M = 43.87± 39.67, N = 16, Non-novice: M
= 31.72 ± 24.81, N = 11), but the Mann-Whitney U test did
not show any significant difference between them (p = 0.4).

Additionally, we wanted to know whether performing more
actions correlated with the number of edits in both of the
groups. We looked at the correlation between the number
of edits for each model, the number of actions on each
model, and the overall number of actions and edits. We
found that for both groups, and for each individual model
and overall, the number of actions correlated positively with
the number of edits. This indicates that seeing an instance
of the model helped the participants make edits. Finally, we
ran the linear regression model with bug fixing accuracy as
our dependent variable and the number of actions and edits
as our independent variable in both novice and non-novice
groups. The regression model was statistically significant in
predicting the outcome variable, meaning that the number of
actions and edits had a positive effect on the novice group’s
overall score (p = 0.046, regression equation: Accuracy =
4.192 − 0.07(NumberOfEdits) + 0.032(TotalLogs)). We
could not find this relationship in the non-novice group.

We also examined whether the experience had an effect on
the number of actions (Table VI) participants performed in
the model building task, but we did not find any significant
differences in the number of actions between the two groups
(Mann-Whitney U p = 0.916).

RQ3 Finding: We found that on average non-novices make
fewer edits than novices in bug fixing tasks. The number of
actions performed by novices is, on average higher than by
non-novices. We observed that participants used the “Execute”
action the most, and they made small and incremental edits
before executing the commands again. The number of actions
and edits correlated with bug fixing accuracy for novices.

E. RQ4 Results: Working Memory and Spatial Cognition

Research question 4 asks how working memory and spatial
cognition ability relate to task correctness. The null and

alternate hypotheses are as follows.
CogH0 There is no relationship between working

memory and accuracy, and no relationship between mental
rotation skills and accuracy.
CogHA There exists a relationship between working

memory and accuracy, and mental rotation skills and accuracy.
The data was not normally distributed, so we ran Spear-

man’s correlation to assess the relationship between the oper-
ation span task score and the overall accuracy score in Alloy
bug fixing tasks. The correlation was not statistically signif-
icant (rs = 0.103, p = 0.588). Next, Spearman’s correlation
was run to assess the relationship between mental rotation
task score and overall accuracy score in Alloy tasks. There
was a positive correlation between the two variables, which
was statistically significant (rs = 0.367, p = 0.046). This
finding allows us to reject the null hypothesis and accept
the alternate hypothesis that there is indeed a relationship
between mental rotation task and bug fixing task accuracy. We
also examined the relationship between these cognitive skills
and the participants’ model building scores. We first added
all the scores of the subproblems together to get one single
model building score for each participant. We could not find
statistically significant correlations between the overall model
building score and cognitive task scores. We examined the
relationship between the cognitive task scores and the score
of each of the subproblems in model building, and we only
found one significant correlation between building Signatures
and the Mental Rotation Task (rs = 0.555, p = 0.026).

RQ4 Finding: The statistically significant positive correla-
tion between the bug fixing task accuracy and mental rotation
score suggests that people with such skills might be better
suited to understand Alloy models.

VI. THREATS TO VALIDITY

Internal Validity: The Alloy community is a relatively small
community. The models that were presented in this study
can be considered educational Alloy models. It is possible
that some of the non-novices who have had experience with
Alloy might have seen these models before while learning or
teaching Alloy. We injected 1 to 2 line bugs into the models
ourselves. Hence the models used were sufficiently different
from models found on the web. To have everyone at the same
baseline to start, we asked all the participants to go through



(a) Grade Action Sequence (b) BST Action Sequence (c) Farmer Action Sequence

Fig. 2: Analyzer Action Sequences across two groups (E1-E13: Non-novices, N1-N17: Novices)

the Alloy tutorial we sent them. They were also presented
with comments on the models that could help them find the
bugs. We also asked the participants not to look online for
answers, but since the study was remote we did not have
any control over this factor. To mitigate this threat, we took
every precaution to make sure the instructions given to the
participants were clear.

External Validity: The Alloy user population is smaller
than the general developer population, making it extremely
difficult to recruit participants. A few users dropped from the
study because they did not understand Alloy and could not
solve the tasks. We did not include their data in our analysis.
Finding non-novices was also challenging because Alloy is
mainly used in academic settings, and finding experts who
were willing to partake in the study was difficult. Despite this,
we secured 13 participants who knew and used Alloy before
through extensive advertising and 17 who were willing to read
the tutorial and learn the language before completing the study.

Construct Validity: All dependent variables were chosen
carefully to ensure they represented what we sought to mea-
sure. Even though we automated most of the log analysis, we
manually validated them to mitigate any errors in calculation.

Conclusion Validity: The unpaired Mann-Whitney test was
used to compare averages of two independent groups which is
suitable for small samples that are not normally distributed.

VII. DISCUSSION AND IMPLICATIONS

Our findings for RQ1 present clear differences between
novices and non-novices in accuracy and speed of working on
bug fixing tasks. It implies that prior exposure to and experi-
ence with the language is important in completing Alloy tasks.
Despite Alloy being more readable and easier to understand
in comparison to other formal languages, it is still challenging
for novices to work on Alloy tasks without much background
on formal methods and the language itself. RQ2 results show
that despite the differences in experience, all participants found
it difficult to build an Alloy model from scratch by looking
at the natural language specification. Novices had a very
difficult time completing the easier subproblems. In contrast,

non-novices had difficulty in completing the harder task of
completing the Insert Node and Remove Node predicates. By
examining the logs, we found only two participants (N17
and E10) ran the Insert Node (add) predicate to see what
instances the Analyzer created. Despite running add and the
analyzer showing an incorrect instance, the participant could
not recognize the issue and could not correct the predicate. An
example of an incorrect instance of add is shown in Figure 3.
The instance shows that the participant did not ensure that
the difference between the linked lists used in the predicate is
only the new node (Node0). They also did not notice that
LinkedList2, which is the first argument of the predicate,
does not contain any nodes. Another common mistake in
writing the Add predicate was that participants did not specify
to the analyzer that the two linked lists in the argument
list of the predicate cannot be the same, which resulted in
wrong instances (included in the replication package). Our
observations highlight the importance of understanding the
instances and visualization in Alloy and that the participants
either did not know how to get information out of the instances
or they were not able to understand their mistakes and fix them.

RQ3 results show that the novices rely more on the Analyzer
to find issues with the model and make more edits to fix bugs.
We also observe that overall and in each task, the number of
actions and edits were correlated, indicating that the instance
generated by the analyzer can help the participant in deciding
about their edits. Furthermore, in the novice population, we
observe that accuracy is affected by the number of actions
and edits. This implies that seeing the instances and interacting
with the analyzer helps the novice participants solve the tasks
more accurately. RQ4 results show that the comprehension
of Alloy language is more related to spatial cognition ability
and not as much related to working memory capacity. We can
rationalize this difference by pointing out that Alloy tasks are
not memory intensive tasks, and they are more related to the
mathematical abilities of a person, which research shows is
correlated with spatial recognition abilities [17].

The post-questionnaire results indicate that 16 users had
trouble completing tasks. Out of the fourteen that said they



Fig. 3: An incorrect instance Add predicate in model building

did not have trouble with the tasks, eight of them were non-
novices. The findings about the patterns in solving tasks,
specifically the fact that the participants make incremental
and small changes is consistent with the observations of Li
et al. [15], who found that users perform consecutive actions
on models that are only slightly different. The other study [14]
is not comparable to ours because their tasks were different
and dealt with which model outputs (minimality/maximality,
UNSAT cores) people used the most.

Suggested Usability Improvements: Based on the outcome
of this study, we recommend the following improvements to
the Alloy Analyzer as well as the areas of focus for teaching
Alloy. Given that novice users struggled more with semantic
tasks (while they performed relatively well on syntactic ones),
teaching systematic methods for debugging an Alloy model to
locate and fix semantic bugs more quickly (e.g., identifying
an over-constraint that results in unsatisfiability of a model
or a missing constraint that causes an assertion failure) is
recommended. An extension to the Analyzer that automates
this debugging process would also be valuable. In addition,
given that both novices and non-novices tend to work with
the Alloy models in an incremental manner, tool enhancements
that further facilitate this incremental process would also be
helpful (e.g., automated compilation and execution of the
model given a change; generating suggestions for which part
of the model the user should inspect next). Finally, the results
of RQ2 suggest that even non-novice users of Alloy struggle
with inspecting the generated instances to build models. In
our experience, navigating visual instance diagrams is a non-
trivial task that demands a significant amount of cognitive load,
especially for models with complex relations. An alternative
way of visualizing Alloy instances (e.g., one that supports
domain-specific visualization [34]) may help overcome this
challenge. For example, looking at Figure 3, we notice that the
default visualization can highlight the involved nodes better by
perhaps changing their color so users have an easier time un-
derstanding that it is not a correct instance of add. Such details
are easy to miss for novices, especially in bigger instances. The

same concept applies to visualizing counterexamples where
the affected nodes should be highlighted for easier compre-
hension. Overall, users rated their confidence as low/medium
for all tasks. Perhaps these suggested changes will boost their
overall confidence in finding incorrect instances.

Implications: Educators can make use of patterns we find
in novices to better teach Alloy and help them avoid common
mistakes while fixing bugs. In practice, one can choose devel-
opers in the industry who are better at spatial skills to help
with Alloy debugging. Formal specification languages such as
Alloy are used for many safety critical applications [7], [8],
[35]. With the amount of day to day activities that depend on
software running safely and securely, it is important to study
how developers interact with modeling software such that we
can improve them to support novice modelers by learning
how the experts/non-novices behave. We still have a long way
to go in this area, as is clearly evidenced by the literature.
We strongly believe that more studies on formal specification
languages are needed for different types of tasks. The tasks
used in this paper are only the beginning of paving the way
for more studies that can be conducted in this space. One
way we can improve usability and tool support and adoption
of software modeling tools such as Alloy is by learning (via
studies such as this one) how modelers (users) interact with
them. This behavior can then be used in conjunction with
patterns found for novices and experts via static profiling [36].

VIII. CONCLUSIONS AND FUTURE WORK

The paper investigates how novices and non-novices per-
form bug fixing and model building tasks in Alloy. The results
indicate that non-novices perform 54% better than novices
on average and that participants perform better on syntactic
tasks compared to semantic tasks. Non-novices spend less
time working on the bug fixing tasks, and the participants in
both groups use the action “Execute” most frequently while
working on the Alloy models. The study results also show that
small incremental changes are made before re-executing the
model commands. The number of edits and actions performed
is smaller with non-novices and predicts accuracy in the novice
group. Results also show that the model building task was
difficult even for non-novices. Several usability improvements
in Alloy Analyzer visualizations are presented based on the
study results. This study has taken the critical first step towards
digesting a practice that software designers have always en-
gaged in, leading to an understanding that promises to enable
researchers, practitioners, and educators to improve rigorous
software modeling. In future work, we plan to qualitatively
explore the participants’ patterns of problem solving and
perform in-person studies to monitor closely the participants
while working on Alloy tasks.
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