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a b s t r a c t 

Android is widely used for the development and deployment of autonomous and smart systems, includ- 

ing software targeted for IoT and mobile devices. Security of such systems is an increasingly important 

concern. Android relies on a permission model to secure the system’s resources and apps. In Android, 

since the permissions are granted at the granularity of apps, and all components in an app inherit those 

permissions, an app’s components are over-privileged, i.e., components are granted more privileges than 

they actually need. Systematic violation of least-privilege principle in Android is the root cause of many 

security vulnerabilities. To mitigate this issue, we have developed DelDroid , an automated system for de- 

termination of least privilege architecture in Android and its enforcement at runtime. A key contribution 

of DelDroid is the ability to limit the privileges granted to apps without modifying them. DelDroid uti- 

lizes static analysis techniques to extract the exact privileges each component needs. A Multiple-Domain 

Matrix representation of the system’s architecture is then used to automatically analyze the security pos- 

ture of the system and derive its least-privilege architecture. Our experiments on hundreds of real-world 

apps corroborate DelDroid ’s ability in effectively establishing the least-privilege architecture and its ben- 

efits in alleviating the security threats. 

© 2018 Published by Elsevier Inc. 
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. Introduction 

Android is widely used for the development and deployment

f autonomous and smart software systems, including software in-

ended for execution on a variety of mobile devices, as well as soft-

are targeted for Internet of Things (IoT) settings, such as smart

omes. Security of such systems is an increasingly important con-

ern. Permissions form the foundation of security in Android. An-

roid relies on a permission-based model for controlling the re-

ources that each app is allowed to access. Permissions are often

ranted to an app at the discretion of end user, who makes a de-

ision based on its perceived trustworthiness and expected func-

ionality. 

Android’s permission-based access control model, however, has

hown to be ineffective in protecting system resources and apps

rom security attacks ( Chin et al., 2011 ). All components of an An-

roid app inherit the permissions granted to the app, regardless of

hether they need those permissions or not. As a result, a mali-

ious component inside an app, such as a third-party library, can
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everage privileges meant for other components for nefarious pur-

oses ( Poeplau et al., 2014 ). Moreover, by default, a component in

ndroid has significant leeway in terms of the components it can

ommunicate with, both within and outside of its parent app. The

ver-privileged nature of components in Android is the root cause

f various security attacks ( Chin et al., 2011; Poeplau et al., 2014;

agheri et al., 2015; Garcia et al., 2017 ). These kinds of attacks can-

ot be prevented by the platform at the moment, as they do not

iolate the security mechanisms supplied by Android. 

Prior research efforts have proposed various solutions to help

ddress certain instances of component-level attacks. Some of

he proposed solutions have focused on isolating specific type

f component-level threats, caused by for example advertise-

ent ( Pearce et al., 2012a; Shekhar et al., 2012a ) or JNI libraries

 Sun and Tan, 2014 ); such approaches are narrowly targeted, and

hus, inappropriate for applying comprehensively to other types

f component-level threats. Others have proposed component-

evel permission assignment for third-party components in an app

 Wang et al., 2014; Seo et al., 2016 ), yet they are incapable of con-

rolling communications among components. They also often re-

uire application modification or developer intervention, signifi-

antly hindering their adoption in practice. 

https://doi.org/10.1016/j.jss.2018.11.049
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To systematically thwart these threats, we have developed Del-

Droid , 1 a fully automated system for determination of least-

privilege architecture (LP architecture) in Android and its enforce-

ment at runtime. An LP architecture is one in which the compo-

nents are only granted the privileges that they require for provid-

ing their functionality ( Taylor et al., 2009 ). An LP architecture, thus,

reduces the risk of an Android system being compromised by lim-

iting its attacks surface. In addition, when a component is com-

promised, the impact is localized within the scope of that com-

ponent. A smaller attack surface also facilitates both manual and

automated means of inspecting the system’s security attributes. 

Establishing the least privilege architecture is quite challeng-

ing as it demands mediation of all conceivable channels through

which a component may interact with components within and

outside its parent app, as well as the underlying system resources.

DelDroid leverages static program analysis to automatically iden-

tify the architectural elements comprising an Android system, as

well as the inter-component communication and resource-access

privileges each component needs to provide its functionality. It

then uses a Multiple-Domain Matrix (MDM) ( Lindemann and Mau-

rer, 2007 ) to represent and derive the LP architecture for the sys-

tem. MDM provides an elegant, yet compact, representation of all

relationships between principal elements, such as components and

permissions, in a system. DelDroid further allows a security ex-

pert to modify the architecture as needed to establish the proper

privileges for each component. Finally, DelDroid enforces automat-

ically obtained or expert-supplied LP architecture at runtime, thus

ensuring components are not able to obtain more privileges than

that prescribed by the architecture. 

By providing an efficient least-privilege determination process

associated with a thorough enforcement system, DelDroid allows

users to focus their analysis effort s on a very narrowed set of inter-

actions in the architecture. This is especially valuable, since at the

scale of a single device, the state-of-the-art inter-component com-

munication analysis tools produce an enormous number of poten-

tial links between message-passing locations and possible message

targets, making manual analysis required to confirm any potential

threat rather tedious and error-prone. 

DelDroid can be used to limit the levels of access available to

an app and its components without modification of their imple-

mentation logic, thus allowing our approach to be applied to all

existing Android apps. Our evaluation of DelDroid using hundreds

of real-world apps corroborates its ability in significantly reducing

the attack surface of Android systems and thwarting security at-

tacks that would have succeeded otherwise. 

This paper describes several new non-trivial extensions to the

preliminary version of our work described in ( Hammad et al.,

2017 ): (1) We incorporate new security analysis rules in DelDroid

to detect a broader range of inter-component communication (ICC)

attacks. In addition to the privilege escalation analysis, DelDroid is

now capable of analyzing the recovered architecture for potential

Intent spoofing and unauthorized Intent receipt attacks ( Chin et al.,

2011 ). (2) We enrich our representation of architecture in MDM

to show the type of communication between various components

of an Android system. DelDroid uses the additional information

to analyze the system architecture for new security vulnerabili-

ties. (3) We improve our algorithm for generating Event-Condition-

ction (ECA) rules that collectively capture the determined least-

privilege architecture, in turn reducing the size of rules that need

to be stored in an Android device and monitored at runtime. (4)

We report on new experiments to assess, among other things, the

newly added security analysis capabilities. On top of these tech-
1 The name is intended to abbreviate “d etermination and e nforcement of l east 

privilege architecture in An Droid ”. 

(  

t  

e  

v  
ical contributions, the paper provides an in-depth description of

he determination and enforcement of least-privilege architecture

n Android and a revamped discussion of this work in the context

f related research. 

To summarize, this paper makes the following contributions: 

• Automated derivation of LP architecture: We develop a novel

mechanism, called DelDroid , to automatically identify the LP

architecture for an Android system. The run-time architecture

captured in an MDM further helps users and security experts

better understand and maintain the security posture of the en-

tire system. 
• Dynamic enforcement: We show how to exploit the LP architec-

ture to safeguard the system against security attacks by enforc-

ing it at runtime without modifying the current apps. 
• Experiments : We present results from experiments run on hun-

dreds of real-world apps, corroborating DelDroid ’s ability in

(1) effectively reducing the attack surface of Android sys-

tems through the establishment of an LP architecture, and

(2) efficiently detecting and preventing various security attacks

through analyzing the established LP architecture and its dy-

namic enforcement. 

The remainder of this paper is structured as follows.

ection 2 provides an overview of the Android framework and its

ccess control model to help the reader understand the discussion

hat follows. Section 3 motivates the research through an illustra-

ive example. Section 4 describes DelDroid , while Section 5 de-

cribes its implementation. The evaluation results are presented in

ection 6 . Finally, the paper concludes with an overview of the re-

ated literature and discussions on limitations and directions for

uture work. 

. Android background and research motivation 

This section provides a brief overview of the Android frame-

ork, and the over-privileged nature of its access control model,

o help the reader follow the discussions that ensue. 

Android framework. Android is the most popular mobile plat-

orm accounting for 85% market share as of the first quarter of

017 Smartphone os market share , and more than 3.0 million An-

roid apps are available only on Google Play, the official Google

ndroid app store, as of June 2017 Number of available apps in the

oogle play store . The Android framework includes a full Linux OS

ased on the ARM processor, system libraries, middleware, and a

uite of pre-installed applications. Android applications (apps) are

ainly written in the Java programming language by using a rich

ollection of APIs provided by the Android Software Development

it (SDK). An app’s compiled code alongside data and resources

re packed into an archive file, known as an Android package kit

APK). Once an APK is installed on an Android device, it runs by

sing the Android runtime (ART) environment. 

Application configuration. Each Android APK includes a

andatory configuration file, called manifest . It specifies, among

ther things, the principal components that constitute the app, in-

luding their types and capabilities, as well as required and en-

orce permissions. The manifest file values are bound to the app at

ompile time, and cannot be changed afterwards, unless the app is

ecompiled. 

Application components. Components are basic logical build-

ng blocks of apps. Each component can be invoked individually,

ither by its embodying app or by the system, upon permitted re-

uests from other apps. Android defines four types of components:

1) Activity components provide the basis of the Android user in-

erface. Each app may have multiple Activities representing differ-

nt screens of the app to the user. (2) Service components pro-

ide background processing capabilities, and do not provide any
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ser interface. Playing a music and downloading a file while a user

nteracts with another app are examples of operations that may

un as a Service. (3) Broadcast Receiver components respond asyn-

hronously to system-wide message broadcasts. A receiver compo-

ent typically acts as a gateway to other components, and passes

n messages to Activities or Services to handle them. (4) Content

rovider components provide database capabilities to other com-

onents. Such databases can be used for both intra-app data per-

istence as well as sharing data across apps. Each component can

eclare a set of provided interfaces which can be invoked by other

omponents. 

Inter-component communication. Inter-component communi- 

ation (ICC) in Android is mainly conducted by means of Intent

essages. An Intent message is an event for an action to be per-

ormed along with the data that supports that action. Component

apabilities are then specified as a set of Intent Filters that repre-

ent the kinds of requests handled by a given component. Intent

ilters are the provided interfaces of a component. Component in-

ocations come in different flavors, e.g., explicit or implicit, intra-

r inter-apps, etc. An explicit Intent is delivered to the target com-

onent specified in the Intent, whereas an implicit Intent is deliv-

red to a component if the action specified in the Intent matches

hat specified in the component’s Intent Filter. Android’s ICC al-

ows for late run-time binding between components in the same or

ifferent apps, where the calls are not explicit in the code, rather

ade possible through event messaging, a key property of event-

riven systems. 

Android’s access control model. Permissions are the corner-

tone of the Android access control model. There are two kinds of

rivileges a component has: inter-component communication (ICC)

rivilege , allowing a component to communicate with other com-

onents in the same or different app, and resource access privilege ,

llowing a component to access the system resources, such as GPS,

amera, telephony, etc. Android manages both types of privilege at

he app level, meaning that the permissions are granted/revoked

t the level of an app and inherited by all components in that app.

his causes two kinds of over-privileges, discussed next. 

.1. Over-privileged resource access 

Android contains a plethora of sensitive system resources

e.g., GPS, camera, account manager, power manager) ac-

essed by obtaining a handle to a system-level, long-running

ervice (e.g., location service, camera service, account ser-

ice, power manager service). System services are launched

y com.android.server.SystemServer service, which is 

tarted at the boot time of the Android operating system. To

se a system service, a component should have the appropri-

te permission that guards the service. For example, to track the

ser’s location, a component needs to obtain a handle to the

ocation service, which requires the location permission (either

CCESS_COARSE_LOCATION or ACCESS_FINE_LOCATION ). 
The permissions stated in the app manifest enable secure ac-

ess to sensitive resources. However, a permission granted to an

pp transfers to all of the components in the app. Android’s coarse-

rained permission model violates the principle of least privilege

 Bugiel et al., 2013; Smalley and Craig, 2013 ), as often not all com-

onents of an app need access to the same sensitive resources. The

hortcomings of Android’s permission model have been widely dis-

ussed in the literature ( Shin et al., 2010; Fang et al., 2014; Egners

t al., 2012 ), and shown to be the root cause of various security

ttacks, most notably privilege escalation ( Davi et al., 2010; Felt

t al., 2011 ). 
.2. Over-privileged inter-component communication 

The ICC mechanism in the Android framework provides a

exible component-based development. However, this mechanism

ives the components more communication privileges than they

ctually need and hence violates the principle of least privilege.

pecifically, Android’s ICC mechanism leads to over-privileged ar-

hitectures, where components needlessly have the ability to send

ntent messages to invoke services of many other components

ithin and outside their parent apps, and receive a variety of In-

ent messages implicitly exchanged in the system. A component is

llowed to communicate with (1) all components in its parent app,

2) protected components in other apps as long as its parent app

as the required permissions, and (3) any public (exported) com-

onent in other apps. A component is public if its VISIBLE attribute

s set to true in the manifest file or declares at least one Intent Fil-

er. Many developers are not aware of the fact that by specifying

n Intent Filter for a component, Android by default makes that

omponent public, thus allowing components from other apps to

nvoke its interfaces ( Chin et al., 2011 ). Inter-app communication

IAC) privileges are thus often granted implicitly. Finally, a com-

onent does not require a permission to specify an Intent Filter

ith arbitrary action, thereby allowing that component to receive

ll implicit Intents exchanged in the system with the specified ac-

ion. 

The over-privileged ICC mechanisms in Android are known to

e the root cause of many security attacks, most notably hidden

ommunications ( Poeplau et al., 2014 ), Intent Spoofing and Unau-

horized Intent Receipt ICC attacks ( Chin et al., 2011 ). Moreover,

omprehending the security posture of an Android system in light

f this privilege management scheme is rather tedious and error

rone for a security architect. 

. Illustrative example 

To further motivate our research and illustrate our approach,

e provide an example of a malicious component that employs

he extra privileges afforded by Android to launch two security

ttacks: information leakage through hidden code ( Poeplau et al.,

014; Chin et al., 2011 ), and privilege escalation ( Felt et al., 2011;

agheri et al., 2015 ). 

Fig. 1 shows an Android system with two apps: FunGame
nd Messaging . The Messaging app contains three compo-

ents. The ListMsgs Activity lists all previously received mes-

ages, and it allows a user to share messages with paired devices

sing Bluetooth. The Composer Activity allows a user to com-

ose and send text messages using the Sender Service running in

he background. Sending text messages requires SMS permission,

nd performing Bluetooth tasks requires Bluetooth permission. The

essaging app has these permissions, and hence all its compo-

ents acquire them as well. Listing 1 shows part of the Sender ’s
rogram logic for sending text messages. 

LevelUp is a Service in FunGame , a malicious Android game

pp, which once started, via the Main Activity, leverages dy-

amic class loading feature of Android to load a malicious be-

avior from an external JAR file placed at the location speci-

ed on line 9 of Listing 2 . The dynamically loaded code allows

evelUp to communicate with the Sender Service as shown

n Listing 2 . On line 11 of Listing 2 , LevelUp instantiates a

exClassLoader object and uses it to load the DEX (Dalvik Ex-

cutable) file contained in the JAR file. Using Java reflection at

ine 13 of Listing 2 , the mDexClassLoader object loads a class

alled HiddenBehavior and invokes getIntent method at line

6 of Listing 2 . This method returns an implicit Intent, which

evelUp uses to communicate with Sender , as shown in line 17

f Listing 2 . 
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Fig. 1. Component-based architecture of a vulnerable Android system. 

1 public class Sender extends Service {
2 ...
3 public int onStartCommand(Intent intent , int flags , int startId){
4 //if (checkCallingPermission (" android.permission.SEND_SMS ") == PackageManager.

PERMISSION_GRANTED) {
5 String phoneNumber = intent.getStringExtra("PHONE_NUMBER");
6 String msg = intent.getStringExtra("MSG_CONTENT");
7 SmsManager smsManager = SmsManager.getDefault ();
8 smsManager.sendTextMessage(phoneNumber , null , msg , null , null);
9 //}

10 ...

Listing 1. Vulnerable component, Sender Service, sends a text message. 

1 public class LevelUp extends Service {
2 ...
3 public int onStartCommand(Intent intent , int flags , int startId){
4 ...
5 loadCode ();
6 }
7 public void loadCode (){
8 // read a jar file that contains classes.dex file.
9 String jarPath=Environment.getExternalStorageDirectory ().getAbsolutePath ()+"/Download/hiddenCode.

jar";
10 //load the code
11 DexClassLoader mDexClassLoader = new DexClassLoader(jarPath , getDir("dex", MODE_PRIVATE).

getAbsolutePath (),null , getClass ().getClassLoader ());
12 //use java reflection to load a class and call its method
13 Class <?> loadedClass = mDexClassLoader.loadClass("HiddenBehavior");
14 Method methodGetIntent = loadedClass.getMethod("getIntent", android.content.Context.class);
15 Object object = loadedClass.newInstance ();
16 Intent intent = (Intent) methodGetIntent.invoke(object , LevelUp.this);
17 startService(intent);
18 ...

Listing 2. Malicious component, LevelUp Service, uses dynamic class loading to hide its malicious behavior. 
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Listing 3 shows the implementation of getIntent method in

the HiddenBehavior class. On line 4, getIntent obtains a ref-

erence to the Location Manager , a service that provides peri-

odic updates of the device’s geographical location. On line 5, the

Location Manager is used to get the user’s last known loca-

tion. Finally, in lines 7–9, it creates an implicit Intent and adds a

phone number and the user’s location as the extra payload of the

Intent. This code is compiled to a DEX format and archived in a

JAR file using the dx tool, a tool that generates Android bytecode

from .class files. The JAR file could be downloaded by the malicious

app after installation. 

On lines 5 and 6 of Listing 1 , the Sender service extracts the

phone number and the location information from the received In-

tent, respectively. The extracted information is used in line 8 to

send a text message. The Sender component is vulnerable to a
rivilege escalation attack since it performs a privileged task, send-

ng text messages, without checking if the caller component has

he required SMS permission to perform the task. An example of

uch a check is shown in line 4 of Listing 1 , but in this example

t is commented. This type of vulnerability is quite common, as

any developers fail to properly use the APIs or follow the best

ractices for secure programming. In fact, in the Android domain,

ince many apps are developed by novice programmers, misuse of

PIs is rampant. 

The illustrative example described in this section allows

evelUp to hide its malicious behavior to exploit a privilege es-

alation vulnerability and leak the user’s sensitive information (i.e.,

ser’s location) via text messaging without having the SMS permis-

ion. This kind of an attack is neither effectively detectable through

tatic program analysis, since the malicious behavior is down-
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1 public class HiddenBehavior {
2 ...
3 public Intent getIntent(Context context){
4 LocationManager locMgr = (LocationManager) context.getSystemService(Context.LOCATION_SERVICE);
5 Location loc = locMgr.getLastKnownLocation(LocationManager.GPS_PROVIDER);
6 String msg = loc.getLatitude ()+","+loc.getLongitude ();
7 Intent i = new Intent("SEND_SMS");
8 i.putExtra("PHONE_NUMBER", phoneNumber);
9 i.putExtra("MSG_CONTENT", msg);

10 return i;
11 }
12 }

Listing 3. Code downloaded after initial installation of app. 

Fig. 2. Overview of DelDroid . 
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oaded after installation, nor through dynamic program analysis, as

alicious apps often incorporate complicated evasion tactics (e.g.,

iming-bombs Coogan et al., 2009 ). We show how through estab-

ishment of an LP architecture, DelDroid can effectively mitigate

uch threats. 

. Approach 

As depicted in Fig. 2 , DelDroid consists of five steps (1) Archi-

ectural Elements Extractor uses static program analysis techniques

o elicit the system’s principal components along with their prop-

rties, latent communications, and permissions usages from the

pps comprising a system. (2) Privilege Analyzer systematically ex-

mines each component to comprehensively determine its priv-

leges, the permissions it can use as well as components with

hich it can communicate, both inside and outside the scope of

ts hosting app, as permitted by the Android runtime environment.
he result of this step is captured in a Multiple-Domain Matrix

MDM) , representing the original architecture of system. (3) Priv-

lege Reducer determines the exact permissions and communica-

ions each component needs to fulfill its functionality. The derived

nformation is then captured in an MDM , representing the least

rivilege architecture for the system. (4) Security Analyzer evaluates

he identified LP architecture apropos potential security threats,

nd presents the analysis results to the security architect who may

urther modify the architecture as needed to establish the proper

rivileges for each component. (5) Finally, LP Enforcer regulates in-

eractions at the granularity of components through enforcing au-

omatically generated or expert-supplied least-privilege architec- 

ure at runtime. It relies on two components, i.e., Resource Monitor

nd ICC Monitor , within the Privilege Manager layer that we have

dded to the Android runtime environment to check the confor-

ance of ICC and resource-access transactions to the LP architec-
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Table 1 

The extracted architectural elements for the Android system shown in Fig. 1 . 

ID App Component Component Exported Intent Permissions Intent Intent 

name type filter granted Used Enforced type 

1 Messaging ListMsgs Activity Yes {SMS, Bluetooth} {Bluetooth} 

2 Messaging Composer Activity Yes {SMS, Bluetooth} {i1} Implicit 

3 Messaging Sender Service Yes SEND_SMS {SMS, Bluetooth} {SMS} 

4 FunGame LevelUp Service No {Location} 

5 FunGame Main Activity Yes MAIN {Location} {i2} Explicit 
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ture, captured as Event-Condition-Action (ECA) rules. The rest of

this section presents each step in detail. 

4.1. Step 1: Architectural elements extractor 

To obtain the system’s architecture, we first need to determine

the principal components that constitute the system, their proper-

ties, communication interfaces, and permission usages. Such infor-

mation is obtained from two sources, an app’s manifest file and its

bytecode. 

DelDroid utilizes APKtool Apktool , a reverse engineering tool

for Android APK files, to recover an app’s manifest file. By sim-

ply parsing the manifest file, we can extract certain informa-

tion readily available about the components comprising an app,

such as their names, types, visibility, permissions required by

other components for interaction. Table 1 partially shows the ex-

tracted information corresponding to our running example (recall

Section 3 ). The Component Type column represents the particu-

lar type of a component, which could be either Activity, Service,

Broadcast Receiver, or Content Provider. The Exported column in-

dicates whether a component can be launched from outside its

hosting app or not. The Intent Filter column shows the interfaces

provided by a component. Finally, the Granted column shows the

permissions requested by an app, and subsequently granted by

Android to all of its component. Among others, the three com-

ponents of the Messaging app all have access to both the SMS

( android.permission.SEND_SMS ) permission and the Blue-

tooth ( android.permission.BLUETOOTH ) permission, given

that the Messaging app acquires the SMS and the BLUETOOTH

permissions. 

Not all information about an app can be obtained from its

manifest file. For example, Broadcast Receivers can be registered

in code without declaring them in the manifest file. Components

can also programmatically define Intent Filters in code. In addi-

tion, all ICCs are latent in the app’s bytecode. Components can

communicate with one another in two ways: (1) using Unified Re-

source Identifiers (URIs) to access the encapsulated data in Con-

tent Providers, and (2) by sending Intents, either explicitly or

implicitly. DelDroid utilizes IC3 ( Octeau et al., 2015 ) to analyze

each app in the system and extract such latent information from

its bytecode. IC3 is the state-of-the-art static program analysis

tool for Android. For each Intent in bytecode, DelDroid extracts

the sender component, receiver component, action, categories, and

data. Table 1 shows the remaining information collected in this

way for our running example. Intent i3 is not shown, since the

program logic that creates that Intent is not initially part of the

FunGame (recall Listing 2 ). Moreover, the type of each extracted

Intent, i.e., explicit or implicit, is indicated in the Intent Type col-

umn. 

DelDroid also identifies the permissions actually used by

components. These are the permissions that a component uses

for (1) accessing a protected Content Provider, or (2) call-

ing a protected API. For the former, we have created a

mapping between protected Content Providers and the re-
uired permissions. For example, to read the contacts infor-

ation from Android’s Contacts Content Provider, a compo-

ent needs android.permission.READ_CONTACTS permis-

ion. Using this mapping and the accessed Content Providers, our

pproach determines the actually used permissions for a compo-

ent. Since IC3 does not extract the permissions used through API

alls, for the latter case, DelDroid leverages PScout permission

ap ( Au et al., 2012 ), one of the most recently updated and com-

rehensive permission maps available for the Android framework.

t specifies mappings between Android API calls/Intents and the

ermissions required to perform those calls. For example, Sender
omponent in Messaging app uses the sendTextMessage()
PI for sending text messages (see line 8 of Listing 1 ), which re-

uires SMS permission. We thus consider this to be a permission

hat is actually used by this component, as shown in the Used col-

mn of Table 1 . 

Finally, DelDroid builds on our prior work ( Bagheri et al., 2015 )

o extract the permissions enforced by a component at two levels.

hile the coarse-grained permissions specified in the manifest file

re enforced by the Android runtime environment over an entire

omponent, it is possible to add permission checks, such as check-

allingPermission , throughout the code controlling access to specific

arts of a component (see line 4 of Listing 1 ). DelDroid identifies

oth types of checks. Since the system of Fig. 1 does not perform

ny checks (line 4 of Listing 1 is commented out), the correspond-

ng column in Table 1 is empty. 

.2. Step 2: Privilege analyzer 

The next step is to derive the overall system architecture from

he information obtained for individual components in the pre-

ious step. We call this the Original system architecture, as it

epresents the architecture of system if it were to be deployed

n the official Android runtime environment. DelDroid mod-

ls the system architecture as a Multiple-Domain Matrix (MDM)

 Lindemann and Maurer, 2007 ). MDM provides an elegant repre-

entation of complex systems with multiple concerns (domains).

ach concern is modeled as a Design-Structure Matrix (DSM)

teward (1981) —a simple matrix that captures the dependen-

ies of one relationship type. MDM is formed by connecting the

SMs together. We capture five domains in an MDM to repre-

ent an Android system’s architecture for the purpose of privilege

nalysis. 

The explicit communication domain shows all potential

omponent-to-component interactions using explicit Intents. Sim-

larly, the implicit communication domain shows all potential

omponent-to-component interactions using implicit Intents. Each

on-empty cell in these domains indicates the fact that the ar-

hitecture of system allows for potential interaction between two

omponents. Rows represent sender components; columns repre-

ent receiver components. Allowed explicit communications are

erived using the following rule. 
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Fig. 3. The Original architecture derived from the Android system described in Section 3 . 
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Definition 1 (Allowed explicit communication) . Let E be a set 
of all exported components, and c 1 and c 2 be two arbitrary 
components in the system. We say that c 1 can explicitly com- 
municate with c 2 , if either both components belong to the 
same app or c 2 is an exported component and c 1 is granted 

the permissions enforced by c 2 : 

communicate e (c 1 , c 2 ) ≡ ( app c 1 = app c 2 ) ∨ (c 2 ∈ E ∧ en f orced c 2 

⊆ granted c 1 ) 

The Explicit Communication Domain in Fig. 3 shows the result

f applying Definition 1 to Table 1 . According to the explicit com-

unication domain, components 1, 2, and 3 can communicate with

ne another because they belong to the same app, as well as com-

onent 5 since it is exported, but not component 4. Components 4

nd 5 can also communicate with all the other components in the

ystem. 

Allowed implicit communications are derived using the follow-

ng rule. 

Definition 2 (Allowed implicit communication) . Let F be a 
set of all declared public provided interfaces, i.e., Intent filters , 
and c 1 and c 2 be two arbitrary components in the system. We 
say that c 1 can implicitly communicate with c 2 , if c 2 defines a 
public provided Interface and either both components belong 
to the same app or c 1 is granted the permissions enforced by 
c 2 : 

communicate i (c 1 , c 2 ) ≡ c 2 . f ilters ⊆ F ∧ ( app c 1 

= app c 2 ∨ en f orced c 2 ⊆ granted c 1 ) 

The Implicit Communication Domain in Fig. 3 shows the re-

ult of applying Definition 2 to Table 1 . According to the implicit

ommunication domain, all components in the system can com-

unicate with component 3 and component 5. Component 3 de-

lares a public provided interface for sending text messages with-

ut enforcing any permission. Component 5 is the main entry

oint for FunGame app, i.e., declares a public Intent filter with an-

roid.intent.action.MAIN action. 
Note that the communication domain also includes interactions

etween the Android framework and components of third-party

pps. Android provides over 230 protected broadcast Intents that

an only be sent by the system to the registered components. For

xample, when a user installs an app, the system sends a broad-

ast Intent including the package name of the newly installed app

o all components that listen to the PACKAGE_ADDED broadcast In-

ent action. Fig. 3 shows no such interactions with the system, as

o component in our running example is registered to receive pro-

ected broadcast Intents. 

The three permission domains in the MDM model of Fig. 3 rep-

esent the component-to-permission relationships. Each non- 

mpty cell corresponds to a permission that is either (1) granted

o a component, meaning that the component has that permission,

s its hosting app has requested the permission in its manifest file,

2) used by a component, meaning that the component is actu-

lly making API calls or interacts with other apps that require the

ermission, or (3) enforced by a component, meaning that either

he Android runtime environment or the component itself check

he permission of callers (as you may recall from Section 4.1 there

re two ways of enforcing permissions in Android). The permis-

ion domains in the MDM are populated based on the informa-

ion obtained in the first step (i.e., Granted, Used, and Enforced

olumns of Table 1 ). For example, the MDM shown in Fig. 3 indi-

ates that the first three components are granted the SMS and the

LUETOOTH permissions, while components 4 and 5 are granted

he location permission. 

.3. Step 3: Privilege reducer 

The Original architecture derived in the previous step clearly vi-

lates the principle of least privilege. This step aims to derive the

P architecture by granting only the privileges required by each

omponent to fulfill its tasks. 

DelDroid uses the extracted inter-component communications 

information in the Intent and Intent Type columns of Table 1 )

o determine the communication privileges that are needed for

ach component to provide its functionality, and removes com-

unication privileges that are unnecessary. For instance, as shown

n Fig. 4 , the LP architecture allows the Composer component

o communicate with the Sender component to send text mes-

ages (indicated by “1” in row 2, column 3 of Implicit Communica-

ion Domain). On the other hand, the LP architecture prohibits the

evelUp component to communicate with the Sender compo-

ent. 
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Fig. 4. LP architecture determined from the Android system described in Section 3 . 
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Furthermore, DelDroid reduces the granted permissions for

each component in the Permission Granted Domain of the LP ar-

chitecture using the following rule: 

Definition 3 (Required permission) . Let c 1 be a component, 
and used c 1 be a set of permissions directly used by compo- 
nent c 1 . We define the required permissions for c 1 as per- 
missions either directly used by c 1 or used by component c 2 
with which c 1 communicates: 

r equir edP ermissions c 1 = { p : P ermission | ∃ c 2 : Component 

• p ∈ used c 1 ∨ ((communicate e (c 1 , c 2 ) ∨ communicate i (c 1 , c 2 )) 

∧ p ∈ used c 2 ∧ p ∈ granted c 1 ) } 

According to Definition 3 , a component legitimately needs a

permission in two cases: 1) the permission is directly used by

the component through, among other things, making protected API

calls; 2) another component with which the given component is

interacting is using that permission. The latter may be a legitimate

case, since a component that uses a permission may require the

calling component to also have that permission. In fact, failing to

check if the calling component has the necessary permission may

result in a privilege escalation attack, as discussed in the next sec-

tion. 

In our running example, DelDroid determines that the Sender
component has a legitimate reason to hold the SMS permission,

since it uses it. The Composer component also has a legitimate

reason to hold the SMS permission, since the app it belongs to has

that permission and it communicates with the Sender compo-

nent that uses that permission. The ListMsgs component, on the

other hand, has a legitimate reason to hold the BLUETOOTH permis-

sion since it uses that permission, while Sender and Composer
do not need it. The ListMsgs component, however, does not

need the SMS permission, since it neither uses it nor does it com-

municate with a component that uses that permission. Similarly,

the LevelUp and Main components do not use the Location per-

mission, and thus do not have a legitimate reason to hold it. 

Finally, a security architect can adjust the resulting architecture

by manually granting and revoking permissions in the MDM. For

example, a security architect can revise the privileges granted to

apps and their components based on their reputation. This capa-

bility could also be useful in a forward-engineering setting, where

an Android system is developed from scratch. 
The amount of privilege reduction achieved through enforcing

P architecture can be quantified by calculating the distance be-

ween the LP architecture ( L ) and the Original architecture ( O ) as

hown in Eq. (1) . 

eduction (O, L ) = 1 −
∑ n 

i =1 

∑ m 

j=1 L i j 
∑ n 

i =1 

∑ m 

j=1 O i j 

(1)

n Eq. (1) , i and j represent the ith column and jth row of an MDM

ith n rows (components) and m columns (components and per-

issions). In our running example, comparing the Original archi-

ecture (cf. Fig. 3 ) with the LP architecture (cf. Fig. 4 ) shows 83.3%

eduction in granted privileges. 

.4. Step 4: Security analyzer 

The previous sections present derivation of the LP architecture

or an Android system captured in an MDM. Here, we describe how

he resulting architecture can be used to effectively perform se-

urity analysis of Android apps. In particular, we focus on three

rominent types of vulnerabilities due to the interaction of mul-

iple apps, i.e., privilege escalation ( Felt et al., 2011 ), unauthorized

ntent receipt ( Chin et al., 2011 ), and Intent spoofing ( Chin et al.,

011; Garcia et al., 2017 ). 

Definition 4 (Privilege escalation) . Let p be a permission, c m 

be a malicious component that does not hold p , and c v be a 
vulnerable component that holds and uses p but does not en- 
force (check) the components that may be using its services 
also hold p . In the privilege escalation attack, c m 

is able to 
indirectly obtain p by interacting with c v . 

(communicate e (c m 

, c v ) ∨ communicate i (c m 

, c v )) ∧ p ∈ used c v 

∧ p 	∈ granted c m 

∧ p 	∈ en f orced c v 

According to Definition 4 , in privilege escalation, a malicious

pp is able to indirectly perform a privileged task, without hav-

ng a permission to do so, by interacting with a component that

ossesses the permission. By applying the privilege escalation rule

o the MDM representation of the system’s architecture, DelDroid

dentifies communications that may result in privilege escalation

ttack. 

To illustrate this, let us assume that instead of LevelUp using

ynamic class loading to communicate with the Sender compo-
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Fig. 5. The LP architecture for an alternative system, where the communication between LevelUp and Sender is part of the app’s initial bytecode. 
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ent, the logic for this interaction is part of the component’s im-

lementation analyzed by DelDroid . The LP architecture for such

n alternative system is shown in Fig. 5 . Applying the privilege es-

alation rule to the LP architecture of Fig. 5 reveals that LevelUp
s not granted the SMS permission, and communicates with the

ender that uses the SMS permission without enforcing it. As a

esult, this interaction is potentially a privilege escalation attack,

nd DelDroid raises a warning for further inspection. 

Definition 5 (Unauthorized intent receipt) . Let c m 

, c v , and c x 
be three components, where c v and c x belong to the same 
app, and c x declares a public provided interface, i.e., an In- 
tent filter, through which c v aims to communicate with c x by 
means of an implicit Intent. In the unauthorized Intent re- 
ceipt attack, c m 

can intercept an implicit Intent sent by c v 
through declaring a provided interface similar to the one de- 
clared by c x . As such, c m 

may gain access to all enclosed data 
in any matching Intents meant to be received by c x . 

communicate i (c v , c m 

) ∧ (app c v 	 = app c m ) 

∧ ∃ communicate i (c v , c x ) ∧ (app c v = app c x ) 

Unauthorized Intent receipt is an ICC attack in which a mali-

ious component intercepts an implicit Intent by declaring an In-

ent Filter that matches the sent Intent ( Chin et al., 2011; Kantola

t al., 2012 ). In such an attack, a malicious component can access

ll enclosed data in the intercepted Intent and, possibly perform a

hishing attack ( Felt and Wagner, 2011 ). 

There are three different forms of unauthorized Intent receipt

ased on the type of the malicious component ( c m 

in Definition 5 )

 Chin et al., 2011 ): (1) Broadcast theft in which c m 

can read the

ontent of broadcast Intents without interrupting the broadcast, (2)

ctivity hijacking in which c m 

is launched instead of a legitimate

ctivity, and (3) Service hijacking in which c m 

is bound to/started

nstead of a legitimate one. In case a hijacking attack is successful,

 v may also be a victim of false response attack ( Kantola et al., 2012;

hin et al., 2011 ) in which c m 

can return a malicious result to c v . 

As a concrete example of unauthorized Intent receipt attack,

onsider a legitimate application that processes financial payments.

hen a user clicks on a “Pay” button, the application sends an im-

licit Intent to start another Activity that processes the payment.

f a malicious Activity hijacks the implicit Intent, then the attacker

ould receive sensitive information from the user (e.g., card num-
er, billing address, and payment amount). In this Activity hijack-

ng attack, the malicious component can also perform a phishing

ttack to get even more information from the user after stealing

he interface of the legitimate Activity. Phishing attacks cannot be

asily determined by users since the Android UI does not specify

he currently running application. By applying Definition 5 to the

DM representation of the system’s architecture, DelDroid identi-

es communications that may result in unauthorized Intent receipt

CC attack. 

Definition 6 (Intent spoofing) . Let c m 

, c v , and c x be three 
components, where c v and c x belong to the same app and 

c v declares a public provided interface, i.e., an Intent filter, 
through which it aims to communicate with c x . In the In- 
tent spoofing attack, c m 

can communicate with the exported 

component of c v that is not expecting an Intent from c m 

. In 

this attack, if the vulnerable component c v performs an ac- 
tion upon receiving an Intent, the malicious component c m 

can trigger that action at will for nefarious purposes. 

(communicate e (c m 

, c v ) ∨ communicate i (c m 

, c v )) 

∧ (app cv 	 = app cm 

) ∧ ∃ communicate i (c x , c v ) ∧ (app cv = app cx ) 

Intent spoofing is an ICC attack in which a malicious compo-

ent can communicate with an exported component that is not ex-

ecting a communication from it ( Kantola et al., 2012; Chin et al.,

011 ). If a victim component blindly trusts the received Intent, this

ttack allows a malicious component to cause a victim component

o perform some actions. 

There are three different forms of the Intent spoofing attack

ased on the type of the victim component ( c v in Definition 6 )

 Chin et al., 2011 ): (1) Malicious Broadcast injection in which c m 

an send a malicious broadcast Intent to an exported Broad-

ast Receiver. Since most Broadcast Receivers act as gateways to

ther components, and pass messages to Activities and Services

 Bagheri et al., 2016a ), the malicious Intent can propagate through-

ut an app. A more risky scenario can happen if the Broadcast Re-

eiver c v is registered to receive protected broadcast Intents that

nly the system can send. In such a scenario, c m 

still can send an

xplicit Intent to c v . If c v blindly trusts the received Intent without

hecking the Intent action, c v may perform a task that only the

ystem is supposed to trigger. (2) Malicious Activity launch , analo-

ous to cross-site request forgeries (CSRF) in websites ( Barth et al.,

008 ), occurs when a victim component c v is launched by a mali-
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cious component c m 

that it does not expect communication from.

Since Activities provide GUI interfaces, this attack can be an annoy-

ance to the users. Successfully launching the c v Activity can cause

c v to change data in the background using the data enclosed in the

malicious Intent sent by c m 

. (3) Malicious Service launch is similar

to malicious Activity launch except that the interaction between c m 

and c v occurs in the background. If a malicious Activity launch or a

malicious Service launch attack is successful, c v may return sensitive

information to the malicious component c m 

. 

As a concrete example of Intent spoofing attack, consider an ap-

plication that contains an advertisement (ad) library. Once a user

clicks on an ad, the application sends an implicit Intent to an Ac-

tivity, referred to as AdActivity here, which displays details of that

ad on a web page. In this case, a malicious component can exploit

an Intent spoofing attack by sending a carefully crafted implicit In-

tent to the AdActivity. If the AdActivity does not properly handle

the received implicit Intent, the malicious component can deny

the service of AdActivity and crash its app resulting in an inter-

process denial-of-service (IDOS) attack. Moreover, if the AdActivity

blindly trusts the incoming implicit Intent, a malicious component

can redirect the user to a web page with malicious JavaScript code

resulting in a cross-application scripting (XAS) attack. We refer the

interested readers to Garcia et al. (2017) for more details on these

kinds of Intent spoofing attacks. 

By applying Definition 6 to the MDM representation of the sys-

tem’s architecture, DelDroid identifies communications that may

result in Intent spoofing ICC attack. Applying the Intent spoof-

ing rule ( Definition 6 ) to the LP architecture of Fig. 5 reveals

that the communication between LevelUp and Sender satisfies

the Intent spoofing rule. Since both LevelUp and Sender be-

long to different apps and also there is a communication between

Composer and Sender , two components that belong to the same

app. However, since this communication is already marked as po-

tential privilege escalation attack via applying the Privilege escala-

tion rule ( Definition 4 ), DelDroid will not raise another warning

for this communication. 

It is worth mentioning that all violations to the determined LP

architecture are recorded and accessible to the security architect

through an Android app that we have developed, not shown in

Fig. 2 to reduce the clutter in the figure. This app allows a security

architect to understand the running system and adjust the archi-

tecture as needed. 

4.5. Step 5: LP enforcer 

This step regulates component interactions by enforcing the LP

architecture at runtime. DelDroid efficiently transforms the LP ar-

chitecture to a set of Event-Condition-Action (ECA) rules suitable

for rapid evaluation as the system executes. It then relies on two

components, i.e., ICC Monitor and Resource Monitor, within the

Privilege Manager layer that we have added to the Android run-

time environment, as shown in Fig. 2 . 

4.6. Efficiently generating ECA rules 

Event-condition-action (ECA) rules allow the system to auto-

matically perform actions in response to events given that the

stated conditions hold. Each ECA rule reads as follows: “when an

event occurs, check the condition, if it holds, execute the action”.

ECA rules make the system efficiently adapt while the rules are

stored in a single rule base instead of encoding them in many

modules, thus improving the maintainability and the manageabil-

ity of the system. ECA rules have been widely used in the lit-

erature, including self-adaptive systems ( Huebscher and McCann,

2008; Bencomo et al., 2012; Kramer and Magee, 2007 ), databases

( Widom and Ceri, 1996; Paton and Díaz, 1999 ), business process
odeling and analysis tools ( Abiteboul et al., 20 0 0; Ceri and Fra-

ernali, 1997; Bry et al., 2006 ), and web technologies ( Papamarkos

t al., 2003; Behrends et al., 2006 ). 

Since the identified LP architecture will be stored and moni-

ored in resource-constrained mobile devices in terms of a set of

CA rules, it is significantly important for such rules to be efficient

n a way that would minimize the number of required ECA rules. A

aïve approach for generating ECA rules that capture an LP archi-

ecture of n rows and m columns would result in n × m ECA rules,

here each cell is captured by an ECA rule. However, such an ap-

roach results in the generation of a large number of rules, many

f which are very similar. 

DelDroid generates ECA rules more efficiently. As for ICC ECA

ules, i.e., the rules that capture the explicit and implicit communi-

ation domains of an LP architecture, if a component has no legiti-

ate reason to communicate with any component of another app,

elDroid generates only one ECA rule that entirely prevents that

articular component from communicating with that app. This, in

urn, reduces the number of generated ECA rules from the num-

er of components in the target app to merely one ECA rule. Sim-

larly, if no component of an app is allowed to communicate with

ny component of another app, DelDroid generates just one ECA

ule that prevents all components of the former app from commu-

icating with components of the latter app. Generating ECA rules

n this way not only reduces the number of generated rules but

lso makes the search process for an ECA rule governing a specific

omponent or a specific app faster. Once DelDroid finds a coarse-

rained ECA rule, i.e., a rule that restricts one app from communi-

ating with another app, DelDroid stops the search and executes

he action specified in that ECA rule. 

In the case of resource access ECA rules, i.e., ECA rules that

apture the Permission Granted Domain, DelDroid generates re-

ource access ECA rules only for the granted permissions, i.e.,

CA rules that capture only the “1”s in the Permission Granted

omain. It is worth mentioning that, in Android, it is possi-

le for one permission to protect more than one system re-

ource. In such a case, DelDroid generates more than one re-

ource access ECA rule per granted permission. For example, the

ndroid.permission.READ_PHONE_STATE permission is re-

uired to request CARRIER_CONFIG_SERVICE in order to ac-

ess the carrier configuration values, and the same permission

s required to request the TELEPHONY_SERVICE to access the

elephonyManager , which provides access to information about

he telephony services on a device. 

.6.1. ICC monitor 

This component extends the capabilities of the Android

ramework by intercepting each ICC transaction passed to the

ctivityManager —an Android component that administers the ICC

ransactions— to check whether the transaction is allowed to run

r not. Specifically, DelDroid extends the ActivityManager to send

he ICC transaction’s information to the ICC Monitor component

nd executes the action provided by ICC Monitor . In case an ICC is

revented, ICC Monitor records the transaction for further inspec-

ion by a security analyst. 

For example, the following ECA rule is produced, from the LP

rchitecture shown in Fig. 4 , to prevent the LevelUp component

rom communicating with the Sender component: 

Event: i ∈ ICC occurs 
Condition: i.send erP kg = FunGame ∧ i.send erComp = LevelUp ∧ 

i.recei v erP kg = Messaging 
Action: pre v ent
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Fig. 6. (a) Distribution of the entire experimental subjects across various reposi- 

tories from which the subject apps are downloaded; (b) distribution of apps from 

various malware repositories that were used in our experiments. 
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At runtime, when LevelUp tries to communicate with

ender , line (17) in Listing 2 , the Android framework passes the

equest to the ActivityManager which sends the ICC transaction’s

nformation (sender, receiver, and the Intent’s attributes) to the ICC

onitor component. After that, ICC Monitor vets the ICC transaction

n light of the stored ECA rules. If a matched ECA rule is found, ICC

onitor prompts the ActivityManager to execute the associated ac-

ion ( prevent the communication in this particular example). 

.6.2. Resource monitor 

As we explained in Section 2.1 , components need permissions

o access various system resources. Such system resources are ac-

essed via the Context component, an Android component that

olds information about the application environment and controls

ccess to resources. DelDroid modifies Context to extract informa-

ion from each resource access request, and passes it to the Re-

ource Monitor to check whether the requester is allowed to access

he requested service. 

As a concrete example, the following ECA rule is produced, from

he LP architecture shown in Fig. 4 , to grant ListMsgs permission

o access the Bluetooth service: 

Event: resourceaccessrequest 
Condition: requester = ListMsgs ∧ serv ice = Context. 

BLUETOOTH_SERVICE 
Action: al l ow 

When the ListMsgs component performs Bluetooth manage-

ent tasks such as initiating device discovery or listing all paired

evices, it tries to obtain a handle to the BluetoothManager ser-

ice. The Android framework dispatches the request to the Context ,

hich then sends the request to the Resource Monitor . Upon receiv-

ng the resource access request, Resource Monitor checks it against

he ECA rules and performs the corresponding action ( allows the

equest in this particular case). 

As another example, when the LevelUp component executes

he dynamically loaded code shown in Listing 3 , it tries to obtain a

andle to the LocationManager service (recall line 4 of Listing 3 ).

he Android framework dispatches the request to the Context ,

hich then sends the request to the Resource Monitor . Since there

s no ECA rule that grants LevelUp access to the device’s loca-

ion, Resource Monitor prevents LevelUp from obtaining a handle

o the Location Manager service. 

. Implementation 

DelDroid is a Java application that takes as input an Android

ystem consisting of a set of APK files. As described earlier, the

rchitecture extraction capability was built on top of several prior

tatic program analysis tools ( Octeau et al., 2015; Au et al., 2012;

agheri et al., 2015 ). Each tool provides specific information that

elDroid uses to tailor the LP architecture. After that, DelDroid

onducts a security analysis on the established LP architecture and

ecords the security vulnerabilities that are found. The derived LP

rchitecture and results of analysis are stored in a comma sepa-

ated values (CSV) file. The implementation of DelDroid consists

f more than 40 0 0 lines of code (LOC), not counting the existing

ools on which it relies. 

The enforcement mechanism in DelDroid is implemented on

op of the Android Open-Source Project (AOSP) AOSP version 6

Marshmallow), API level 23. AOSP is the open-source repository

or Android system maintained by Google. The Privilege Manager

ayer introduced a new package in the Android runtime environ-

ent. We also modified other components such as ActivityManager
nd ContextWrapper . The total framework changes account for ap-

roximately 400 LOC. The changes were made such that any exist-

ng Android app could continue to run in our version of Android

untime environment without modification. Moreover, our modifi-

ations to the Android version 6 are not restricted to this version

nd we expect that they can be applied to the other versions of

he framework without technical difficulties. 

We built the modified AOSP on an Ubuntu server with a 64-

ore AMD processor and 264GB RAM. It took about an hour to

omplete the build process. We have successfully installed the

odified Android system image on a Nexus 5X phone and on the

ndroid emulator using Android Fastboot tools Fastboot and An-

roid debug bridge Adb . 

. Experimental evaluation 

This section presents the experimental evaluation of DelDroid .

ur evaluation addresses the following research questions: 

• RQ1. How effective is DelDroid in reducing the attack surface

of Android systems and aiding the architect with understanding

their security posture? 
• RQ2. How well does DelDroid perform in practice? Can it de-

tect and prevent security attacks in real-world apps? 
• RQ3. How efficient is DelDroid in generating ECA rules that

capture the determined LP architecture? 
• RQ4. What is the performance of DelDroid ? 

We constructed datasets of benign, malicious, and vulnerable

ndroid apps as shown in Fig. 6 (a). The benign dataset is a collec-

ion of 370 apps, randomly selected from the Google Play store.

o prevent any bias in the results, we did not use any particu-

ar criteria, such as high ranking or high downloads, in selection

f the Google Play apps. Therefore, these apps vary in terms of

heir 5-star ranking, as depicted in Fig. 7 (a), as well as their num-

er of downloads, as depicted in Fig. 7 (b). The second dataset is

 collection of 389 vulnerable apps identified in prior literature

 Li et al., 2015 ). Finally, the malware dataset contains 225 apps ob-

ained from various malware repositories ( Zhou and Jiang, 2012;

ontagio malware repository, 0 0 0 0; Maggi et al., 2013 ). Fig. 6 (b)

llustrates the distribution of apps from various malware reposito-

ies that were used in our experiments. 

.1. RQ1. Attack surface reduction 

By reducing the privileges granted to software components,

elDroid helps the security architects (or automated analysis

ools) to focus their analysis effort on a narrowed set of interac-

ions. To evaluate the degree to which DelDroid reduces the at-

ack surface of Android systems, we ran DelDroid on 10 bundles
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Fig. 7. The popularity of the Google Play apps in terms of their (a) 5-star ranking and (b) number of downloads as of June of 2018. 

Fig. 8. Histogram of Google Play categories. 
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of apps, each containing 30 non-overlapping apps. We chose this

number of apps, since it represents the average number of apps

a smartphone user regularly uses per month, as shown in a re-

cent study So many apps . Each bundle contains apps randomly se-

lected from the app datasets as follows: 24 benign apps, 3 vulner-

able apps, and 3 malicious apps. Fig. 8 depicts a histogram of the

Google Play categories of the benign apps. 

Table 2 shows the structure of the bundles, including the num-

ber of entries in the Communication Domains, i.e., the Explicit

Communication Domain and the Implicit Communication Domain,

as well as the Permission Granted Domain for both the Origi-

nal and LP architectures. To measure the degree to which Del-

Droid reduces the attack surface of Android systems, we used

Eq. (1) . For example, in bundle 1, the LP architecture contains

42 inter-app communication (IAC) and 178 resource access per-

missions, whereas the Original architecture contains 29,031 IAC

and 1642 resource access privileges. On average, across all bun-
les, 99.56% of IAC and 94.47% of resource access privileges are

educed. 

Table 3 shows the number of potential ICC attacks in both the

riginal and LP architectures. Recall from Section 4.4 that Del-

roid analyzes both the Original and LP architectures and pin-

oints potential ICC attacks including privilege escalations, unau-

horized Intent receipts, and Intent spoofing attacks. For exam-

le, in bundle 5, the Original architecture contains 26,914 possible

rivilege escalation attacks, whereas the LP architecture contains

nly 2 such attacks that need investigation. On average, an ana-

yst needs to verify 14 potential privilege escalation security issues

or a bundle of 30 apps using our approach. In fact, in the case of

undles 1 and 4, all potential privilege escalation attacks are al-

eady resolved with the LP architecture, eliminating the need for

urther investigation. Similar patterns can be observed for unau-

horized Intent receipt and Intent spoofing attacks. For example, in

undle 10, the Original architecture contains 2015 potential Intent
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Table 2 

Summary of app bundles, and Original and LP architecture obtained from running DelDroid over the bundles. 

Bundle Components Intent Intent Communication domains Permission granted domain 

Explicit Implicit Filter Original LP Reduction (%) Original LP Reduction (%) 

Bundle 1 306 344 79 176 29,031 42 99.86 1642 178 89.16 

Bundle 2 432 468 379 287 78,237 625 99.20 2954 143 95.16 

Bundle 3 422 574 212 200 65,709 173 99.74 2510 109 95.66 

Bundle 4 449 348 370 511 80,372 205 99.74 4234 146 96.55 

Bundle 5 353 304 277 292 56,868 345 99.39 1536 81 94.73 

Bundle 6 541 890 476 4919 85,556 661 99.23 4461 329 92.63 

Bundle 7 562 412 38 324 82,863 137 99.83 1577 109 93.09 

Bundle 8 362 417 267 242 50,208 250 99.50 1946 92 95.27 

Bundle 9 265 180 98 166 25,817 129 99.50 1568 57 96.36 

Bundle 10 421 322 1231 185 50,001 74 99.85 2386 127 94.68 

Average 411.3 425.9 342.7 730.2 60,466.2 264.1 99.58 2,481.4 137.1 94.33 

Avg. (per app) 13.7 14.2 11.4 24.3 2,015.5 8.8 99.56 82.7 4.6 94.47 

Table 3 

Summary of ICC attack surfaces in both Original and LP architectures across app bundles. 

Privilege escalation Intent Spoofing Unauthorized intent receipt 

Bundle Original LP Reduction Original LP Reduction Original LP Reduction 

(%) (%) (%) 

Bundle 1 25,944 0 10 0.0 0 2242 0 10 0.0 0 297 0 10 0.0 0 

Bundle 2 35,601 110 99.69 1980 65 96.72 204 21 89.71 

Bundle 3 22,721 2 99.99 3132 0 10 0.0 0 299 7 97.66 

Bundle 4 33,551 0 10 0.0 0 4020 57 98.58 599 4 99.33 

Bundle 5 26,914 2 99.99 12,402 24 99.81 1646 7 99.57 

Bundle 6 24,745 2 99.99 1416 17 98.80 33 24 27.27 

Bundle 7 15,503 1 99.99 1077 1 99.91 78 0 10 0.0 0 

Bundle 8 27,663 14 99.95 6283 115 98.17 297 4 98.65 

Bundle 9 19,428 8 99.96 4638 4 99.91 371 10 97.30 

Bundle 10 16,953 3 99.98 2015 1 99.95 214 3 98.60 

Average 24,902.3 14.2 99.94 3,920.5 28.4 99.28 403.8 8 98.02 

Avg. (per app) 498.0 0.3 99.94 130.7 0.9 99.28 13.5 0.3 98.02 
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poofing and 214 potential unauthorized Intent receipt ICC attacks,

hereas the LP architecture contains only 1 potential Intent spoof-

ng and 3 potential unauthorized Intent receipt attacks that need

nvestigation. On average, an analyst needs to investigate 28 po-

ential Intent spoofing and 8 potential unauthorized Intent receipt

or a bundle of 30 apps using our approach. Note that an analyst

eeds to verify less than 2 security issues per app on average. Even

n some cases, such as in bundle 1, all potential ICC attacks are al-

eady resolved with the LP architecture, entirely eliminating the

eed for further investigation. 

The results confirm the effectiveness of our approach in reduc-

ng the attack surface and hence reducing the effort required to

ssess the security properties of an Android system. 

.2. RQ2. Attack detection and prevention 

To evaluate DelDroid ’s ability to detect and prevent security at-

acks, we used 54 malicious and vulnerable open-source apps for

hich the steps and inputs required to create the attacks were

nown. To validate the attacks, we manually reviewed the code

nd affirmed the existence of security issues. In total, the resulting

ombination of apps had 18 privilege escalation and 24 dynami-

ally loaded ICC attacks. We created a bundle of these 54 apps, ran

elDroid to obtain and analyze the LP architecture, and deployed

he apps on our version of Android runtime environment. We then

xercised the apps to create the attacks and determined whether

elDroid was able to prevent them. We report on the precision

nd recall of both detection and prevention. The precision shows

he ability of DelDroid to detect/prevent system transactions that

re actually malicious. On the other hand, the recall shows the ra-

io of the detected/prevented security attacks to all known attacks

n the system. 
As shown in Table 4 , DelDroid marked 19 inter-app communi-

ations as potential privilege escalation attacks, correctly detecting

8 attacks, i.e., true positive. Our manual inspection of the behav-

or that was wrongly classified as an attack showed that this was

ue to the shortcomings of the underlying static program analysis

ools used in DelDroid . In particular, since the analysis tools re-

ied upon in our work are not path-sensitive, DelDroid is bound

o over-approximate the behavior of Android architectures, some-

imes leading to such false positive outcomes. Overall, DelDroid

chieves 94.74% precision and 100% recall in detection of privi-

ege escalation attacks. Given DelDroid ’s reliance on static pro-

ram analyses, it is unable to detect security attacks launched via

ynamically loaded code. In spite of that, as shown next, our ex-

eriments show that such attacks are effectively thwarted by an LP

rchitecture. 

To evaluate DelDroid ’s ability to thwart security attacks, we

onfigured DelDroid to prevent all 19 detected privilege escala-

ion attacks during the analysis step. We then manually exercised

ll known privilege escalation (19 cases) and dynamically loaded

CC (24 cases) attacks. As shown in Table 5 , DelDroid was able to

revent all of the attacks from succeeding by intercepting either

he ICC or resource access calls. However, one of the prevented

CCs was a legitimate communication that corresponded to the er-

oneously detected privilege escalation attack. Overall, DelDroid

chieves 97.76% precision and 100% recall in prevention of security

ttacks. 

.3. RQ3. Efficiently generating ECA rules 

Table 6 compares the numbers of generated ECA rules by Del-

roid and the Naïve approach (recall Section 4.6 ). For example, in

undle 1, the Naïve approach would generate 93,636 ICC ECA rules,
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Table 4 

The ability of DelDroid to detect ICC security attacks. 

Actual ICC Malicious ICC Malicious ICC Benign ICC Precicion (%) Recall (%) 

attacks detected (TP) not detected (FP) detected (FP) TP / (TP + FN) TP / (TP + FP) 

18 18 0 1 94.74 10 0.0 0 

Table 5 

The ability of DelDroid to prevent ICC security attacks at runtime. 

Actual ICC Malicious ICC Malicious ICC Benign ICC Precicion (%) Recall (%) 

attacks prevented (TP) not prevented (FP) prevented (FP) TP / (TP + FN) TP / (TP + FP) 

42 42 0 1 97.67 10 0.0 0 

Table 6 

Comparing the number of generated ECA rules between DelDroid and the Naïve approach. 

Bundle Communication ECA rules Pemission granted ECA rules 

Naïve DelDroid Improvement (%) Naïve DelDroid Improvement (%) 

Bundle 1 93,636 1035 98.89 1917 211 88.99 

Bundle 2 186,624 1534 99.18 3573 257 92.81 

Bundle 3 178,084 893 99.50 3094 115 96.28 

Bundle 4 201,601 1416 99.30 5556 161 97.10 

Bundle 5 124,609 1238 99.01 1840 99 94.62 

Bundle 6 292,681 1687 99.42 5593 344 93.85 

Bundle 7 315,844 1027 99.67 2046 151 92.62 

Bundle 8 131,044 1039 99.21 2307 92 96.01 

Bundle 9 70,225 1051 98.50 1964 69 96.49 

Bundle 10 177,241 1069 99.40 2794 172 93.84 

Average 177,159 1199 99.21 3068 167.10 94.26 

Table 7 

DelDroid ’s offline performance. 

Recovery LP determination Analysis ECA rules 

(min) (sec) (sec) (sec) 

Average 69.5 0.787 0.001 0.008 

Std Dev 2.7 0.299 0.001 0.002 
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whereas DelDroid generates 1035 ICC ECA rules showing more

than 98% reduction in the number of rules that need to be moni-

tored. On average, for an Android system with 30 apps, the Naïve

approach would generate 177,159 ICC ECA rules, whereas DelDroid

generates 1199 ICC ECA rules to capture the communication do-

mains in the LP architecture. Similarly, the Naïve approach would

generate 1917 resource access ECA rules for bundle 1, whereas Del-

Droid generates 211 resource access ECA rules for the same bun-

dle. On average, for an Android system with 30 apps, the Naïve

approach would generate 3068 resource access ECA rules, whereas

DelDroid generates 167 resource access ECA rules to capture the

Permission Granted domain. 

The results presented in Table 6 confirm the efficiency of Del-

Droid in generating ECA rules to capture an LP architecture and

hence reducing the time required to validate components’ commu-

nications and resource access requests at runtime. 

6.4. RQ4. Performance 

We measured the execution time of running DelDroid on the

10 bundles of apps shown in Table 2 . These experiments were

conducted on a MacBook Pro-with 2.2 GHz Intel Core i7 proces-

sor and 16GB DDR3 RAM. We repeated our experiments 33 times

to achieve a 95% confidence interval. Table 7 summarizes the re-

sults. On average, for an Android system with 30 apps, it takes less

than 70 min. to execute DelDroid and obtain the ECA rules, but

the great majority of this time is spent in the one-time effort of

recovering the architecture of an Android system from its imple-

mentation artifacts. A less precise but more efficient forms of pro-
ram analysis could be substituted for architecture recovery, at the

xpense of a higher rate of false positives. 

To evaluate the runtime overhead of DelDroid , we measured

he time it takes to check the ECA rules for an intercepted ICC

ransaction on a Nexus 5X phone. To that end, we created a script

hat sends 200 requests (e.g., start an app, click a button) to an

ndroid system, simulating its use. Each request causes the sys-

em to perform an ICC of some sort. We found that, on average,

he performance overhead is 6.45 ms with 5.35 ms standard devi-

tion, which accounts for 3.95% performance overhead as depicted

n Fig. 9 . Most users cannot perceive delays of this magnitude, per

ndroid development guidelines Keeping your app responsive , and

hus, we believe DelDroid poses an acceptable overhead. 

.5. Threats to validity 

We provide an overview of the threats to validity of our exper-

mental setup and the evaluation results as well as the actions we

ave taken to mitigate these threats. 

One threat to validity of our work is whether the obtained re-

ults can be generalized to apps outside our study. To mitigate this

hreat, we derived benign, vulnerable, and malicious apps from di-

erse sources. Benign apps vary across application domains (see

ig. 8 ), application popularity (see Fig. 7 ), and in terms of app size

ELDroid website . For example, Gemmy Lands app is one of the in-

luded apps in our dataset. The size of this app is 57 MB and it has

0,0 0 0,0 0 0 downloads with 4.5 star-rating Gemmy lands app . The

ulnerable apps in our study have been discovered and verified in

 previous study ( Li et al., 2015 ). Similarly, our malicious apps are

rawn from repositories containing apps manually labeled as ma-

icious by security experts. 

A threat regarding RQ4 is the selection of Nexus 5X phone to

easure the performance of DelDroid at runtime. The runtime

erformance using another Android device might be different than

he reported one. However, since this device has been released in

015, it is not the most advanced Android device. Therefore, we
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Fig. 9. The performance overhead for validating ICC transactions. 
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elieve that the reported performance would be similar or even

etter on the currently available Android devices in the market. 

Finally, the reported accuracy of DelDroid , in terms of precision

nd recall, depends on the quality of our experimental dataset, e.g.,

hether vulnerabilities and attacks are representive of true vul-

erabilities and attacks in real world. To reduce this threat and to

lso challenge DelDroid , we did not use benchmarks that contain

and-crafted apps such as DroidBench ( Arzt et al., 2014 ) or ICC-

ench Icc bench , instead we used real-world benign and malicious

ndroid apps with security attacks implemented by experts from

utside of our research group. 

. Limitations of DELDROID 

There are of course limitations in our approach. Despite numer-

us benefits of giving the security architect the ability to adjust the

rchitecture, including the ability to grant/revoke privileges to/from

he apps based on their corresponding trust level, such manual

djustments are subject to unintentional errors. For instance, the

rchitect’s revision of the system may result in granting unneces-

ary permissions, which in turn breaks the principle of least priv-

lege, or revoking a necessary permission, which may lead to an

pp malfunction. To reduce the risk of such an error-prone hu-

an intervention, we recommend limiting it to situations where

he adjustments are necessary; recall from Section 2 that the man-

al adjustment feature is entirely optional in DelDroid and the

nforcement process can exclusively rely on automatically deter-

ined least-privilege architecture. 

Although DelDroid is compatible with the existing apps, the

ser needs to install our modified version of Android on a mobile

evice, which potentially voids the manufacturer warranty. Con-

eivably, DelDroid could be adopted in future versions of Android

r by Original Equipment Manufacturer companies, e.g., Samsung

nd Huawei, for installation on devices. 

Another limitation of our approach is the possible false posi-

ives our approach may produce. These possible false positives are

ue to two facts. The first fact is that the current prototype imple-

entation of DelDroid does not support analysis of dynamically

oaded code. We believe a fruitful avenue of future research is to
omplement DelDroid with dynamic analysis techniques that can

heck the integrity of loaded code Poeplau et al. (2014) and hence

educing the possible false positives. 

The second fact is that the static analysis tools ( Octeau et al.,

015; Bagheri et al., 2015; Arzt et al., 2014 ) that DelDroid relies

pon are not (1) path-sensitive and (2) they cannot analyze obfus-

ated code nor ICC calls made by native binaries within an Android

pp leading to possible false positives. Our future work involves

ntegration of dynamic analysis techniques as well as analysis of

ative binaries to effectively support recovery of the architecture

rom, and enforcing policies on, those aspects of the system. 

This paper introduces a technique that broadly supports detec-

ion and mitigation of a wide range of ICC-based vulnerabilities

 Felt et al., 2011; Chin et al., 2011 ). Android apps, however, can

ommunicate through other types of mechanisms, including re-

ote procedure calls. While this paper provides substantial sup-

orting evidence for addressing permission-induced vulnerabilities

hat arise due to the Intent-based event messaging—shown to be

he primary communication mechanism in Android—it would be

nteresting to see how DelDroid fares when applied to other types

f vulnerabilities, which forms a thrust of our future work. 

. Related work 

A large body of research has focused on Android security. Here,

e provide a discussion of the related effort s in light of our re-

earch. 

Much work focuses on performing program analysis over An-

roid applications for security. Epic ( Octeau et al., 2013 ) is a

tatic analysis technique for detecting ICC attacks in Android

pps. CHEX ( Lu et al., 2012 ) is a static analysis tool for detect-

ng component hijacking vulnerabilities. FlowDroid ( Arzt et al.,

014 ) is another precise static taint analysis approach for Android

pps. Chin et al. (2011) discussed several ICC attacks that can be

chieved through receiving an Intent by unauthorized receipt or

poofing an Intent, and they have provided ComDroid, a tool that

s meant to be used by developers to analyze their apps before re-

easing them. Felt et al. (2011) studied permission re-delegation se-

urity attacks (aka, privilege escalation) in mobile systems and web
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browsers; they showed the wide spread of this attack and provided

an IPC inspection mechanism to prevent such attacks. ScanDroid

( Fuchs et al., 2009 ) is a data-centric static analysis tool for reason-

ing about the data flow in Android apps; it creates security specifi-

cations from the app’s manifest file. These studies focus on a single

app or require the source code for their analysis. Moreover, all of

these studies are architecture-agnostic. 

Numerous techniques have been developed for ICC analysis

( Klieber et al., 2014; Li et al., 2015; Wei et al., 2014; Bagheri et al.,

2015 ). DidFail ( Klieber et al., 2014 ) introduces an approach for

tracking data flows between Android components. IccTA, similarly,

leverages an Intent resolution analysis to identify inter-component

privacy leaks ( Li et al., 2015 ). Amandroid ( Wei et al., 2014 ) is a

taint static analysis tool for detecting Intent-based data leak and

data injection. Along the same line, COVERT ( Bagheri et al., 2015 )

presents an approach for compositional analysis of Android inter-

app vulnerabilities. More recently, LetterBomb ( Garcia et al., 2017 )

presents an approach for automatic exploit generation for vulner-

abilities exposed in an Android app’s Intent-based interface. While

these research efforts are concerned with the analysis of informa-

tion/permission leakage between Android apps, they do not re-

ally address the problem that we are addressing, namely the auto-

mated determination and dynamic enforcement of least-privilege

architecture in Android. DelDroid , to our knowledge, is the first

tool with this capability. 

Others have focused on enforcing policies at runtime ( Bagheri

et al., 2016b; Sadeghi et al., 2018; Schreckling et al., 2013; Enck

et al., 2009; Wang et al., 2015; Heuser et al., 2014 ). SEPAR

( Bagheri et al., 2016b ) is a recent work for automatic synthe-

sis and enforcement of security policies allowing the end-users

to safeguard the apps installed on their devices from ICC at-

tacks. SEPAR’s policy enforcement relies on the Xposed frame-

work Xposed module repository that requires root access to the

device. Further, unlike our approach, SEPAR cannot prevent mali-

cious hidden behaviors. Kirin ( Enck et al., 2009 ) extends the ap-

plication installer component of Android’s middleware to check

the permissions requested by applications against a set of security

rules. These predefined rules are aimed to prevent unsafe combi-

nation of permissions that may lead to insecure data flows. Kynoid

( Schreckling et al., 2013 ) performs a dynamic taint analysis over

a modified version of Dalvik VM. DeepDroid ( Wang et al., 2015 )

presents an enforcement extensions based on dynamic memory in-

strumentation of system processes. ASM (Android Security Mod-

ules) ( Heuser et al., 2014 ) is a framework that provides a pro-

grammable interfaces for defining reference monitors for Android

similar to the proposed reference monitors for Linux ( Morris et al.,

2002 ) and TrustedBSD ( Watson, 2001 ). These research efforts share

with ours the emphasis on dynamic enforcement of security poli-

cies. Our work differs fundamentally in its emphasis on both pro-

viding an architectural solution and allowing a security architect to

adjust the privileges at the architectural level. 

The importance of limiting the privileges assigned to Android

components have also been discussed in the literature ( Kantola

et al., 2012; Shehab and AlJarrah, 2014; Wang et al., 2014; Seo

et al., 2016; Dietz et al., 2011; Shekhar et al., 2012b; Pearce et al.,

2012b ). Kantola et al. (2012) described heuristics to allow the An-

droid framework distinguish between inter-app and intra-app com-

munications and hence detect any unintentional inter-app com-

munication. Unlike DelDroid , the proposed heuristics are not to-

tally backward compatible with the existing apps and they re-

quire modifications by the apps’ developers. Shehab and AlJar-

rah (2014) proposed a policy-based approach for controling the

access of different pages in web-based Android apps to mitigate

potential attacks. However, unlike DelDroid , their approach re-

quires source code and it is limited only to web-based multi-page

apps generated by the Apache Cordova framework Apache cordova .
ang et al. (2014) proposed Compac, an approach for reducing the

ermissions assigned for third-party components in an app. Similar

o Compac ( Wang et al., 2014 ), FlexDdroid ( Seo et al., 2016 ) is an

ndroid security model and isolation mechanism for limiting the

ermissions granted to third-party libraries. Dietz et al. (2011) pre-

ented Quire, an approach that adds two security mechanisms into

ndroid to prevent privilege escalation attack. The first security

echanism tracks the inter-process communications (IPCs) in a de-

ice to either allow an app to run with reduced privilege of its

aller or with its full privileges by acting explicitly on its own

ehalf. The second security mechanism allows an app to create

 signed statement that can be verified by any app on the same

hone. Shekhar et al. developed AdSplit ( Shekhar et al., 2012b ) on

op of Quire. AdSplit is an approach that runs an advertising li-

rary and its hosting app in separate processes with different user

dentifiers. This separation eliminate the need for an app and its

dvertising library to share the same permissions. Similar to Ad-

plit, AdDroid ( Pearce et al., 2012b ) introduces advertising API and

orresponding advertising permissions as part of the Android plat-

orm. AdDroid allows for permission separation between advertis-

ng libraries and their hosting apps. Unlike DelDroid , these ap-

roaches do not control interactions among components and they

lso require developer intervention to modify their apps, signifi-

antly hindering their adoption in practice. 

Schmerl et al. (2016) describe an architectural style for Android

n ACME ( Garlan et al., 2010 ) that, among other capabilities, sup-

orts analysis of certain security properties. Unlike DelDroid , their

ork does not provide a mechanism for determining the LP archi-

ecture, nor does it provide any runtime enforcement mechanism. 

Finally, the importance of enforcing the principle of least

rivilege was introduced in the seminal work of Saltzer and

chroeder (1975) , and is well recognized by many researchers. No-

ably, Scandariato et al. (2010) lays the formal definition of the

east privilege violation and provides a technique to identify such

iolation in UML models. To the best of our knowledge, DelDroid

s the first solution capable of automatically recovering the archi-

ecture of an Android system to derive and enforce an LP variant

f it. 

. Conclusion 

Many autonomous and smart software systems, particularly

hose intended for execution in mobile and IoT settings, are devel-

ped and deployed on top of Android. As such systems permeate

very facet of our society, their security grows in prominence. This

aper presents DelDroid , an automated approach for determining

he least-privilege architecture for an Android system and its en-

orcement at runtime. The least-privilege architecture narrows the

ttack surface of an Android system, making it easier to evaluate

ts security posture, and thwarts certain class of security attacks. 

DelDroid utilizes static analysis techniques to automatically

xtract the inter-component communication and resource-access

rivileges each component needs to fulfill its task. The determined

P architecture is elegantly represented as an MDM matrix. This

epresentation further allows a security architect to adjust the

dentified LP architecture as needed to establish the proper priv-

leges for each component. DelDroid , finally, enforces automati-

ally obtained/expert-supplied LP architecture at runtime, govern-

ng privileges obtained by each component as prescribed by the

rchitecture. 

Our experiments on hundreds of real-world apps show between

4% to 99% reduction of attack surface and the ability to thwart se-

urity attacks exploiting the over-privileged nature of Android with

 recall of 100% and a precision of 97%. 

Android apps increasingly use both dynamically loaded code

nd native binaries. Being able to model those aspects of the apps
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n MDMs and building related security rules for their associated

ulnerabilities, along with modeling the interactions among man-

ged and native code in MDMs can provide further attack detection

nd prevention. At the same time, it may complicate analyses and

n turn may lead to scalability issues. Such challenges constitute

nteresting avenues of future work. 

Our research artifacts, including tools and evaluation data, are

vailable publicly DELDroid website . 
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