
SAINTDroid: Scalable, Automated
Incompatibility Detection for Android

Bruno Silva∗, Clay Stevens∗, Niloofar Mansoor∗, Witawas Srisa-An∗, Tingting Yu†, Hamid Bagheri∗
∗School of Computing, University of Nebraska-Lincoln, USA

†Electrical Engineering & Computer Science, University of Cincinnati, USA

{bruno, clay.stevens, niloofar}@huskers.unl.edu, tingting.yu@uc.edu, {witawas, bagheri}@unl.edu

Abstract—With the ever-increasing popularity of mobile de-
vices over the last decade, mobile applications and the frame-
works upon which they are built frequently change, leading to a
confusing jumble of devices and applications utilizing differing
features even within the same framework. For Android apps
and devices—the largest such framework and marketplace—
mismatches between the version of the app API installed on
a device and the version targeted by the developers of an app
running on that device can lead to run-time crashes, providing
a poor user experience. This paper presents SAINTDroid, a
holistic compatibility analysis approach that seamlessly examines
both the application code and the framework code by gradually
loading and analyzing classes as needed during the compatibility
analysis to enable efficient and scalable identification of various
types of crash-leading Android compatibility issues. We applied
SAINTDroid to 3,590 real-world apps and compared the analysis
results against the state-of-the-art techniques, which corroborates
that SAINTDroid is up to 76% more successful in detecting com-
patibility issues while issuing significantly fewer false alarms. The
experimental results also show that SAINTDroid is remarkably
(up to 8.3 times and four times on average) faster than the state-
of-the-art techniques.

Index Terms—Android compatibility, program analysis, soft-
ware evolution

I. INTRODUCTION

Android is the leading mobile operating system representing

over 80% of the market share [1]. The meteoric rise of Android

is largely due to its vibrant app market [2], which currently

provisions nearly three million apps, with thousands added or

updated on a daily basis. Android apps are developed using an

application development framework (ADF) that ensures apps

devised by a wide variety of suppliers can interoperate and

coexist as long as they comply with the rules and constraints

imposed by the framework. An ADF exposes well-defined

application programming interfaces (APIs) that manifest the

set of extension points for building the application-specific

logic, setting it apart from traditional software systems often

realized as a monolithic, independent piece of code.

The Android ADF frequently evolves, with hundreds of re-

leases from multiple device vendors since 2010 [3]. Such rapid

evolution leads to incompatibilities in Android apps targeted

to older versions of the framework. As a result, defects and

vulnerabilities, especially following ADF updates, continue to

plague the dependability and security of Android devices and

apps [4], [5]. A recent study shows that 23% of Android apps

behave differently after a framework update, and around 50%

of the Android updates have caused instability in previously

working apps and systems [6]. This has been referred to

as “death on update” [7]–[12]. One major source of incom-

patibility after update came with Android ADF version 6.0

(API-level 23), when Google introduced a dynamic permission

system. Previously, the permission system was entirely static,

with the user granting all requested dangerous permissions

at install time. The new permission system allows users to

grant/revoke permissions at run-time [13], which creates a new

class of permissions-related incompatibility issues.

Recent research efforts have studied compatibility is-

sues [14]–[16], but existing detection techniques target only

certain types of APIs. For example, Huang et al. [14] only

targets API callbacks related to app component lifecycles

(e.g., loaded/unloaded); identifying them requires significant

manual labor [14] and thorough inspection of incomplete

documentation [16]. Furthermore, none of the state-of-the-

art techniques consider incompatibilities due to the dynamic

permission system. The state-of-the-art compatibility detection

techniques also suffer from acknowledged frequent “false

alarms” because of the coarse granularity at which they capture

API information. The lack of proper support for detecting

compatibility issues can increase the time needed to address

such issues, often longer than six months [17]. Finally, these

techniques [14], [18] have been shown to face difficulties in

handling large scale libraries, due to direct loading of the entire

code base for analysis purposes.

In this paper, we present a scalable, automated

incompatibility notifier for Android, dubbed SAINTDROID,

which automatically detects various type of API- and

permission-induced mismatches by performing a scalable,

context-sensitive static analysis of Android APKs. Existing

state-of-the-art compatibility detection techniques require to

either analyze the entire ADF codebase or manually model

common compatibility callbacks of ADF classes, prior to

detecting incompatibilities [14], [18], [19]; as such they

face serious scalability issues that limit their abilities to

detect complex types of incompatibilities. Different from all

these techniques, SAINTDROID overcomes such scalability

issues by gradually loading and analyzing classes, wherein

a reachability analysis is leveraged to load and analyze all

pertinent classes.

SAINTDROID has several advantages over existing work.

First, SAINTDROID holistically analyzes application and

ADF in tandem by gradually loading and analyzing classes

as needed during the compatibility analysis. SAINTDROID

analysis, thus, can seamlessly move between the application

code and the ADF code during the compatibility analysis.

In contrast, prior techniques first analyze the ADF code

separately and use the stored results of that complete analysis

to resolve API usages [14], [19], [20]. Second, by actually

analyzing app and ADF code, our approach has the potential

to greatly increase the scope of analysis by automatically and

effectively analyzing all code in the utilized APIs in an ADF

version. Prior techniques only focus on specific types of APIs.

Third, incrementally loading and analyzing classes allows our

technique to be remarkably faster and more scalable than the

state-of-the-art in compatibility detection.
Our evaluation of SAINTDROID against the state-of-the-art

analysis techniques indicates it is up to 76% more successful

in detecting compatibility issues among thousands of real-

world apps, while issuing significantly fewer (11-52%) false

alarms. It also successfully detects permission-induced mis-

matches that cannot be detected by state-of-the-art techniques.

SAINTDROID is also up to 8.3 times (four times on average)

faster than the state-of-the art techniques.
To summarize, this paper makes the following contributions:

• General API and permission-induced incompatibility de-
tection algorithms: We introduce novel algorithms that

automatically detect all types of API incompatibilities and

misuses of runtime permission APIs to which an app may

be vulnerable across ADF versions.

• Scalable incompatibility detection approach: We intro-

duce a scalable analysis approach that can incrementally

load and analyze classes to handle large scale libraries in

detecting incompatibility issues.

• Publicly available tool implementation: We develop a

fully automated technology, SAINTDROID, that effec-

tively realizes our compatibility detection approach. We

make SAINTDROID publicly available to the research

and education community [21].1

• Experiments: We present results from experiments run on

3,590 real-world apps and benchmark apps, corroborat-

ing SAINTDROID’s ability in (1) effective compatibility

analysis of Android apps, reporting many issues unde-

tected by the state-of-the-art analysis techniques; and (2)

outperforming other tools in terms of scalability.

Section II illustrates various examples of Android compat-

ibility issues. Section III provides an overview of SAINT-

DROID to effectively detect compatibility issues. Sections IV-

V describe our empirical study and report the results. Finally,

the paper concludes with a discussion of current limitations,

and an outline of the related research and future work.

II. API / PERMISSION-INDUCED COMPATIBILITY ISSUES

To motivate the research and demonstrate the need for

mechanisms for incompatibility detection, this section de-

scribes three types of Android compatibility issues, which can

1The SAINTDROID tool is available for download at the project website,
https://sites.google.com/view/saintdroid/

TABLE I: Three Types of Compatibility Issues in Android.

App Device Results in
Mismatch Abbr. level level mismatch if...

API invocation
API

≥ α < α app invokes method
(App → API) < α ≥ α introduced/updated in α

API callback
APC

≥ α < α app overrides a callback
(API → App) < α ≥ α introduced/updated in α

Permission-
PRM

≥ 23 ≥ 23 app misuses runtime
induced < 23 ≥ 23 permission checking

lead to runtime app crashes. Table I summarizes API- and

permission-induced compatibility issues. We will later show

how SAINTDROID helps identify these incompatibilities.

A. Android API Background

As of September 2019, there have been 27 releases of

the Android API, most recently API level 29 [22]. Each

version contains new and updated methods to help developers

improve app performance, security, and user-experience. In

this work, we mainly refer to each release of the Android

API by its API level (e.g., 26) rather than the associated

name (Oreo) or Android version number (8.0) [23]. Google

strongly recommends that developers specify the range of the

API levels their apps can support in the manifest or Gradle

file by setting three attributes: (1) minSdkVersion, which

specifies the lowest level of the API supported by the app;

(2) targetSdkVersion, which specifies the level of the

API used during app development; and (3) maxSdkVersion,

which specifies the highest API level supported by the app.2

B. API Compatibility Issues

Incompatible API levels can cause runtime crashes in An-

droid apps installed on a device running a different level

of the API than that targeted by the app. Changes to the

API are generally additive, so most such crashes stem from

a lack of backward-compatibility, where an app targeting a

higher API level is installed on a device running a lower one

[24]. However, despite Google’s assurances, there may also

be issues with forward-compatibility when an app is run on

a device with a higher API level than the app’s target. If the

app invokes a method or overrides a callback introduced in

a newer level of the API than that supported by the device

or removed in a newer level of the API than targeted by

the app, a mismatch arises (the two red regions as shown

in Figure 1), which could (e.g.) crash the app or lead to an

incorrect program state in the case of a missed callback.

We divide these API incompatibilities into two types (Ta-

ble I): invocation mismatches, where an app attempts to invoke

an API method not supported by the device; and callback
mismatches, where an app implements a callback method

missing from the API level installed on the device, which will

never be invoked.

2According to the Google documentation, declaring this attribute is not
recommended [24] but installing an older app on a newer device may still
lead to unexpected behavior [5].

Fig. 1: Mismatch between app and device API levels, either

before an invoked method/callback is introduced or after an

invoked method/callback is modified by a version update.

1) API invocation mismatch: Mismatches in API method

invocation occur when an app developed against a higher

version of the API attempts to call a method introduced

between its target version and that installed on the device;

the app crashes when the system cannot find the desired

method. Similarly, an app developed against a lower version

of the API may crash on a device running a higher version

if a method has been removed. The former is an instance

of a backward-compatibility issue, while the latter touches

forward-compatibility, as referenced in Table I.

Listing 1 provides an illustrative example, where the app

targets Android API level 28, but its minSdkVersion is

set to 21. In case the app is installed on a device with the

Android API level 21—the API level supported by the app

according to its specified minSdkVersion—it will crash

on the invocation of getColorStateList (lines 9-10), which

was introduced in API level 23. One way to safeguard against

this mismatch is to check the device’s API level at runtime, as

shown in the comment on line 8. This prevents the app from

executing the call on versions where it might be missing, but

it is not fool-proof; developers could easily forget to add or

modify the check when updating an app, leaving the code

vulnerable to a mismatch.

2) API callback mismatch: API callback compatibility is-

sues initiate in the Android system when its invokes callback

methods overridden in the app. Listing 2 shows a snippet

adapted from the Simple Solitaire [25] app, where the API

callback onAttach(Context), which is introduced in API level

23, is overridden. The app is also specified to run on devices

with API level lower than 23, which would not call that

method. Thus, any critical actions (e.g., initialization of an

object) performed by the app in that method would be omitted,

1 @Override
2 protected void onCreate(Bundle b){
3 super.onCreate(b);
4 setContentView(R.layout.activity_main);
5
6 TextView text = findViewById(R.id.text);
7 // if (Build.VERSION.SDK_INT >= 23) {
8 text.setTextColor(resources.getColorStateList(
9 R.color.colorAccent, context.getTheme()));

10 // } else { ... }
11 }

Listing 1: API Invocation Mismatch

1 public class CustomPreferenceFragment
2 extends PreferenceFragment {
3
4 @Override
5 public void onAttach(Context context) {
6 reinitializeData(context);
7 super.onAttach(context);
8 }}

Listing 2: API Callback Mismatch

possibly leading to runtime crashes. In the case where a

callback is added to the API, this mismatch is a backward-

compatibility issue; if a callback is removed, it is a problem

with forward-compatibility.

C. Permission-induced Compatibility Issues

With the release of Android API level 23 (Android 6),

the Android permission system is completely redesigned. If a

device is running Android 5.1.1 (API level 22) or below, or the

app’s targetSdkVersion is 22 or lower, the system grants

all permissions at installation time [13]. On the other hand, for

devices running Android 6.0 (API level 23) or higher, or when

the app’s targetSdkVersion is 23 or higher, the app must

ask the user to grant dangerous permissions at runtime. In total,

Android classifies 26 permissions as dangerous [26]. The goal

of the new runtime permission system is to encourage devel-

opers to help users understand why an application requires the

requested dangerous permission [27].

Permission-induced incompatibility can also be divided into

two types of mismatch: permission request mismatches, where

an app targeting API level 23 or higher does not implement the

new runtime permission checking; and permission revocation
mismatches, when an app targeting API 22 or earlier runs on

a device with API 23 or later and the user revokes the use of

a dangerous permission used by the app at runtime.

Listing 3 illustrates a permission request mismatch; the app

may crash on line 12 where it attempts to use a dangerous

permission it did not request. To prevent the mismatch, the app

1 @Override
2 protected void onCreate(Bundle b){
3 super.onCreate(b);
4 setContentView(R.layout.activity_main);
5
6 // if (Build.VERSION.SDK_INT >= 23) {
7 // ActivityCompat.requestPermissions(...);
8 // } else {
9 Intent intent = new Intent(

10 MediaStore.ACTION_IMAGE_CAPTURE);
11 startActivity(intent);
12 // }
13 }
14
15 // @Override
16 // public void onRequestPermissionsResult(...)
17 // { ... }

Listing 3: Permissions Mismatch (tgt ≥ 23)

would need to check the API version and request permissions

at runtime (shown as comments on lines 7-9) and implement

onRequestPermissionsResult (line 16). More detailed ex-

amples can be seen in the Android documentation [27].

If a user installs an app targeting APIs lower than 23 on

a device running API 23 or above, the user must accept all

dangerous permissions requested by the app at install time, or

the app will not be installed. However, API 23, i.e., Android

version 6.0, allows the user to revoke those permissions at

any time. If the user revokes any dangerous permission from

the app after installation, the app would crash while trying to

use that permission—a permissions revocation mismatch. This

behavior has been reported in real-world apps. AdAway [28],

for example, tries to access external storage (such as an SD

card) at runtime. If that permission is revoked, the app crashes

when its tries to load data from the storage mechanism.

D. Limitations of Existing Work

One major shortcoming of the state-of-the-art approaches

in detecting API compatibility issues is their inability to

analyze application-under-analysis and the underlying ADF

code in unison. Existing analysis techniques first load all

code in the project and then perform analysis on the loaded

code. This approach is both monolithic and memory intensive.

Moreover, identifying compatibility issues requires analyzing

both the application code and ADF in tandem. However,

loading both the entire app and the ADF codebase is not

feasible, due to high memory consumption. As such, the

existing techniques analyze an app and the underlying ADF

separately. For example, a state-of-the-art technique, called

CIDER [14], conserves memory by using pre-defined models

from the underlying ADF to represent API invocations and

their callback counterparts. However, as previously reported,

constructing ADF models is a daunting and error-prone task

that may not be able to keep up with rapid releases of

ADFs [29]. As will be shown in the evaluation section, CIDER

can miss detecting compatibility issues that exist in different

ADFs. Moreover, it is only capable of detecting compatibility

types that have been modeled.

Another state-of-the-art incompatibility detector is CID

[19]. This approach creates a conditional call graph for each

app to record method call information along with condition

checkers related to the API level. The construction of this

graph is done by analyzing the control flow of the app

to identify API calls. From each API call, CID performs

backward data-flow analysis to identify the presence of an API

level check. Resolving API usage is then based on the list of

API calls and information from the conditional call graph. To

reduce memory usage, CID only analyzes the initial API call

and does not analyze subsequent calls within the ADF [19].

As will be shown later, this approach misses incompatibility

issues that exist deeper into the ADF code.

III. APPROACH

This section overviews our approach to automatically detect

all three types of API- and permission-induced mismatches

Fig. 2: Architecture of SAINTDROID

described in Table I. As depicted in Figure 2, SAINTDROID

takes as input an app APK3 along with a set of Android

framework versions, and produces a list of mismatches for the

given Android app. SAINTDROID comprises three main com-

ponents: (1) The API usage modeler (AUM) that utilizes static

analysis techniques, i.e., control flow and data flow analyses,

to identify the API call sites and any conditional statements

surrounding them; (2) The Android revision modeler (ARM)
that extracts essential information about the framework APIs’

lifetime and mappings between Android API calls and the

permissions required to perform those calls from the An-

droid framework revision history; (3) The Android mismatch
detector (AMD) that leverages the artifacts produced by the

AUM and ARM components to effectively detect API- and

permission-related mismatches in the app under analysis.

A. AUM: API Usage Modeler

The AUM module performs path sensitive, inter-procedural

data flow analysis on call and data flow graphs of a given

decompiled APK file to determine references to API methods

or callbacks. More precisely, AUM derives an inter-procedural

control-flow graph (ICFG), augmented to account for implicit

invocations (e.g., callbacks). The ICFG tracks the control flow

within distinct invocations of Android Java processes; inter

process communication (i.e., intents) are considered separate

invocations starting from each message handler as the entry

point. The produced ICFG is further annotated with permis-

sions required to enact Android API calls. Finally, a reachabil-

ity analysis is conducted over the augmented graph to identify

the guards that encompass the execution paths reaching the

annotated API calls or permission-required functionalities.

Different from all the existing incompatibility detection

techniques, SAINTDROID mimics the class-loading behavior

of the Android Virtual Machine runtime to incrementally

load classes and methods needed as part of the compatibility

detection analysis. However, the underlying assumption of the

existing program analysis techniques is that they operate in

a closed-world fashion [30]. More specifically, existing static

program analyzers (such as SOOT [31]) convert the code to an

intermediate representation, e.g., Jimple. They then perform

analyses to construct control-flow, data-flow, method-call, and

points-to graphs. Any calls to external components (e.g., ADF,

3APK is an app bytecode package used to distribute and install an Android
application.

Algorithm 1 Exploration of statically-analyzable Java classes

1: procedure EXPLORECLASSES(method)
� Input: method, APK

2: class ← CLASSLOOKUP(method)
3: loadedClass ← LOADCLASS(class)
4: for each classMethod in loadedClass do
5: GENERATECONTROLFLOW(classMethod)
6: GENERATEDATAFLOW(classMethod)
7: APPENDMCG(classMethod)
8: if METHODNOTINCLASS(classMethod) then
9: APPENDWORKLIST(classMethod)

10: return true

native code) would be left as terminals in the method call graph

and may not be analyzed.

SAINTDROID, unlike all the other incompatibility detec-

tors, mimics the incremental loading behavior of the Android

runtime during execution while maintaining the completeness
property of static analysis by taking advantage of the way

object-oriented languages organize classes to enable class

loading at runtime. Algorithm 1 describes the exploration

process. First, the algorithm uses a worklist that contains an

initial list of methods to be explored, and loads classes to

which they belong using a Class Loader Virtual Machine
(CLVM). When a class is loaded, SAINTDROID statically

analyzes its methods to build control- and data-flow graphs

used to form a graph of method calls to other statically-

discoverable classes; these method calls are appended to the

worklist. Subsequently, those classes to which methods belong

are loaded into the CLVM. SAINTDROID then processes the

information extracted about each class by the CLVM to find

the statements and calls needed to detect API mismatches

(Section III-C). An important point is that our novel class
loader based exploration approach for compatibility detection
blurs the boundaries between apps and libraries. Components
are loaded as needed, and the method-call graph is generated
as the analysis progresses.

SAINTDROID’s compatibility analysis has three major ad-

vantages over the state-of-the-art approaches. First, to render

our analysis more effective, efficient, and scalable, SAINT-

DROID’s AUM module employs a novel class-loader (CLVM)

based approach that incrementally discovers pertinent appli-

cation and ADF classes via reachability analysis [32]. As a

concrete example, if an application method calls an Android

API, the class to which the API belongs would be loaded.

By utilizing CLVM, SAINTDROID analyzes the application

classes along with reachable ADF classes, rather than analyz-

ing all ADF code. This analysis approach significantly reduces

both peak memory footprint and memory consumption over

time. Our technique is therefore faster and more space efficient

than the state-of-the-art in compatibility analysis, without

sacrificing its capability in detecting compatibility issues,

as evidenced by the experimental results (cf. Section IV).

Other state-of-the-art techniques [14], [18] directly load the

entire code base into memory, and thereby face difficulties in

handling large scale libraries such as ADF.

Second, the AUM module analyzes actual ADF code to

detect more instances and types of compatibility issues. Prior

work focuses on creating models of the ADF to only identify

API callback compatibility issues [14]. Third, while prior work

focuses on the first level framework API calls, i.e., the first call

to the framework from an app [19], the AUM analyzes method

calls beyond that initial level, which empowers SAINTDROID

to detect more instances and types of incompatibility issues.

Another key feature in Android that can affect the accuracy

of the compatibility analysis is late binding. Indeed, apps

may dynamically load code that is not included in the main

dex file4 of the original application package, initially loaded

at installation time. This mechanism enables an app to be

extended with new desirable features at run-time. However, in

spite of its virtue, it poses challenges to analysis techniques

for assessing compatibility of Android apps.

To avoid missing any potential compatibility-related issues

that may result in crashes at run-time, SAINTDROID takes

a conservative approach and considers all classes that could

be bound at run-time to references in the code, provided

those classes can be statically discovered during analysis.

More precisely, SAINTDROID’s AUM component examines

not only the main app code loaded at the installation time, but

also any other code accessible from the app package that can

be bound at run-time. The AUM incrementally augments the

control-flow and data-flow graphs by recursively identifying

and examining such to-be dynamically loaded classes to ensure

that every method in every such classes is analyzed. Note

that such to-be dynamically loaded code may not always

be statically analyzable, especially when it is loaded from a

source outside the packages bundled in the APK.

B. ARM: Android Revision Modeler

The ARM module derives both the API lifecycle and the

permission mapping models through mining of the Android

framework revision history. It first constructs an API database

containing all public APIs defined in Android API levels

2 through 285, allowing SAINTDROID to determine which

4A dex file is an executable file containing compiled code for Android.
5The Android frameworks range from API level 2 through API level 28,

collected using sdkmanager, shipped with the Android SDK Tools to manage
packages for the Android SDK [33].

Algorithm 2 Detecting API mismatches

1: procedure FINDAPIMISMATCHES(block, app)
� Input: Block from data flow graph, decompiled APK

2: if ISGUARDSTART(block) then
3: (minLvl,maxLvl) ← GETGUARD(block,minLvl,maxLvl)
4: else if ISAPICALL(block) then
5: for each lvl in (minLvl..maxLvl) do
6: if ¬apidb.CONTAINS(block,lvl) then
7: mm ← mm ∪ {block}
8: else if ISMETHOD(block) then
9: mm ← mm ∪ FindApiIn(block, minLvl, maxLvl)

10: else if ISGUARDEND(block) then
11: (minLvl,maxLvl) ← (app.minSdk,app.maxSdk)

12: return mm

Algorithm 3 Detecting APC mismatches

1: procedure ISAPCMISMATCH(method, app)
� Input: Method from call graph, decompiled APK

2: if ISAPIOVERRIDE(method) then
3: for each lvl in (app.minSdk..app.maxSdk) do
4: if ¬apidb.CONTAINS(method, lvl) then
5: mm ← mm ∪ {method}
6: return mm

methods and callbacks exist in each level within the app’s

supported range. SAINTDROID automatically mines Android

framework versions and stores the captured API information in

a format that can be effectively queried by the AMD module to

generate the list of APIs in each level and a method call graph

for each API method. Note that the API database is constructed

once for a given framework, i.e., an Android API level, as a

reusable model upon which the compatibility analysis of all

apps relies. The ARM is realized in an entirely automated

fashion, allowing support for future versions of the framework.

SAINTDROID next extends the database with mappings be-

tween Android API methods and the permissions required by

the Android framework during the execution of those methods.

To achieve this, the ARM relies in part on PScout [34], one

of the most comprehensive permission maps available for the

Android framework, extended to include new mappings that

would reflect more up to date Android API levels. Similar to

the Android API database, permission maps are constructed

once and reused in the subsequent analyses.

C. AMD: Android Mismatch Detector

The AMD analyzes the artifacts produced by the other mod-

ules shown in Figure 2 to identify both API- and permissions-

related mismatches. The AMD checks for API compatibility

issues (cf. Section II-B) using the following process:

Invocation mismatch: The detector uses Algorithm 2 to

detect API invocation mismatches in each block of each

method from the data flow graph generated by static analysis

of the app. If the current block represents a guard condition

(line 2), the range of supported API levels is filtered by

extracting the minimum and maximum range from the guard

and updating the minimum and maximum supported levels

(line 3). If the current block is a call to an API method

(line 4), query the API database at each supported level to

determine whether the method called in the current block is

defined (line 5-6). In case that it is not defined, add the current

block to the set of mismatches (line 7). In the case that an

Android API is invoked inside a method call, our algorithm

(line 8) also checks if there is an invocation to a user-defined

method (i.e., not an invocation to an Android API). If this

is the case, our algorithm also analyzes the callee method to

look for Android API invocations (line 9). Finally, we reset

the minimum and maximum supported API levels to those

defined in the app’s manifest at the end of each guard condition

(lines 10-11). SAINTDROID can reliably detect Invocation

mismatches because the API Usage Extraction component

performs path-sensitive, context-aware, and inter-procedural

Algorithm 4 Detecting PRM mismatches

1: procedure DETECTPERMMISMATCH(app, graph, permMap)
� Input: Decompiled APK, call/data flow graph, perm. map
� Output: List of detected mismatches

2: dngrPerms ← GETDNGRPERMSFROMMANIFEST(app)
3: if dngrPerms = ∅ then
4: return ∅
5: callGraph ← BUILDCALLGRAPH(app)
6: if app.targetSdkVersion ≥ 23 then
7: for each method in callGraph do
8: if OVERONREQUESTPERMSRESULT(method) then
9: return ∅

10: mm ← ∅
11: for each method in callGraph do
12: dfg ← GETDATAFLOWGRAPH(graph, method)
13: for each block in dfg do
14: for each perm in dngrPerms do
15: if permMap.ISUSINGPERM(perm, block) then
16: mm ← mm ∪ {perm}
17: return mm

data-flow analysis, which accounts for guard conditions on

the supported versions across methods, unlike other state-of-

the-art techniques, such as LINT and CID.

Callback mismatch: The detector uses Algorithm 3 to detect

API callback mismatches in each method within the call graph

derived from the app under analysis. If the method overrides

an API callback (line 2), iterate over the API levels that the app

declares to support and query the API database—automatically

generated by the Database Construction component—to deter-

mine whether the callback is defined within the entire range of

supported API levels (lines 4-5). This sets our approach apart

from prior research, such as CIDER [16], through automati-
cally detecting incompatible API callbacks without requiring

any manual effort of compiling a list of candidate callbacks

beforehand, thereby making it practical and widely applicable.

The second part of the Mismatch Detection component

detects incompatibilities surrounding the new runtime per-

missions system introduced in API level 23, a capability

unique to our approach. The logic of the algorithm, outlined

in Algorithm 4, that checks permission-induced compatibility

issues is as follows: First, extract dangerous permissions

from the app’s manifest (line 2). In case the app requests

dangerous permissions, retrieve the call graph from the API
Usage Extraction component (line 5), and check whether each

method of the app that targets API level 23 or newer overrides

onRequestPermissionsResult (lines 6-8). In case the app

does implement the new runtime permission system, there is

again no risk of mismatch (line 9). If the app either does not
implement the new runtime system or targets an API level

earlier than 23, each usage of a dangerous permissions could

result in a mismatch and crash. To detect dangerous permission

usages, iterate through each method in the call graph (line 11),

retrieve the data flow graph for the method (line 12) and check

whether each block in the data flow graph uses any of the

dangerous permissions (lines 13-15). In case any dangerous

permission is used, add it to the set of mismatches (line 16).

IV. EXPERIMENTAL EVALUATION

For our evaluation, we developed a custom implementa-

tion of SAINTDROID using JITANA [32] to drive our static

analysis. We also used APKTOOL [35] for extracting apps’

manifest files. SAINTDROID’s implementation only requires

the availability of Android executable files, and not the original

source code. SAINTDROID can be used by developers, end-

users, and third-party reviewers to assess app compatibility.

SAINTDROID’s tool and experimental data are available [21].

We used our implementation to answer these questions:

RQ1. Accuracy: What is the overall accuracy of SAINT-

DROID in detecting compatibility issues compared to the other

state-of-the-art techniques?

RQ2. Applicability: How well does SAINTDROID perform

in practice? Can it find compatibility issues in real-world

applications?

RQ3. Performance: What is the performance of SAINT-

DROID’s analysis to identify sources of compatibility issues?

A. Objects of Analysis

To evaluate the accuracy of our analysis technique and

compare it against the other compatibility analysis tools, we

used two suites of benchmark Android apps, CID-Bench [19]

and CIDER-Bench [14], developed independently by other

research groups. CID-Bench contains seven benchmark apps

and CIDER-Bench contains 20 apps. The authors of these

benchmarks also reported known vulnerabilities. We use these

vulnerabilities as our evaluation baseline. For example, we

evaluate the effectiveness of our approach by observing the

number of reported vulnerabilities in these two benchmarks

that SAINTDROID can detect. If our approach detects a new

issue, we manually inspect whether the issue indeed exists.

The collection includes apps of varying sizes ranging from

10,400 to 294,400 lines of Dex code and up to tens of

thousands of methods. The benchmark apps both support and

target a variety of API levels, with minimum levels ranging

from 10 to 21 and targets ranging from level 23 to 27. One of

our baseline system, i.e. LINT, requires building the apps to

perform the compatibility analysis. Out of the 27 benchmark

apps, eight apps cannot be built;6 therefore, they are excluded

from the analysis, leaving a total of 19 apps. Using the same

benchmark apps as prior research allows us to compare our

results against them and bolsters our internal validity.

To evaluate the implications of our tool in practice, we

collected over 3,000 real-world Android apps: (1) 1,391 apps

from FDroid [37], a software repository that contains free and

open source Android apps; and (2) 2,300 apps from Andro-

Zoo [38], a growing repository of Android apps collected from

various sources, including the official Google Play store. We

were unable to build 120 of the apps from AndroZoo so we

excluded them from our analysis, leaving 3,571 total apps.

6The benchmark apps were built using Gradle [36], which dropped support
of some Android SDK tool chains. Even with the appropriate SDKs in place
on two different systems, Gradle were unable to build the apps.

B. Variables and Measures

Independent Variables. Our independent variables involve

baseline techniques used in our study to perform the analysis

of compatibility issues. These techniques include CID [19],

CIDER [14], and LINT [20].

CID is a state-of-the-art approach for detecting Android

compatibility issues. It has been publicly released, and we

were able to obtain the tool and compile it in our experimental

environment. We use it as the baseline system to answer

RQ1 and RQ3. CIDER is another state-of-the-art approach

developed to analyze API compatibility issues. Unfortunately,

it is not available in either source or binary forms at the time of

writing this article. As such, we rely on their results as reported

in [14] to answer RQ1 and RQ3. LINT is a static analysis tech-

nique, shipped with the Android Development Tools (ADT), to

examine code bases for potential bugs, including incompatible

API usages. LINT performs the compatibility analysis as part

of building apps, and thus requires the app source code to

conduct the analysis. We use LINT to answer RQ1 and RQ3.

We also considered ICTAPIFINDER [18] as a possible base-

line technique. Unfortunately, the tool is not publicly available

and our attempts to contact the authors to request access were

unsuccessful. Therefore, we did not use it in our study.

Dependent Variables. To measure accuracy, we compare the

number of detected compatibility issues with known issues as

reported by prior work [14], [19]. For each analysis technique,

we report true and false positives and false negatives thereof

in detecting compatibility issues of the apps under analysis.

Lastly, we report precision, recall and F-measure for each

technique. To measure applicability, we report the number

of detected compatibility issues in real-world apps. Finally,

to measure performance, we report the analysis time and the

amount of memory used by each of the analysis techniques,

i.e., SAINTDROID, CID, and LINT.

C. Study Operation

We conducted our experiments on a MacBook Pro running

High Sierra 10.13.3 with an Intel Core i5 2.5 GHz CPU

processor and 8 GB of main memory. To answer RQ1 and

RQ2, we ran each analysis once since the techniques are

based on static analysis. To handle uncontrollable factors in

our experiments addressing RQ3 (performance), we repeated

the experiments three times and measured the amount of time

required to perform the analysis of each app using the analysis

techniques, each averaged over three attempts. Further, since

LINT needs to build the app before it can perform the analysis,

we performed four consecutive analysis attempts with LINT,

and report the average analysis time of the last three analyses.

V. RESULTS AND ANALYSIS

A. RQ1: Accuracy

Table II summarizes the results of our experiments for evalu-

ating the accuracy of SAINTDROID in detecting compatibility

issues compared to the other state-of-the-art and state-of-the-

practice techniques. For each app under analysis, we report the

TABLE II: Comparison between SAINTDROID, CID, CIDER,

and LINT. TP, FP and FN are represented by symbols ��, �,

�, respectively, along with the number detected.

SAINTDROID CID+CIDER LINT

App API APC API APC API APC

C
ID

E
R

-B
en

ch

AFWall+
(��9) (��7) (��1) (��1)

(�9) (�6) (�8) (�7)

DuckDuckGo (�1) (�3) (��1) (�1)

FOSS Browser
(��7) (�4) (�3)

(�7) (�7)

Kolab notes
(��3) (��3)

(�1) (�3)
(�9) (�13)

MaterialFBook
(��11) (��14)
(�1) (�17)
(�3) (�14)

NetworkMonitor (��5) (�5) (�5)

NyaaPantsu (��12) (�12) (�12)

Padland
(�4) (��1) (�2)

(�1) (�1)

PassAndroid (��9) (��3) (�9) (�3) (�9) (�3)

SimpleSolitaire
(��1) (��2) (��1) (��1)
(�1) (�10) (�2)

(�1) (�1) (�2)

SurvivalManual (�19)

Uber ride
(��4) (�2) (��4) (�1)

(�4)

C
ID

-B
en

ch

Basic (��1) (��1) (�1)

Forward (��1) (��1) (�1)

GenericType (��1) (��1) (�1)

Inheritance (��2) (��2) (�2)

Protection

Protection2 (�1)

Varargs (��2) (��2) (�2)

Precision: 79% 100% 27% 89% 100% 0%
Recall: 93% 95% 59% 19% 2% 0%
F-Measure: 85% 98% 42% 31% 4% 0%

number of true (��) and false (�) positives and false negatives

(�) according to the three categories of compatibility issues:

API Invocation Compatibility Issues (API). SAINT-

DROID succeeds in detecting all 8 known API compatibility

issues in CID-Bench suite, and 33 API compatibility issues out

of 36 in CIDER-Bench suite. It also correctly ignores 32 cases

in FOSS Browser, Padland, DuckDuckGo, SurvivalManual and

Uber ride apps, where there are no API compatibility issues;

CID wrongly reported compatibility issues in those cases due

to its insensitivity to the context of each API call (i.e., it does

not track guard conditions across function calls). These API

invocation issues will most frequently lead to app crashes, as

the user-defined code attempts to invoke API methods that are

not defined for the device API level. The only missed issues

are the ones that occur in the MaterialFBook app’s anonymous

classes, not handled by our model extractor, discussed in more

detail in Section VI. CID detects fewer (26 out of 44) API

invocation compatibility issues, and it has a high rate of false

positives, the majority of which arise because CID’s analysis

is not context-sensitive and does not track guard conditions

across function calls. LINT does even worse and only identified

one of the verified mismatches. CIDER is unable to examine

Android apps for API invocation compatibility issues. We

interpret these results to show SAINTDROID provide better

accuracy than the other three techniques.

API Callback Compatibility Issues (APC). SAINTDROID

successfully detects 40 callback compatibility issues out of

42 in the objects of analysis, with no false positives. These

compatibility issues cause a variety of undesirable results,

from crashes to inaccurate app state, depending on the in-

dividual app; if the user-defined code does not implement an

expected callback (or implements a now-deprecated callback),

the app may miss necessary initialization or other event

handling. CIDER misses most of the issues identified by

SAINTDROID mainly because it only considers the classes

that were manually modeled, i.e., Activity, Fragment, Ser-
vice, and WebView. SAINTDROID automatically identifies

potential callback mismatches across all classes in the Android

API. CID is unable to examine Android apps for callback

compatibility issues. LINT not only identifies none of the

verified mismatches, but also has a high rate of false warnings.

Overall, the results show that SAINTDROID outperforms the

other three techniques in terms of both precision and recall.

Permission-induced Compatibility Issues (PRM). Ac-

cording to the experimental results, SAINTDROID detects

two cases of permission-induced compatibility issues in FOSS
Browser [39] and Kolab notes [40] apps; these two apps

request dangerous permissions and target an API level higher

than 23, yet they do not follow the new runtime permission

checking. Note that the other techniques do not detect any of

the runtime permission compatibility issues.

B. RQ2: Real-World Applicability

To evaluate SAINTDROID in practice, we analyzed a set

real-world apps from multiple repositories (cf. Section IV).

SAINTDROID detected 68,268 potential API invocation mis-

matches, with 41.19% of the apps harboring at least one poten-

tial mismatch. It also identified 2,115 potential API callback

mismatches in 20.05% of the apps under analysis. To perform

the permission-induced mismatch analysis, we divided the

apps into two groups based on the target SDK version: (i)

1,815 apps target Android API levels greater than or equal to

23 and (ii) 1,756 apps target Android API levels below 23.

We identified a total of 1,430 apps across both groups with

at least one permissions-induced compatibility issue. 224 apps

(12.34%) in group (i) attempt to use dangerous permissions

without implementing the runtime permissions request system,

and 1,206 apps (68.68%) in group (ii) are vulnerable to

permissions revocation mismatches (cf. Section II-C).

Since manually examining all 3,691 real-world apps pro-

hibitively expensive, we sampled 60 apps where incompati-

bilities were detected and calculated the precision scores. We

do not consider recall because the ground-truth incompatibil-

ities are unknown. Among all 60 incompatibility issues, the

precision scores for API invocation, callback, and permission

incompatibilities are 85%, 100%, and 100%, respectively.

The results are consistent with the ones obtained from the

benchmark programs (cf. Table II).

We then investigated the SAINTDROID’s results and report

some samples of our findings to illustrate the sorts of in-

compatibilities detected by SAINTDROID. To avoid revealing

previously unknown compatibility issues, we only disclose a

subset of those that we have had the opportunity to bring

to the app developers’ attention. For permission mismatch in

particular, we report one sample of each as all mismatches of

those categories follow a nearly identical pattern; while each

app may request/use a different permission, the structure of

the mismatch will be the same. For mentioned apps available

on the Google Play store, we report the number of downloads

to provide an indication of each app’s popularity. Neither F-

Droid nor AndroZoo provide download or usage statistics.

API invocation mismatch. In the Offline Calendar
app [41], the invocation of the getFragmentManager() API

method in PreferencesActivity.onCreate causes an API in-

vocation mismatch. The getFragmentManager() method was

added to the Activity class in API level 11. Yet, Offline
Calendar sets its minSdkVersion to API level 8. Therefore,

as soon as the PreferencesActivity is activated, the Offline
Calendar app will crash if running on API levels 8 to 11.

The mismatch could be resolved by wrapping the call to

getFragmentManager() in a guard condition to only execute

it if the device’s API level is equal or greater than 11, or by

setting the minSdkVersion to 11.

API callback mismatch. FOSDEM [42] is a conference

companion app (10,000+ downloads). It exhibits an API

callback mismatch in its ForegroundLinearLayout class,

which overrides the View.drawableHotspotChanged call-

back method, introduced in API level 21. However, its minSd-
kVersion is API level 15, which does not support that callback

method, and in turn may not properly propagate the new

hotspot location to the view. This could lead to crashes or other

instability in the app interface. Setting the minSdkVersion to

21 would resolve the mismatch.

Permission request mismatch. Kolab Notes [40] is a note-

taking app that synchronizes with other apps (1,000+ down-

loads). It exhibits a permission request mismatch. The app tar-

gets API 26 and uses the WRITE EXTERNAL STORAGE
permission, but does not implement the methods to request the

permission at runtime. If the permission is not granted when

the user attempts to save/load data to/from an SD card, the

action will fail. To resolve the mismatch, the developers must

implement the runtime permissions request system.

Permission revocation mismatch. AdAway [28] is an

ad blocking app that suffers from a permission revoca-

tion mismatch. The app targets API level 22 and uses the

WRITE EXTERNAL STORAGE permission, which could

be revoked by the user when installed on a device running API

23 or greater. If the user revokes the permission and tries to

export a file, the app will crash. The developers could resolve

the issue by updating the app to use runtime permissions and

setting the minSdkVersion to 23.

TABLE III: Experiments performance statistics in seconds.

App SAINTDROID CID LINT

C
ID

E
R

-B
en

ch

AFWall+ 8.2 – 41.3
DuckDuckGo 7.7 60.3 35.1
FOSS Browser 3.6 17.2 30.3
Kolab notes 7.2 16.5 22.8
MaterialFBook 6.2 19.6 12.3
NetworkMonitor 8.2 – 35.1
NyaaPantsu 11.3 – 27.4
Padland 2.3 13.3 11.1
PassAndroid 9.9 – 32.5
SimpleSolitaire 6.3 13.2 20.6
SurvivalManual 7.2 60.1 10.5
Uber ride 4.7 15.8 25.8

C
ID

-B
en

ch

Basic 3.9 21.1 2.5
Forward 1.8 6.2 2.5
GenericType 4.1 18.7 2.6
Inheritance 3.8 19.2 3.1
Protection 3.9 17.1 3.5
Protection2 3.9 21.2 3.1
Varargs 3.8 23.5 3.8

Average 5.7 22.9 17.1

C. RQ3: Performance

Table III shows the analysis times of SAINTDROID, CID,

and LINT (in seconds). Dashes indicate that either the cor-

responding technique fails to produce analysis results after

600 seconds or crashes. As shown, the analysis time taken

by SAINTDROID is significantly lower than those of CID

and LINT for almost all the apps. For the smaller apps in

the CID-Bench set, LINT required the least time for the

analysis, as its analysis only examines direct calls to the

API without considering the context or control flow. This

translates to better analysis speed for small apps, but (as

shown in Table II) reduces the accuracy of LINT’s results.

The performance benefits of SAINTDROID are more apparent

for the larger apps in CIDER-Bench. Also note that CID fails

to completely analyze four apps. Figure 3 presents the time

taken by SAINTDROID to perform compatibility analysis on

real-world apps. The scatter plot depicts both the analysis

time and the app size. The experimental results show that the

average analysis time taken by SAINTDROID, CID, and LINT

Fig. 3: Scatter plot representing analysis time for compatibility

checking of Android apps using SAINTDROID.

per app on real-world data sets is 6.2 seconds (ranging from

1.6 to 37.8 seconds), 29.5 seconds (ranging from 4.1 to 78.4

seconds), and 24.7 seconds (ranging from 4.7 to 75.6 seconds),

respectively. We have found outliers during the analysis. For

example, the app in the top left corner in Figure 3 is a

game application which extensively uses third party libraries,

which took a considerable amount of time for the analyzer

to compute the data structures required for the compatibility

analysis, despite the app’s small KLOC. On the other hand,

the app in the right side of the diagram, closer to 80 KLOC,

loads only one third the library classes of the aforementioned

app, providing simpler graphs to analyze. Overall, the timing

results show that SAINTDROID is up to 8.3 times (4.7 times

on average) faster than the state-of-the art techniques, and is

able to complete analysis of real-world apps in just a few

seconds (on an ordinary laptop), confirming that the presented

technology is indeed feasible in practice for real-world usage.

To better understand why SAINTDROID performs more

efficiently than the state-of-the-art approaches, we conducted

a further performance evaluation, comparing the amount of

resources and analysis effort required by each approach.

Specifically, we monitored the memory footprint required by

each approach for performing analysis. Figure 4 shows a

comparison of how much memory SAINTDROID and CID

use during the analysis of real-world apps. SAINTDROID on

average requires 329 MB (ranging from 119MB to 898MB)

of memory to perform the compatibility analysis. On the

other hand, CID on average uses 1.3 GB (four times more

memory) to perform the same analysis. We interpret this data

as demonstrating SAINTDROID’s effectiveness in practice.

D. Threats to Validity

The primary threat to external validity in this study involves

the object programs. We have studied a smaller set of bench-

mark programs developed and released by prior research [14],

[19] so that we can directly compare our results with their

previously reported results. However, we also extend our

evaluation to employ over 3,590 complex real-world apps

from other repositories, which in turn enabled us to assess

our system in real-world scenarios, representative of those

that engineers and analysts are facing. The primary threat

Fig. 4: Amount of memory used by SAINTDROID and CID

when analyzing real-world Android apps.

to internal validity involves potential errors in the imple-

mentations of SAINTDROID and the infrastructure used to

run CID and SAINTDROID. To limit these, we extensively

validated all of our tool components and scripts to ensure

correctness. By using the same objects as our baseline systems

we can compare our results with those previously reported to

ensure correctness. The primary threat to construct validity

is that we study efficiency measures relative to applications

of SAINTDROID, but do not yet assess whether the approach

helps software engineers or analysts address dependability and

security concerns more quickly than current approaches.

VI. DISCUSSION AND LIMITATIONS

By performing the analysis incrementally, SAINTDROID’s

analysis cost is amortized over time. Start up time is also

short as only a small portion of the code is needed to begin

the analysis. Furthermore, the amount of memory that must be

committed to store code and perform incremental analysis is

small, substantially enhancing the scalability of our approach.

Like any approach relying on static analysis, SAINTDROID

is subject to false positives. A promising avenue of future

research is to complement SAINTDROID—which is a static

analysis tool—with dynamic analysis techniques. Essentially,

it should be possible to utilize dynamic analysis techniques to

automatically verify incompatibilities identified through our

conservative, static analysis based, incompatibility detection

technique, further alleviating the burden of manual analysis.

As explained in Section V, the majority of the false

alarms are due to a limitation in SAINTDROID regarding

dynamically-generated classes (e.g., WebView$1) that corre-

spond to anonymous inner class declarations. When analyzing

the code of each app, SAINTDROID explores the classes

explicitly defined in the app, as the dynamically-generated

classes are unavailable prior to runtime. Thus, any callback or

method defined inside an anonymous inner class is invisible

to SAINTDROID and is not included in the analysis. We

plan to address this limitation in the future by including the

dynamically-generated class definitions as well.

VII. RELATED WORK

Android analysis has received a lot of attention since its

inception [43]–[60]. This section discusses the related efforts

in light of our research.

API evolution. A large body of existing research focuses

on the evolving nature of APIs, which is an important aspect

of software maintenance [46], [48], [49], [50], [52], [54],

[56], [57], [58], [60]. McDonnell et al. [46] studied Android’s

fast API evolution (115 API updates/month), and noticed

developers’ hesitation in embracing the fast-evolving APIs

because they can be more defect-prone than other types of

changes [54]. Bavota et al. [48] showed that applications

with higher user ratings use APIs that are less change- and

fault-prone compared to applications with lower ratings. Li

et al. [50] investigated the frequency with which deprecated

APIs are used in the development of Android apps, consid-

ering the deprecated APIs’ annotations, documentation, and

TABLE IV: Comparing SAINTDROID to the state-of-the-art

of compatibility detection techniques.

API APC PRM

CID [19] � � �
CIDER [14] � � �
IctApiFinder [18] � � �
LINT [20] � � �
SAINTDROID � � �

removal consequences along with developers’ reactions to

APIs deprecations. These prior efforts clearly motivate the

need to address issues relating to API evolution. However,

their approaches do not provide detailed technical solutions

or methods to systematically detect the root causes of these

problems. SAINTDROID, on the other hand, is designed to be

effective at detecting crash-leading API related issues.

API incompatibility. In Table IV, we compare the detection

capabilities of SAINTDROID against the current state-of-the-

art approaches. It is important to stress that SAINTDROID is

the only solution that can automatically detect API invocation

compatibility issues (API), API callback compatibility issues

(APC), and permission-induced compatibility issues (PRM).

Wu et al. [16] investigated side effects that may cause runtime

crashes even within an app’s supported API ranges, inspiring

subsequent work. Huang et al. [14] aimed to understand

callback evolution and developed CIDER, a tool capable

of identifying API callback compatibility issues. However,

CIDER’s analysis relies on manually built PI-GRAPHS, which

are models of common compatibility callbacks of only four

API classes.CIDER thus provides no analysis of other classes

nor of permission induced mismatches. As such, their reported

result is a subset of ours. In addition, CIDER’s API analysis

is based on the Android documentation, which is known to be

incomplete [16]. Our work, on the other hand, automatically

analyzes each API level in its entirety to identify all existing

APIs. This allows our approach to be more accurate in

detecting actual changes in API levels, as there are frequent

platform updates and bug fixes. As a result, and as confirmed

by the evaluation results, our approach features much higher

precision and recall in detecting compatibility issues.

Lint [20] is a static analysis tool introduced in ADT

(Android Development Tools) version 16. One of the benefits

of Lint is that the plugin is integrated with the Android Studio

IDE—the default editor for Android development. The tool

checks the source code to identify potential bugs such as

layout performance issues, and accessing API calls that are

not supported by the target API version. However, the tool

generates false positives when verifying unsupported API calls

(e.g., when an API call happens within a function triggered

by a conditional statement). Another disadvantage is that it

requires the original Java source code rather than APKs and

further requires the project to be built in the Android Studio

to conduct the analysis. Unlike LINT, SAINTDROID operates

directly on Dex code. While LINT claims to be able to detect

API incompatibility issues, our experimental results indicate

that LINT is not as effective as SAINTDROID.

Li et al. [19] provided an overview of the Android API

evolution to identify cases where compatibility issues may

arise in Android apps. They also presented CID, which (a)

models the API lifecycle, (b) uses static analysis to detect

APIs within the app’s code, and (c) extracts API methods from

the Android framework to detect backward incompatibilities.

CID supports compatibility analysis up to API level 25. In

comparison, SAINTDROID supports up to the most recent

Android platform (API level 29). Moreover, in contrast to

SAINTDROID, CID does not consider incompatibilities re-

garding the runtime permission system.

Wei et al. [15] conducted a study to characterize the symp-

toms and root causes of compatibility problems, concluding

that the API evolution and problematic hardware implemen-

tations are major causes of compatibility issues. They also

propose a static analysis tool to detect issues when invoking

Android APIs on different devices. Their tool, however, needs

manual work to build API/context pairs, of which they only

define 25. Similar to our prior discussion of work by Huang

et al., the major difference between our work and this work

is that our approach can focus on all API methods that exist

in an API level. Again, the result reported by their approach

would be a subset of our detected issues. Conversely, Wang et

al. [61] recently studied permissions-related issues in specific

and developed a taxonomy of eleven classes of permissions-

related issues based on the new runtime permission system.

SAINTDROID focuses on incompatibility due to changes in

the Android framework itself, which corresponds to Types

1-3 in their taxonomy. We also note that they categorize

the cause of the issue, not its presentation within each app.

SAINTDROID’s automatic analysis would also catch issues

that classified as being caused by the developer (Type 7-8).

VIII. CONCLUSION AND FUTURE WORK

This paper presents SAINTDROID, a novel approach and

accompanying tool-suite for efficient analysis of various types

of crash-leading Android compatibility issues. The experimen-

tal results of comparing SAINTDROID with the state-of-the-

art in Android incompatibility detection corroborate its ability

to efficiently detect more sources of potential issues, yielding

fewer false positives and executing in a fraction of the time

needed by the other techniques. Applying SAINTDROID to

thousands of real-world apps from various repositories reveals

that as many as 42% of the analyzed apps are prone to API

invocation mismatch, 20% can crash due to API callback

mismatch, and 40% of the apps can suffer from crashes due

to permissions-related mismatch, indicating that such problems

are still prolific in contemporary, real-world Android apps.

Besides what we already discussed in Section VI, we also

plan as part of our future work to explore the trade-off between

increasing analysis precision, e.g., through incorporating ad-

ditional information such as CCFG for the compatibility anal-

ysis, and higher analysis overhead. Another avenue for future

work is to develop a complementing code synthesizer to help

repair apps that do not properly handle detected mismatches.

REFERENCES

[1] “Android market share,” https://www.statista.com/statistics/266136/global-
market-share-held-by-smartphone-operating-systems/, 2019.

[2] “Google play apps,” https://www.statista.com/statistics/266210/number-
of-available-applications-in-the-google-play-store/, 2019.

[3] “Android platform frameworks base,” https : //github.com/aosp −
mirror/platform frameworks base/releases, August 2019.

[4] M. Linares-Vásquez, G. Bavota, M. Di Penta, R. Oliveto, and D. Poshy-
vanyk, “How do api changes trigger stack overflow discussions? a study
on the android sdk,” in proceedings of the 22nd International Conference
on Program Comprehension. ACM, 2014, pp. 83–94.

[5] Michael Kassner, “Beware of danger lurking in Android phone
updates,” http://www.techrepublic.com/article/beware-of-danger-
lurking-in-android-phone-updates/, April 2014.

[6] V.-V. Helppi, “What Every App Developer Should Know About An-
droid,” http://www.smashingmagazine.com/2014/10/02/what-every-app-
developer-should-know-about-android/, October 2014.

[7] AndroidCentral, “Phone Died During System Update,” 2013,
http://forums.androidcentral.com/htc-desire-c/265098-phone-died-
during-system-update.html.

[8] Z. Epstein, “Did Apps Just Start Crashing Constantly on Your An-
droid Phone?” 2015, http://bgr.com/2015/04/28/android-tips-tricks-fix-
crashing-apps/.

[9] A. Bera, “How To Fix Apps Crashing After 4.4 Kit-Kat Update Problem
On Nexus 7,” 2016, http://www.technobezz.com/fix-apps-crashing-4-4-
kitkat-update-problem-nexus-7/.

[10] M. Rajput, “Tips For Solving Your Android App Crashing Issues,” 2015,
http://tech.co/tips-solving-android-app-crashing-issues-2015-10.

[11] “Apple breaks new iphones with terrible software update,”
http://www.slate.com/blogs/
future tense/2014/09/24/apple ios 8 0 1 software update
major bugs hit iphone 6 6 plus.html, 2014.

[12] “YouTube API change: some older devices can’t update to new
app,” http://hexus.net/ce/news/audio-visual/82570-youtube-api-change-
older-devices-update-new-app/, 2014.

[13] “Permissions in android,” https://developer.android.com/
guide/topics/permissions/overview#permission-groups, 2018.

[14] H. Huang, L. Wei, Y. Liu, and S.-C. Cheung, “Understanding and
detecting callback compatibility issues for android applications.” in Pro-
ceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering, 2018, pp. 532–542.

[15] L. Wei, Y. Liu, and S.-C. Cheung, “Taming android fragmentation:
Characterizing and detecting compatibility issues for android apps,”
in Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering. ACM, 2016, pp. 226–237.

[16] D. Wu, X. Liu, J. Xu, D. Lo, and D. Gao, “Measuring the declared sdk
versions and their consistency with api calls in android apps,” in Inter-
national Conference on Wireless Algorithms, Systems, and Applications.
Springer, 2017, pp. 678–690.

[17] M. Tolentino, “Will These Bugs be Fixed in Android 5.1.1 Up-
date,” http://siliconangle.com/blog/2015/04/24/will-these-bugs-be-fixed-
in-android-5-1-1-update/, April 2015.

[18] D. He, L. Li, L. Wang, H. Zheng, G. Li, and J. Xue, “Understanding
and detecting evolution-induced compatibility issues in android apps,”
in Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering. ACM, 2018, pp. 167–177.

[19] L. Li, T. F. Bissyandé, H. Wang, and J. Klein, “Cid: Automating
the detection of api-related compatibility issues in android apps,” in
Proceedings of the 27th ACM SIGSOFT International Symposium
on Software Testing and Analysis, ser. ISSTA 2018. New
York, NY, USA: ACM, 2018, pp. 153–163. [Online]. Available:
http://doi.acm.org/10.1145/3213846.3213857

[20] “lint,” http://tools.android.com/tips/lint, 2019.
[21] “SAINTDROID repository,” https://sites.google.com/view/saintdroid/,

2021.
[22] Google, “Android 10,” https://developer.android.com/about/versions/10,

2019.
[23] “Android versions,” https://en.wikipedia.org/wiki/Android version history,

2018.
[24] “Using sdk in android apps,” https://developer.android.com/guide/topics/

manifest/uses-sdk-element, 2019.
[25] “SimpleSolitaire,” https://github.com/TobiasBielefeld/Simple-

Solitaire/commit/1483ee, 2019.

[26] Google, “Permissions overview,” https://developer.android.com/guide/topics/

permissions/overview#permission-groups, 2019.
[27] “Android runtime permissions,” https://source.android.com/devices/tech/

config/runtime perms, 2019.
[28] “AdAway,” https://github.com/AdAway/AdAway/releases/tag/v3.0.2,

2019.
[29] H. van der Merwe, B. van der Merwe, and W. Visser, “Verifying android

applications using Java pathfinder,” SIGSOFT Software Engineering
Notes, vol. 37, no. 6, pp. 1–5, Nov. 2012.

[30] E. Bodden, A. Sewe, J. Sinschek, H. Oueslati, and M. Mezini, “Taming
reflection: Aiding static analysis in the presence of reflection and
custom class loaders,” in Proceedings of the International Conference
on Software Engineering, May 2011, pp. 241–250.

[31] R. Vallée-Rai, “Soot: A Java Bytecode Optimization Framework,” Mas-
ter’s thesis, McGill University, 2000.

[32] Y. Tsutano, S. Bachala, W. Srisa-An, G. Rothermel, and J. Dinh, “An
efficient, robust, and scalable approach for analyzing interacting android
apps,” in Proceedings of the 39th International Conference on Software
Engineering. IEEE Press, 2017, pp. 324–334.

[33] “sdkmanager,” https://developer.android.com/studio/command-
line/sdkmanager, 2019.

[34] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “Pscout: analyzing
the android permission specification,” in Proceedings of the 2012 ACM
conference on Computer and communications security. ACM, 2012,
pp. 217–228.

[35] “Apktool,” https://ibotpeaches.github.io/Apktool/, 2019.
[36] “Gradle build tool,” https://gradle.org, 2019.
[37] “F-Droid,” https://f-droid.org/, 2019.
[38] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “Androzoo:

Collecting millions of android apps for the research community,” in
Mining Software Repositories (MSR), 2016 IEEE/ACM 13th Working
Conference on. IEEE, 2016, pp. 468–471.

[39] “Foss Browser,” https://github.com/scoute-
dich/browser/commit/e08f5b6, 2019.

[40] “Kolab notes,” https://github.com/konradrenner/kolabnotes-
android/commit/14ba3c3, 2019.

[41] “Offline Calendar,” https://github.com/PrivacyApps/offline-
calendar/releases/tag/v1.8, 2019.

[42] “FOSDEM Companion,” https://github.com/cbeyls/fosdem-companion-
android/releases/tag/1.5.0, 2019.

[43] M. Alhanahnah, Q. Yan, H. Bagheri, H. Zhou, Y. Tsutano,
W. Srisa-an, and X. Luo, “DINA: detecting hidden android inter-
app communication in dynamic loaded code,” IEEE Trans. Inf.
Forensics Secur., vol. 15, pp. 2782–2797, 2020. [Online]. Available:
https://doi.org/10.1109/TIFS.2020.2976556

[44] M. Hammad, H. Bagheri, and S. Malek, “Deldroid: An automated
approach for determination and enforcement of least-privilege
architecture in android,” J. Syst. Softw., vol. 149, pp. 83–100,
2019. [Online]. Available: https://doi.org/10.1016/j.jss.2018.11.049

[45] Y. Aafer, X. Zhang, and W. Du, “Harvesting inconsistent security
configurations in custom android roms via differential analysis.” in
USENIX Security Symposium, 2016, pp. 1153–1168.

[46] T. McDonnell, B. Ray, and M. Kim, “An empirical study of api stability
and adoption in the android ecosystem,” in Software Maintenance
(ICSM), 2013 29th IEEE International Conference on. IEEE, 2013,
pp. 70–79.

[47] H. Bagheri, J. Wang, J. Aerts, and S. Malek, “Efficient,
evolutionary security analysis of interacting android apps,” in
2018 IEEE International Conference on Software Maintenance and
Evolution, ICSME 2018, Madrid, Spain, September 23-29, 2018.
IEEE Computer Society, 2018, pp. 357–368. [Online]. Available:
https://doi.org/10.1109/ICSME.2018.00044

[48] G. Bavota, M. Linares-Vasquez, C. E. Bernal-Cardenas, M. Di Penta,
R. Oliveto, and D. Poshyvanyk, “The impact of api change-and fault-
proneness on the user ratings of android apps,” IEEE Transactions on
Software Engineering, vol. 41, no. 4, pp. 384–407, 2015.

[49] S. Scalabrino, G. Bavota, M. Linares-Vasquez, M. Lanza, and R. Oliveto,
“Data-driven solutions to detect api compatibility issues in android:
an empirical study,” in Mining Software Repositories (MSR), 2019
IEEE/ACM 16th Working Conference on. IEEE, 2019, pp. 288–298.

[50] L. Li, J. Gao, T. F. Bissyandé, L. Ma, X. Xia, and J. Klein, “Character-
ising deprecated android apis,” in Proceedings of the 15th International
Conference on Mining Software Repositories. ACM, 2018, pp. 254–
264.

[51] M. Hammad, H. Bagheri, and S. Malek, “Determination and
enforcement of least-privilege architecture in android,” in 2017
IEEE International Conference on Software Architecture, ICSA 2017,
Gothenburg, Sweden, April 3-7, 2017. IEEE Computer Society, 2017,
pp. 59–68. [Online]. Available: https://doi.org/10.1109/ICSA.2017.18

[52] M. Lamothe and W. Shang, “Exploring the use of automated api
migrating techniques in practice: An experience report on android,”
2018.

[53] B. R. Schmerl, J. Gennari, A. Sadeghi, H. Bagheri, S. Malek, J. Cámara,
and D. Garlan, “Architecture modeling and analysis of security in
android systems,” in Software Architecture - 10th European Conference,
ECSA 2016, Copenhagen, Denmark, November 28 - December 2, 2016,
Proceedings, ser. Lecture Notes in Computer Science, B. Tekinerdogan,
U. Zdun, and M. A. Babar, Eds., vol. 9839, 2016, pp. 274–290.
[Online]. Available: https://doi.org/10.1007/978-3-319-48992-6 21

[54] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, M. Di Penta,
R. Oliveto, and D. Poshyvanyk, “Api change and fault proneness: a
threat to the success of android apps,” in Proceedings of the 2013 9th
joint meeting on foundations of software engineering. ACM, 2013, pp.
477–487.

[55] H. Bagheri, J. Wang, J. Aerts, N. Ghorbani, and S. Malek, “Flair:
efficient analysis of android inter-component vulnerabilities in response
to incremental changes,” Empir. Softw. Eng., vol. 26, no. 3, p. 54,
2021. [Online]. Available: https://doi.org/10.1007/s10664-020-09932-6

[56] T. Luo, J. Wu, M. Yang, S. Zhao, Y. Wu, and Y. Wang, “Mad-api:

Detection, correction and explanation of api misuses in distributed an-
droid applications,” in Proceedings of the 7th International Conference
on Artificial Intelligence and Mobile Services, 2018, pp. 123–140.

[57] M. Fazzini and A. Orso, “Automated cross-platform inconsistency
detection for mobile apps,” in Proceedings of the 32Nd IEEE/ACM
International Conference on Automated Software Engineering, ser. ASE
2017. Piscataway, NJ, USA: IEEE Press, 2017, pp. 308–318. [Online].
Available: http://dl.acm.org/citation.cfm?id=3155562.3155604

[58] M. Mahmoudi and S. Nadi, “The android update problem: an empirical
study,” in Proceedings of the 15th International Conference on Mining
Software Repositories. ACM, 2018, pp. 220–230.

[59] M. Alhanahnah, Q. Yan, H. Bagheri, H. Zhou, Y. Tsutano,
W. Srisa-an, and X. Luo, “Detecting vulnerable android inter-app
communication in dynamically loaded code,” in2019 IEEE Conference
on Computer Communications, INFOCOM 2019, Paris, France, April
29 - May 2, 2019. IEEE, 2019, pp. 550–558. [Online]. Available:
https://doi.org/10.1109/INFOCOM.2019.8737637

[60] P. Mutchler, Y. Safaei, A. Doupé, and J. Mitchell, “Target fragmentation
in android apps,” in 2016 IEEE Security and Privacy Workshops (SPW).
IEEE, 2016, pp. 204–213.

[61] Y. Wang, Y. Wang, S. Wang, Y. Liu, C. Xu, S. Cheung, H. Yu, and Z.-l.
Zhu, “Runtime permission issues in android apps: Taxonomy, practices,
and ways forward,” IEEE Transactions on Software Engineering, pp.
1–1, 2022.

