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Abstract—Modern mobile platforms rely on a permission
model to guard the system’s resources and apps. In An-
droid, since the permissions are granted at the granularity
of apps, and all components belonging to an app inherit
those permissions, an app’s components are typically over-
privileged, i.e., components are granted more privileges
than they need to complete their tasks. Systematic violation
of least-privilege principle in Android has shown to be the
root cause of many security vulnerabilities. To mitigate
this issue, we have developed DELDROID, an automated
system for determination of least privilege architecture in
Android and its enforcement at runtime. A key contribution
of our approach is the ability to limit the privileges granted
to apps without the need to modify them. DELDROID
utilizes static program analysis techniques to extract the
exact privileges each component needs for providing its
functionality. A Multiple-Domain Matrix representation of
the system’s architecture is then used to automatically
analyze the security posture of the system and derive its
least-privilege architecture. Our experiments on hundreds
of real-world apps corroborate DELDROID’s ability in
effectively establishing the least-privilege architecture and
its benefits in alleviating the security threats.

I. INTRODUCTION

Modern mobile platforms, such as Android, rely on
a permission-based model for controlling the resources
that each app is allowed to access. Permissions are often
granted to an app at the discretion of end user, who
makes a decision based on its perceived trustworthiness
and expected functionality.

Android’s permission-based access control model,
however, has shown to be ineffective in protecting sys-
tem resources and apps from security attacks [15]. All
components of an Android app inherit the permissions
granted to the app, regardless of whether they need those
permissions or not. As a result, a malicious component
inside an app, such as a third-party library, can leverage
privileges meant for other components for nefarious
purposes [29]. Moreover, by default, a component in An-
droid has significant leeway in terms of the components
it can communicate with, both within and outside of its
parent app. The over-privileged nature of components in
Android is the root cause of various security attacks [15],

[29], [11]. These kinds of attacks cannot be prevented by
the platform at the moment, as they do not violate the
security mechanisms supplied by Android.

To systematically thwart these threats, we have de-
veloped DELDROID1, an automated system for determi-
nation of least-privilege architecture (LP architecture)
in Android and its enforcement at runtime. An LP
architecture is one in which the components are only
granted the privileges that they require for providing their
functionality [37]. An LP architecture, thus, reduces the
risk of an Android system being compromised by limit-
ing its attacks surface. In addition, when a component is
compromised, the impact is localized within the scope of
that component. A smaller attack surface also facilitates
both manual and automated means of inspecting the
system’s security attributes.

Establishing the least privilege architecture is quite
challenging as it demands mediation of all conceiv-
able channels through which a component may interact
with components within and outside its parent app, as
well as the underlying system resources. DELDROID
leverages static program analysis to automatically iden-
tify the architectural elements comprising an Android
system, as well as the inter-component communication
and resource-access privileges each component needs
to provide its functionality. It then uses a Multiple-
Domain Matrix (MDM) [24] to represent and derive
the LP architecture for the system. MDM provides an
elegant, yet compact, representation of all relationships
between principal elements, such as components and
permissions, in a system. DELDROID further allows a
security expert to modify the architecture as needed
to establish the proper privileges for each component.
Finally, DELDROID enforces automatically obtained or
expert-supplied LP architecture at runtime, thus ensuring
components are not able to obtain more privileges than
that prescribed by the architecture.

DELDROID can be used to limit the levels of access

1The name is intended to abbreviate “determination and enforcement
of least privilege architecture in AnDroid”.



available to an app and its components without modifi-
cation of their implementation logic, thus allowing our
approach to be applied to all existing Android apps. Our
evaluation of DELDROID using hundreds of real-world
apps corroborates its ability in significantly reducing the
attack surface of Android systems and thwarting security
attacks that would have succeeded otherwise.

The remainder of this paper is structured as follows.
Section II provides a background on Android’s access
control model. Section III presents an Android system to
motivate the research. Section IV describes DELDROID,
while Section V describes its implementation. The eval-
uation results are presented in Section VI. Finally, the
paper concludes with an overview of the related literature
and areas of future research.

II. ANDROID’S ACCESS CONTROL MODEL

This section provides an in-depth description of the
Android’s access control model to help the reader follow
the discussions that ensue. An Android system consists
of a set of apps running on a device. Each app in Android
consists of a set of software components. There are two
kinds of privileges a component has: inter-component
communication (ICC) privilege, allowing a component
to communicate with other components in the same or
different app, and resource access privilege, allowing a
component to access the system resources, such as GPS,
camera, telephony, etc.

A. Over-Privileged Inter-Component Communication

Each Android app includes a mandatory configuration
file, called manifest. It specifies, among other things,
the principal components that constitute the application,
including their types and capabilities, as well as required
and enforced permissions. Components are basic logical
building blocks of apps. Android defines four types of
components: Activity, Service, Broadcast Receiver, and
Content Provider. The components in Android mainly
communicate by means of Intent messages. An Intent
can be either explicit, in which case the target component
is specified, or implicit, in which case the action to be
performed is specified. Intent Filters are the provided in-
terfaces of a component and define the actions performed
by the component. An implicit Intent is delivered to a
component if the action specified in the Intent matches
that specified in the component’s Intent Filter.

Android’s ICC mechanism leads to over-privileged
architectures, where components needlessly have the
ability to send Intent messages to invoke services of
many other components within and outside their parent
apps, and receive a variety of Intent messages implicitly
exchanged in the system. A component is allowed to
communicate with (1) all components in its parent app,
(2) protected components in other apps as long as its

parent app has the required permissions, and (3) any
public (exported) component in other apps. A component
is public if its VISIBLE attribute is set to true in the
manifest file or declares at least one Intent Filter. Many
developers are not aware of the fact that by specifying
an Intent Filter for a component, Android by default
makes that component public, thus allowing components
from other apps to invoke its interfaces [15]. Inter-app
communication (IAC) privileges are thus often granted
implicitly. Finally, a component does not require a per-
mission to specify an Intent Filter with arbitrary action,
thereby allowing that component to receive all implicit
Intents exchanged in the system with the specified action.

The over-privileged ICC mechanisms in Android are
known to be the root cause of many security attacks [15],
[29], [11]. Moreover, comprehending the security posture
of an Android system in light of this privilege man-
agement scheme is rather tedious and error prone for
a security architect.

B. Over-Privileged Resource Access

Android contains a plethora of sensitive sys-
tem resources (e.g., GPS, camera, account man-
ager, power manager) accessed by obtaining a han-
dle to a system-level, long-running service (e.g.,
location service, camera service, account service,
power manager service). System services are launched
by com.android.server.SystemServer ser-
vice, which is started at the boot time of the An-
droid operating system. To use a system service,
a component should have the appropriate permission
that guards the service. For example, to track the
user’s location, a component needs to obtain a han-
dle to the location service, which requires the loca-
tion permission (either ACCESS_COARSE_LOCATION
or ACCESS_FINE_LOCATION).

Permissions are the cornerstone of the Android secu-
rity model. The permissions stated in the app manifest
enable secure access to sensitive resources. However,
a permission granted to an app transfers to all of the
components in the app. Android’s coarse-grained permis-
sion model violates the principle of least privilege [14],
[35], as often not all components of an app need access
to the same sensitive resources. The shortcomings of
Android’s permission model have been widely discussed
in the literature [34], [19], [18], and shown to be the root
cause of various security attacks, most notably privilege
escalation [17], [20].

III. ILLUSTRATIVE EXAMPLE

To further motivate our research and illustrate our ap-
proach, we provide an example of a malicious component
that employs the extra privileges afforded by Android to
launch two security attacks: information leakage through



Listing 1. Vulnerable component, Sender Service, sends a text message.
1 public class Sender extends Service {
2 ...
3 public int onStartCommand(Intent intent, int flags, int startId){
4 //if (checkCallingPermission("android.permission.SEND_SMS") == PackageManager.PERMISSION_GRANTED) {
5 String phoneNumber = intent.getStringExtra("PHONE_NUMBER");
6 String msg = intent.getStringExtra("MSG_CONTENT");
7 SmsManager smsManager = SmsManager.getDefault();
8 smsManager.sendTextMessage(phoneNumber, null, msg, null, null);
9 //}

10 ...

Listing 2. Malicious component, LevelUp Service, uses dynamic class loading to hide its malicious behavior.
1 public class LevelUp extends Service {
2 ...
3 public int onStartCommand(Intent intent, int flags, int startId){
4 ...
5 loadCode();
6 }
7 public void loadCode(){
8 // read a jar file that contains classes.dex file.
9 String jarPath=Environment.getExternalStorageDirectory().getAbsolutePath()+"/Download/hiddenCode.jar";

10 //load the code
11 DexClassLoader mDexClassLoader = new DexClassLoader(jarPath, getDir("dex", MODE_PRIVATE).

getAbsolutePath(),null, getClass().getClassLoader());
12 //use java reflection to load a class and call its method
13 Class<?> loadedClass = mDexClassLoader.loadClass("HiddenBehavior");
14 Method methodGetIntent = loadedClass.getMethod("getIntent", android.content.Context.class);
15 Object object = loadedClass.newInstance();
16 Intent intent = (Intent) methodGetIntent.invoke(object, LevelUp.this);
17 startService(intent);
18 ...

Listing 3. Code downloaded after initial installation of app.
1 public class HiddenBehavior {
2 ...
3 public Intent getIntent(Context context){
4 LocationManager locMgr = (LocationManager) context.getSystemService(Context.LOCATION_SERVICE);
5 Location loc = locMgr.getLastKnownLocation(LocationManager.GPS_PROVIDER);
6 String msg = loc.getLatitude()+","+loc.getLongitude();
7 Intent i = new Intent("SEND_SMS");
8 i.putExtra("PHONE_NUMBER", phoneNumber);
9 i.putExtra("MSG_CONTENT", msg);

10 return i;
11 }
12 }

Figure 1. Component-based architecture of a vulnerable Android
system.

hidden code [29], [15], and privilege escalation [20],
[11].

Figure 1 shows an Android system with two apps:
FunGame and Messaging. The Messaging app
contains three components. The ListMsgs Activity
lists all previously received messages. The Composer
Activity allows a user to compose and send text messages
using the Sender Service running in the background.
Sending text messages requires SMS permission. The
Messaging app has this permission and hence all its

components have it as well. Listing 1 shows part of the
Sender’s program logic for sending text messages.

LevelUp is a Service in FunGame, a malicious
Android game app, which once started, via the Main
Activity, leverages dynamic class loading feature of
Android to load a malicious behavior from an exter-
nal JAR file placed at the location specified on line
9 of Listing 2. The dynamically loaded code allows
LevelUp to communicate with the Sender Service as
shown in Listing 2. On line 11 of Listing 2, LevelUp
instantiates a DexClassLoader object and uses it
to load the DEX (Dalvik Executable) file contained
in the JAR file. Using Java reflection at line 13 of
Listing 2, the mDexClassLoader object loads a class
called HiddenBehavior and invokes getIntent
method at line 16 of Listing 2. This method returns an
implicit Intent, which LevelUp uses to communicate
with Sender, as shown in line 17 of Listing 2.

Listing 3 shows the implementation of getIntent
method in the HiddenBehavior class. On line 4,
getIntent obtains a reference to the Location
Manager, a service that provides periodic updates of the



Figure 2. Overview of DELDROID.

device’s geographical location. On line 5, the Location
Manager is used to get the user’s last known location.
Finally, in lines 7-9, it creates an implicit Intent and
adds a phone number and the user’s location as the extra
payload of the Intent. This code is compiled to a DEX
format and archived in a JAR file using the dx tool, a
tool that generates Android bytecode from .class files.
The JAR file could be downloaded by the malicious app
after installation.

On lines 5 and 6 of Listing 1, the Sender service
extracts the phone number and the location information
from the received Intent, respectively. The extracted
information is used in line 8 to send a text message.
The Sender component is vulnerable to a privilege
escalation attack since it performs a privileged task,
sending text messages, without checking if the caller
component has the required SMS permission to perform
the task. An example of such a check is shown in line 4
of Listing 1, but in this example it is commented.

The illustrative example described in this section al-
lows LevelUp to hide its malicious behavior to exploit
a privilege escalation vulnerability and leak the user’s
sensitive information (i.e., user’s location) via text mes-
saging without having the SMS permission. This kind of
an attack is neither effectively detectable through static
program analysis, since the malicious behavior is down-
loaded after installation, nor through dynamic program
analysis, as malicious apps often incorporate complicated
evasion tactics (e.g., timing-bombs [16]). We show how
through establishment of an LP architecture, DELDROID
can effectively mitigate such threats.

IV. APPROACH

As depicted in Figure 2, DELDROID consists of five
steps. The rest of this section presents each step in detail.

A. Step 1: Architectural Elements Extractor

To obtain the system’s architecture, we first need to
determine the principal components that constitute the
system, their properties, communication interfaces, and
permission usages. Such information is obtained from
two sources, an app’s manifest file and its bytecode.

DELDROID utilizes APKtool [3], a reverse engineer-
ing tool for Android APK files, to recover an app’s
manifest file. By simply parsing the manifest file, we
can extract certain information readily available about
the components comprising an app. Table I partially
shows the extracted information corresponding to our
running example (recall Section III). The Type column
represents the particular type of a component, which
could be either Activity, Service, Broadcast Receiver,
or Content Provider. The Exported column indicates
whether a component can be launched from outside its
hosting app or not. The Intent Filter column shows the
interfaces provided by a component. Finally, the Granted
column shows the permissions requested by an app, and
subsequently granted by Android to all of its component.

Not all information about an app can be obtained from
its manifest file. For example, Broadcast Receivers can
be registered in code without declaring them in the man-
ifest file. Components can also programmatically define
Intent Filters in code. In addition, all ICCs are latent in
the app’s bytecode. Components can communicate with
one another in two ways: (1) using Unified Resource
Identifiers (URIs) to access the encapsulated data in
Content Providers, and (2) by sending Intents, either
explicitly or implicitly. DELDROID utilizes IC3 [28] to
analyze each app in the system and extract such latent
information from its bytecode. IC3 is the state-of-the-art
static program analysis tool for Android. For each Intent
in bytecode, DELDROID extracts the sender component,
receiver component, action, categories, and data. Table I
shows the remaining information collected in this way
for our running example. Intent i3 is not shown, since
the program logic that creates that Intent is not initially
part of the FunGame (recall Listing 2).

DELDROID also identifies the permissions actually
used by components. These are the permissions that
a component uses for (1) accessing a protected Con-
tent Provider, or (2) calling a protected API. For the
former, we have created a mapping between protected
Content Providers and the required permissions. For
example, to read the contacts information from An-
droid’s Contacts Content Provider, a component needs
android.permission.READ_CONTACTS permis-
sion. Since IC3 does not extract the permissions used
through API calls, for the latter case, DELDROID lever-
ages PScout permission map [10], one of the most
recently updated and comprehensive permission maps
available for the Android framework. It specifies map-



Table I
THE EXTRACTED ARCHITECTURAL ELEMENTS FOR THE ANDROID SYSTEM SHOWN IN FIGURE 1

ID App
Component

Type Exported
Intent Permissions

Intents
Name Filter Granted Used Enforced

1 Messaging ListMsgs Activity Yes {SMS}

2 Messaging Composer Activity Yes {SMS} {i1}

3 Messaging Sender Service Yes SEND SMS {SMS} {SMS}

4 FunGame LevelUp Service No {Location}

5 FunGame Main Activity Yes MAIN {Location} {i2}

Figure 3. The Original architecture derived from the Android system
described in Section III.

pings between Android API calls/Intents and the per-
missions required to perform those calls. For exam-
ple, Sender component in Messaging app uses the
sendTextMessage() API for sending text messages
(see line 8 of Listing 1), which requires SMS permission.
We thus consider this to be a permission that is actually
used by this component, as shown in the Used column
of Table I

Finally, DELDROID builds on our prior work [11] to
extract the permissions enforced by a component at two
levels. While the coarse-grained permissions specified in
the manifest file are enforced by the Android runtime
environment over an entire component, it is possible to
add permission checks, such as checkCallingPermission,
throughout the code controlling access to specific parts
of a component (see line 4 of Listing 1). DELDROID
identifies both types of checks. Since the system of
Figure 1 does not perform any checks (line 4 of Listing 1
is commented out), the corresponding column in Table I
is empty.

B. Step 2: Privilege Analyzer

The next step is to derive the overall system architec-
ture from the information obtained for individual com-
ponents in the previous step. We call this the Original
system architecture, as it represents the architecture of
system if it were to be deployed on the official Android
runtime environment. DELDROID models the system
architecture as a Multiple-Domain Matrix (MDM) [24].
MDM provides an elegant representation of complex
systems with multiple concerns (domains). Each concern
is modeled as a Design-Structure Matrix (DSM) [36]—
a simple matrix that captures the dependencies of one
relationship type. MDM is formed by connecting the

DSMs together. We capture four domains in an MDM
to represent an Android system’s architecture for the
purpose of privilege analysis.

The communication domain shows all potential com
ponent-to-component interactions. Each non-empty cell
in this domain indicates the fact that the architecture of
system allows for potential interaction between two com-
ponents. Rows represent sender components; columns
represent receiver components. Allowed communications
are derived using the following rule.
Definition 1 (Allowed Communication). Let E be a
set of all exported components, and c1 and c2 be two
arbitrary components in the system. We say that c1 can
communicate with c2, if either both components belong
to the same app or c2 is an exported component and c1
is granted the permissions enforced by c2:
communicate(c1, c2) ≡ (appc1 = appc2) ∨ (c2 ∈ E ∧
enforcedc2 ⊆ grantedc1)

Figure 3 shows the result of applying Definition 1
to Table I. According to the communication domain,
components 1, 2, and 3 can communicate with one
another because they belong to the same app, as well
as component 5 since it is exported, but not component
4.

Note that the communication domain also includes
interactions between the Android framework and com-
ponents of third-party apps. Android provides over 230
protected broadcast Intents that can only be sent by the
system to the registered components. For example, when
a user installs an app, the system sends a broadcast Intent
including the package name of the newly installed app
to all components that listen to the PACKAGE ADDED
broadcast Intent action. Figure 3 shows no such interac-
tions with the system, as no component in our running
example is registered to receive protected broadcast In-
tents.

The three permission domains in the MDM model of
Figure 3 represent the component-to-permission relation-
ships. Each non-empty cell corresponds to a permission
that is either (1) granted to a component, meaning that
the component has that permission, as its hosting app
has requested the permission in its manifest file, (2) used
by a component, meaning that the component is actually
making API calls or interacts with other apps that require



Figure 4. LP architecture determined from the Android system
described in Section III.

the permission, or (3) enforced by a component, meaning
that either the Android runtime environment or the com-
ponent itself check the permission of callers (as you may
recall from Section IV-A there are two ways of enforcing
permissions in Android). The permission domains in the
MDM are populated based on the information obtained in
the first step (i.e., Granted, Used, and Enforced columns
of Table I).

C. Step 3: Privilege Reducer

The Original architecture derived in the previous step
clearly violates the principle of least privilege. This step
aims to derive the LP architecture by granting only the
privileges required by each component to fulfill its tasks.

DELDROID uses the extracted inter-component com-
munications (information in the Intents column of Ta-
ble I) to determine the communication privileges that
are needed for each component to provide its func-
tionality, and removes communication privileges that
are unnecessary. For instance, as shown in Figure 4,
the LP architecture allows the Composer component
to communicate with the Sender component to send
text messages (indicated by “1” in row 2, column 3).
On the other hand, the LP architecture prohibits the
LevelUp component to communicate with the Sender
component.

Furthermore, DELDROID reduces the granted permis-
sions for each component in the Permission Granted
Domain of the LP architecture using the following rule:
Definition 2 (Required Permission). Let c1 be a compo-
nent, and usedc1 be a set of permissions directly used
by component c1. We define the required permissions for
c1 as permissions either directly used by c1 or used by
component c2 with which c1 communicates:
requiredPermissionsc1 = {p : Permission | ∃ c2 :
Component • p ∈ usedc1 ∨ communicate(c1, c2)∧ p ∈
usedc2 ∧ p ∈ grantedc1}

According to Definition 2, a component legitimately
needs a permission in two cases: 1) the permission is
directly used by the component through, among other
things, making protected API calls; 2) another compo-
nent with which the given component is interacting is
using that permission. The latter may be a legitimate

case, since a component that uses a permission may re-
quire the calling component to also have that permission.
In fact, failing to check if the calling component has the
necessary permission may result in a privilege escalation
attack, as discussed in the next section.

In our running example, DELDROID determines that
the Sender component has a legitimate reason to hold
the SMS permission, since it uses it. The Composer
component also has a legitimate reason to hold the SMS
permission, since the app it belongs to has that permis-
sion and it communicates with the Sender component
that uses that permission. ListMsgs, however, does
not need the SMS permission, since it neither uses it
nor does it communicate with a component that uses
that permission. Similarly, the LevelUp and Main
components do not use the Location permission, and thus
do not have a legitimate reason to hold it.

Finally, a security architect can adjust the resulting
architecture by manually granting and revoking permis-
sions in the MDM. For example, a security architect can
revise the privileges granted to apps and their compo-
nents based on their reputation. This capability could
also be useful in a forward-engineering setting, where
an Android system is developed from scratch.

D. Step 4: Security Analyzer

The previous sections present derivation of the LP
architecture for an Android system captured in an MDM.
Here, we describe how the resulting architecture can be
used to effectively perform security analysis of Android
apps. In particular, we focus on one of the most promi-
nent vulnerabilities due to the interaction of multiple
apps, i.e., privilege escalation, defined as follows:
Definition 3 (Privilege Escalation). Let p be a permis-
sion, cm be a component that does not hold p, and cv be
a component that holds and uses p but does not enforce
(check) the components that may be using its services
also hold p. In the privilege escalation attack, cm is able
to indirectly obtain p by interacting with cv .
communicate(cm, cv)∧p ∈ usedcv ∧p 6∈ grantedcm∧
p 6∈ enforcedcv

According to Definition 3, in privilege escalation, a
malicious app is able to indirectly perform a privileged
task, without having a permission to do so, by inter-
acting with a component that possesses the permission.
By applying the privilege escalation rule to the MDM
representation of the system’s architecture, DELDROID
identifies communications that may result in privilege
escalation attack.

To illustrate this, let us assume that instead of
LevelUp using dynamic class loading to communi-
cate with the Sender component, the logic for this
interaction is part of the component’s implementation
analyzed by DELDROID. The LP architecture for such



Figure 5. The LP architecture for an alternative system, where the
communication between Sender and LevelUp is part of the app’s initial
bytecode.

an alternative system is shown in Figure 5. Applying
the privilege escalation rule to the LP architecture of
Figure 5 reveals that LevelUp is not granted the SMS
permission, and communicates with the Sender that
uses the SMS permission without enforcing it. As a
result, this interaction is potentially a privilege escalation
attack, and DELDROID raises a warning for further
inspection.

E. Step 5: LP Enforcer

This step regulates component interactions by enforc-
ing the LP architecture at runtime. DELDROID trans-
forms the LP architecture to a set of Event-Condition-
Action (ECA) rules suitable for rapid evaluation as the
system executes. It then relies on two components, i.e.,
ICC Monitor and Resource Monitor, within the Privilege
Manager layer that we have added to the Android runtime
environment, as shown in Figure 2.

1) ICC Monitor: This component extends the capabil-
ities of the Android framework by intercepting each ICC
transaction passed to the ActivityManager—an Android
component that administers the ICC transactions—to
check whether the transaction is allowed to run or not.
Specifically, DELDROID extends the ActivityManager
to send the ICC transaction’s information to the ICC
Monitor component and executes the action provided by
ICC Monitor. In case, an ICC is prevented, ICC Monitor
records the transaction for further inspection by a security
analyst.

For example, the following ECA rule is produced,
from the LP architecture shown in Figure 4, to prevent
the LevelUp component from communicating with the
Sender component:
Event: i ∈ ICC occurs
Condition: i.senderPkg = FunGame ∧
i.senderComp = LevelUp ∧ i.receiverPkg =
Messaging
Action: prevent

2) Resource Monitor: As we explained in Sec-
tion II-B, components need permissions to access various
system resources. Such system resources are accessed
via the Context component, an Android component that
holds information about the application environment

and controls access to resources. DELDROID modifies
Context to extract information from each resource access
request, and passes it to the Resource Monitor to check
whether the requester is allowed to access the requested
service.

As a concrete example, the following ECA rule is
produced, from the LP architecture shown in Figure 4, to
prevent LevelUp from requesting the location service:
Event: resourceaccessrequest
Condition: requester = LevelUp ∧ service =
Context.LOCATION_SERVICE
Action: prevent

When the LevelUp component executes the dynam-
ically loaded code shown in Listing 3, it tries to obtain
a handle to the LocationManager service (recall line 4
of Listing 3). The Android framework dispatches the re-
quest to the Context, which then sends the request to the
Resource Monitor. Upon receiving the resource access
request, Resource Monitor checks it against the ECA
rules and performs the corresponding action (prevents
the request in this particular case).

V. IMPLEMENTATION

DELDROID is a Java application that takes as input
an Android system consisting of a set of APK files. As
described earlier, the architecture extraction capability
was built on top of several prior static program anal-
ysis tools [28], [10], [11]. Each tool provides specific
information that DELDROID uses to tailor the LP ar-
chitecture. After that, DELDROID conducts a security
analysis on the established LP architecture and records
the security vulnerabilities that are found. The derived
LP architecture and results of analysis are stored in a
comma separated values (CSV) file. The implementation
of DELDROID consists of more than 4,000 lines of code
(LOC), not counting the existing tools on which it relies.

The enforcement mechanism in DELDROID is im-
plemented on top of the Android Open-Source Project
(AOSP) [2] version 6 (Marshmallow), API level 23.
AOSP is the open-source repository for Android system
maintained by Google. The Privilege Manager Layer
introduced a new package in the Android runtime en-
vironment. We also modified other components such as
ActivityManager and ContextWrapper. The total frame-
work changes account for approximately 400 LOC. The
changes were made such that any existing Android app
could continue to run in our version of Android runtime
environment without modification. We have successfully
installed the modified Android system image on a Nexus
5X phone and on the Android emulator using Android
Fastboot tools [6] and Android debug bridge [1].

VI. EXPERIMENTAL EVALUATION

This section presents the experimental evaluation of
DELDROID. Our evaluation addresses the following re-



Table II
SUMMARY OF THE APP BUNDLES AND THE ATTACK SURFACE OF BOTH ORIGINAL AND LP ARCHITECTURE.

Bundle Components
Intent Intent Communication Domain Permission Granted Domain Priv. Esca. Security Analysis

Explicit Implicit Filter Original LP Reduction (%) Original LP Reduction (%) Original LP

Bundle 1 306 344 79 176 29,031 42 99.86 1,642 45 97.26 25,944 0

Bundle 2 432 468 379 287 78,237 625 99.20 2,954 61 97.94 35,601 110

Bundle 3 422 574 212 200 65,709 173 99.74 2,510 54 97.85 22,721 2

Bundle 4 449 348 370 511 80,372 205 99.74 4,234 78 98.16 33,551 0

Bundle 5 353 304 277 292 56,868 345 99.39 1,536 51 96.68 26,914 2

Bundle 6 541 890 476 4919 85,556 661 99.23 4,461 181 95.94 24,745 2

Bundle 7 562 412 38 324 82,863 137 99.83 1,577 58 96.32 15,503 1

Bundle 8 362 417 267 242 50,208 250 99.50 1,946 24 98.77 27,663 14

Bundle 9 265 180 98 166 25,817 129 99.50 1,568 30 98.09 19,428 8

Bundle 10 421 322 1231 185 50,001 74 99.85 2,386 28 98.83 16,953 3

Average 411.3 425.9 342.7 730.2 60,466.2 264.1 99.58 2,481.4 61.0 97.58 24,902.3 14.2

Avg. (per app) 13.7 14.2 11.4 24.3 2,015.5 8.8 99.56 82.7 2.0 97.54 498.0 0.3

search questions:
• RQ1. How effective is DELDROID in reducing the

attack surface of Android systems and aiding the
architect with understanding their security posture?

• RQ2. How effective is DELDROID in detecting and
preventing security attacks in real-world apps?

• RQ3. What is the performance of DELDROID?
We downloaded a total of 984 apps in our experiments

coming from three different datasets representing benign,
vulnerable, and malicious apps. The benign dataset is
a collection of 370 apps, randomly selected from the
Google Play store. The second dataset is a collection of
389 vulnerable apps identified in prior literature [23].
Finally, the malware dataset contains 225 apps obtained
from various malware repositories [40], [4], [26].

A. Attack Surface Reduction

By reducing the privileges granted to software com-
ponents, DELDROID helps the security architects (or
automated analysis tools) to focus their analysis effort on
a narrowed set of interactions. To evaluate the degree to
which DELDROID reduces the attack surface of Android
systems, we ran DELDROID on 10 bundles of apps, each
containing 30 apps. We chose this number of apps, since
it represents the average number of apps a smartphone
user regularly uses per month, as shown in a recent
study [8]. Each bundle contains apps randomly selected
from the app datasets as follows: 24 benign apps, 3
vulnerable apps, and 3 malicious apps.

Table II shows the structure of the bundles, including
the number of entries in the Communication Domain
as well as the Permission Granted Domain for both the
Original and LP architectures. For example, in bundle 1,
the LP architecture contains 42 inter-app communication
(IAC) and 45 resource access permissions, whereas the
Original architecture contains 29,031 IAC and 1,642 re-
source access privileges. On average, across all bundles,
99.56% of IAC and 97.54% of resource access privileges
are reduced.

Table II also shows the number of potential inter-
app privilege escalation attacks in both the Original and
LP architectures. For example, in bundle 5, the Original
architecture contains 26,914 possible privilege escalation
attacks, whereas the LP architecture contains only 2 such
attacks that need investigation. On average, an analyst
needs to verify 14 potential security issues for a bundle
of 30 apps using our approach. In fact, in the case of
bundles 1 and 4, all potential privilege escalation attacks
are already resolved with the LP architecture, eliminating
the need for further investigation.

The results confirm the effectiveness of our approach
in reducing the attack surface and hence reducing the
effort required to assess the security properties of an
Android system.

B. Attack Detection and Prevention

To evaluate DELDROID’s ability to detect and prevent
security attacks, we used 54 malicious and vulnerable
apps for which the steps and inputs required to create the
attacks were known. In total, the resulting combination
of apps had 18 privilege escalation and 24 dynamically
loaded ICC attacks. We created a bundle of these 54 apps,
ran DELDROID to obtain and analyze the LP architecture,
and deployed the apps on our version of Android runtime
environment. We then exercised the apps to create the
attacks and determined whether DELDROID was able to
prevent them. We report on the precision and recall of
both detection and prevention.

DELDROID marked 19 inter-app communications as
potential privilege escalation attacks, correctly detecting
18 attacks, i.e., true positive. Our manual inspection of
the behavior that was wrongly classified as an attack
showed that this was due to the shortcomings of the
underlying static program analysis tools used in DEL-
DROID. In particular, since the analysis tools relied
upon in our work are not path-sensitive, DELDROID
is bound to over-approximate the behavior of Android
architectures, sometimes leading to such false positive



Table III
DELDROID’S OFFLINE PERFORMANCE.

Recovery LP Determination Analysis ECA Rules
(min) (sec) (sec) (sec)

Average 69.5 1.61 0.002 0.45

Std Dev 2.7 0.69 0.001 0.99

outcomes. Overall, DELDROID achieves 94.7% precision
and 100% recall in detection of privilege escalation
attacks. Given DELDROID’s reliance on static program
analyses, it is unable to detect security attacks launched
via dynamically loaded code. In spite of that, as shown
next, our experiments show that such attacks are effec-
tively thwarted by an LP architecture.

To evaluate DELDROID’s ability to thwart security
attacks, we configured DELDROID to prevent all 19
detected privilege escalation attacks during the analysis
step. We then manually exercised all known privilege
escalation (19 cases) and dynamically loaded ICC (24
cases) attacks. DELDROID was able to prevent all of the
attacks from succeeding by intercepting either the ICC
or resource access calls. However, one of the prevented
ICCs was a legitimate communication that corresponded
to the erroneously detected privilege escalation attack.
Overall, DELDROID achieves 97.7% precision and 100%
recall in prevention of security attacks.

C. Performance

We measured the execution time of running DEL-
DROID on the 10 bundles of app shown in Table II. These
experiments were conducted on a MacBook Pro with 2.2
GHz Intel Core i7 processor and 16 GB DDR3 RAM.
We repeated our experiments 33 times to achieve a 95%
confidence interval. Table III summarizes the results. On
average, for an Android system with 30 apps, it takes
less than 70 minutes to execute DELDROID and obtain
the ECA rules, but the great majority of this time is spent
in the one-time effort of recovering the architecture of
system from its implementation artifacts. A less precise
but more efficient forms of program analysis could be
substituted for architecture recovery, at the expense of a
higher rate of false positives.

To evaluate the runtime overhead of DELDROID, we
measured the time it takes to check the ECA rules for
an intercepted ICC. To that end, we created a script that
sends 363 requests (e.g., start an app, click a button)
to an Android system, simulating its use. Each request
causes the system to perform an ICC of some sort. We
found that, on average, the performance overhead is 25
milliseconds with 10 milliseconds standard deviation.
Most users cannot perceive delays of this magnitude,
per Android development guidelines [7], and thus, we
believe DELDROID poses an acceptable overhead.

VII. RELATED WORK

A large body of research [15], [9], [25], [20], [21],
[13], [27] has focused on Android security. Here, we
provide a discussion of the related efforts in light of our
research.

Numerous techniques have been developed for ICC
analysis [22], [23], [39], [11]. DidFail [22] introduces an
approach for tracking data flows between Android com-
ponents. IccTA, similarly, leverages an intent resolution
analysis to identify inter-component privacy leaks [23].
Along the same line, COVERT [11] presents an approach
for compositional analysis of Android inter-app vulnera-
bilities. While these research efforts are concerned with
the analysis of information/permission leakage between
Android apps, they do not really address the problem
that we are addressing, namely the automated detection
and dynamic enforcement of least-privilege architecture
in Android. DELDROID, to our knowledge, is the first
tool with this capability.

Others have focused on enforcing policies at run-
time [12], [33], [38]. SEPAR [12] provides an automatic
scheme for formal synthesis and enforcement of Android
inter-component security policies. Kynoid [33] performs
a dynamic taint analysis over a modified version of
Dalvik VM. DeepDroid [38] presents an enforcement
extensions based on dynamic memory instrumentation
of system processes. These research efforts share with
ours the emphasis on dynamic enforcement of security
policies. Our work differs fundamentally in its emphasis
on both providing an architectural solution and allowing
a security architect to adjust the privileges at the archi-
tectural level.

Schmerl et al. [32] describe an architectural style
for Android in ACME that, among other capabilities,
supports analysis of certain security properties. Unlike
DELDROID, their work does not provide a mechanism
for determining the LP architecture, nor does it provide
any runtime enforcement mechanism.

Finally, the importance of enforcing the principle of
least privilege was introduced in the seminal work of
Saltzer et al. [30], and is well recognized by many
researchers. Notably, Scandariato et al. [31] lays the
formal definition of the least privilege violation and
provides a technique to identify such violation in UML
models. To the best of our knowledge, DELDROID is
the first solution capable of automatically recovering the
architecture of an Android system to derive and enforce
an LP variant of it.

VIII. CONCLUSION

This paper presents DELDROID, an automated ap-
proach for determining the least-privilege architecture for
an Android system and its enforcement at runtime. The
least-privilege architecture narrows the attack surface



of an Android system, making it easier to evaluate its
security posture, and thwarts certain class of security
attacks. Our experiments on hundreds of real-world apps
show between 97% to 99% reduction of attack surface
and the ability to thwart security attacks exploiting the
over-privileged nature of Android with a recall of 100%
and a precision of 97%.

Rather than preventing all dynamically loaded ICCs,
an avenue of future work is leveraging techniques that
can check the integrity of loaded code [29]. Moreover,
static analysis tools including the ones that DELDROID
leverages [28], [11], [9] cannot analyze obfuscated apps.
Our future work involves integration of dynamic analysis
techniques to mitigate limitations of a purely static
approach for recovering the system’s architecture.

Our research artifacts, including tools and evaluation
data, are available publicly [5].
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