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Abstract—Producing software systems that achieve acceptable tradeoffs among multiple non-functional properties remains a
significant engineering problem. We propose an approach to solving this problem that combines synthesis of spaces of design
alternatives from logical specifications and dynamic analysis of each point in the resulting spaces. We hypothesize that this approach
has potential to help engineers understand important tradeoffs among dynamically measurable properties of system components at
meaningful scales within reach of existing synthesis tools. To test this hypothesis, we developed tools to enable, and we conducted, a
set of experiments in the domain of relational databases for object-oriented data models. For each of several data models, we used
our approach to empirically test the accuracy of a published suite of metrics to predict tradeoffs based on the static schema structure
alone. The results show that exhaustive synthesis and analysis provides a superior view of the tradeoff spaces for such designs. This
work creates a path forward toward systems that achieve significantly better tradeoffs among important system properties.

Index Terms—Specification-driven Synthesis, Tradespace Analysis, ORM, Static Analysis, Dynamic Analysis, Relational logic.
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1 INTRODUCTION

When the consequences of variations in design decisions
leading to system implementations are unclear, it is im-
portant to conduct tradeoff studies. Design space explo-
ration and tradeoff analysis can help decision-makers by
revealing designs that people might miss [4], [24], [37],
illuminating sensible and non-sensical tradeoffs, and
helping decision-makers to balance tradeoffs that design
decisions impose on diverse stakeholders. Ultimately it
can provide evidence in support of principled decisions
about which path or paths to pursue toward a realized
system. Such studies can be done at different modeling
and measurement granularities, for whole systems or
individual components, and at many points in system
development and evolution, and even runtime.

Yet, today, systematic tradeoff analysis remains rare.
Instead, developers are usually trusted to use design
heuristics, tacit knowledge, and other such methods in
developing point solutions that, it is hoped, will be good
enough for stakeholders in all key dimensions.

Similarly, when tools automatically produce imple-
mentations, they often use single-point strategies. Con-
sider object-relational mapping (ORM) tools, now pro-
vided in many programming environments. They map
object-oriented data models to relational schemas and
code for managing application data. They often use a
single mapping strategy, and do not help engineers to
understand available solutions or the tradeoffs in time
and space performance, evolvability, etc. that they entail.

In practice, systematic tradespace analysis is hard.
Generating large numbers of complex variants by hand
is often impractical. Spaces of variants can be huge, even
for modest specifications. Property estimation functions
can be hard to specify, validate, implement and compute,
and can vary greatly in accuracy.

In this paper, we present an approach to solving this
problem that combines synthesis of spaces of design
alternatives and dynamic analysis of each point in the
resulting spaces. The approach relies on specification-
driven synthesis of both design spaces and test loads for
comparative, dynamic analysis of non-functional prop-
erties of variant designs across such spaces.

We use formal notations, namely domain-specific
modeling languages embedded in a relational logic, to
specify design spaces. We then equip each language
with a formal semantics in the form of a set of “non-
deterministic mapping relations,” which we also express
in the underlying relational logic. The key idea is that
these rules map a given model to a broad space of
possible solutions, which vary in dimensions built into
the semantics, and which are rooted in the given domain
of discourse. We then subject synthesized designs (in the
semantic domain) to dynamic measurement in multiple
dimensions of performance under the synthesized loads.
The result is a multi-dimensional, empirical characteri-
zation of the tradespace for the given model.

We hypothesize that this approach has potential to
help engineers understand important tradeoffs among
dynamically measurable properties for important classes
of software designs, at meaningful scales, within reach
of existing synthesis tools.

To test this hypothesis, we developed tools to enable a
set of experiments in the domain of relational databases
for object-oriented data models. For each of several data
models, we used our approach to empirically charac-
terize tradeoffs among designs predicted by previously
published metrics based on model (namely SQL schema)
structure as opposed to dynamic profiling. The designs
we assessed were predicted to be high performing in
the sense of being Pareto optimal in the dimensions
measured. We then used our dynamic analysis results
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to statistically assess the predictive accuracy of the pre-
viously published “static” metrics.

These static analysis functions estimate various prop-
erties from the static structures of relational schemas.
Such functions can be computed nearly instantaneously,
but their accuracy had not previously been assessed.
Their suitability as a basis for making tradeoff decisions
was thus unclear.

To summarize, the main contribution of this paper
is an experimental demonstration that our approach
to specification-driven synthesis and tradeoff analysis
has the potential to better inform tradeoff decisions
for important components of modern software systems.
At a finer grain, this paper makes several component
contributions:
• Formal model of object-relational mapping strategies: We

develop what is to our knowledge the first formal-
ization of fine-grained and mixed ORM strategies
by means of mapping functions. We construct this
formal specification in Alloy’s relational logic [30].

• Tradespace synthesis: We contribute a fully automated
approach showing how to exploit the power of our
formal specification for derivation of formally pre-
cise and application-specific ORM tradeoff spaces.

• Dynamic analysis of synthesized tradespaces: We mea-
sure properties of synthesized database designs by
synthesizing, from the same object models, schema-
specific test loads and by then profiling database
performance under these synthesized loads. We
have not yet explored systematically the impact of
variation in load characteristics as an independent
variable, but our approach would in principle allow
for such analysis.

• Trademaker tool implementation: We develop Trade-
maker as a web-accessible tool, backed with our
formal analysis engine, for specification-driven syn-
thesis of ORM tradespaces. We make Trademaker
available to the research and education community1.

• Experimental validation of published ORM metrics: We
present results from experiments run on several
case studies adopted from different domains, cor-
roborating inaccuracy of published static metrics for
predicting tradeoffs based on the schema structures
alone. Data collected from the experiments further
show that exhaustive synthesis and analysis pro-
vides a superior view of the tradeoff spaces for such
designs.

The rest of this paper is organized as follows. Sec-
tion 2 presents object-relational mapping as a concrete
driving problem. Section 3 presents the overview of
our approach. Sections 4–7 describe the details of our
approach and its implementation for expression and
synthesis of design spaces and loads. Section 8 and 9
report and discuss data from the experimental testing
of the approach. Finally, the paper concludes with an
outline of the related research and the future work.

1. http://www.jazz.cs.virginia.edu:8080/Trademaker

Fig. 1: A simple object model with three classes, Order,
Customer, and PreferredCustomer, a one-to-many as-
sociation between Customer and Order, and with Pre-
ferredCustomer inheriting from Customer.

2 DRIVING PROBLEM

While our long-term aim is to improve engineering
productivity and quality through advances in design
space science and technology, our short-term research
strategy is to use the analysis of spaces of object-
relational database mappings, in particular, as a tractable
and useful driving problem.

It is common, nowadays, for software applications
written in an object-oriented language, such as Java, to
use relational databases for persistent storage. Trans-
formations between instance models in these two
paradigms yet encounter the so-called object-relation
impedance mismatch problem [29], due to a significant dis-
tance between the object-oriented and relational theories.
Dedicated object-relational middleware is now widely
used to bridge the gap between object-oriented appli-
cations and relational database management systems
(RDBMS). The bridge is realized on the basis of a data
mapping specification.

Even if this approach relieves the developer of respon-
sibility for the majority of runtime related aspects, e.g.,
storing and retrieving persistent objects, the develop-
ment of application-specific data mapping specifications
yet remains an inherently difficult and error-prone task.

In practice, one starts with an object-oriented data
model (OODM) as in Figure 1 and eventually selects one
of many possible strategies for mapping such a model
to a relational database schema. Figure 2 illustrates three
such strategies; and Listing 1, a database set-up script
derived from one of these solutions. The developer is
faced with the challenge of selecting from a wide variety
of mapping strategies available for each class association
and inheritance relationship. These mapping strategies
have varying impacts on the non-functional properties
of applications, such as time and space performance and
evolvability [28], [31], [35].

Simple ORM solutions, many in everyday use, lock
one into point solutions by using a single mapping strat-
egy, failing to consider many possible available solutions
or the tradeoffs that they entail [42]. The problem for the
developer, then, becomes selecting the mapping strate-
gies that best suit the desired non-functional requirement
priorities for a particular application. It requires, among
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Fig. 2: Three mapping strategies. White boxes represent
classes; gray titles, corresponding tables, and black and
white arrows, mapping and inheritance relationships.
Foreign keys are marked as fKeys.

1 CREATE TABLE ‘ Order ‘ (
2 ‘ orderID ‘ i n t ( 1 1 ) NOT NULL,
3 ‘ orderValue ‘ i n t ( 1 1 ) ,
4 ‘ customerID ‘ i n t ( 1 1 ) ,
5 KEY ‘ FK customerID idx ‘ ( ‘ customerID ‘ ) ,
6 PRIMARY KEY ( ‘ orderID ‘ )
7 ) ;
8

9 CREATE TABLE ‘ Customer ‘ (
10 ‘DType ‘ varchar ( 3 1 ) ,
11 ‘ discount ‘ i n t ( 1 1 ) ,
12 ‘ customerID ‘ i n t ( 1 1 ) NOT NULL,
13 ‘ customerName ‘ varchar ( 3 1 ) ,
14 PRIMARY KEY ( ‘ customerID ‘ )
15 ) ;

Listing 1: Synthesized MySQL database creation script
derived from the mapping alternative shown in Fig.
2b (elided for space and readability).

other things, a thorough understanding of both object
and relational paradigms, of large spaces of possible
mappings, and of the tradeoffs involved in making
choices in these spaces.

3 APPROACH OVERVIEW

This section provides an overview of our technical ap-
proach for tradespace synthesis and dynamic analysis.

Figure 3 gives a high-level overview of Trademaker.
Boxes represent processing modules, and ovals represent
module inputs and outputs. Trademaker takes as input
an application object model. Object models are given
as expressions in AlloyOM, a domain-specific language
embedded in Alloy’s relational logic language [30]. To
an input object model, it applies a design space synthesis
function that, in essence, implements a non-deterministic

Fig. 3: Overview of Trademaker.

semantics to compute the set (or space) of concrete
design variants from which we want to choose a design
to achieve desirable tradeoffs. The design space synthesis
function is realized as a semantic mapping predicate
in relational logic, taking expressions in the object data
modeling language to corresponding concrete design
spaces in the semantic domain, here relational databases
schemas. A relational logic solver computes the results,
which are then transformed into useful forms as SQL
database creation scripts (cf. Listing 1).

To dynamically analyze diverse database designs, we
face the challenge that variant designs (such as different
SQL schemas for the same object model) present differ-
ent interfaces to the surrounding ORM tool. There are of
course many commercial tools for generating database
testing loads from schemas. In our case, however, such
variant schemas implement a common object model. To
provide a fair comparison of designs notwithstanding
their particular exposed interfaces, a common test load
needs to be specialized for each particular design. Fully
automating the specialization of a common test load for
fair comparative profiling of varying design solutions
posed an interesting technical challenge.

Trademaker thus first automatically transforms the
object model into a corresponding load model that drives
synthesis of common test loads, which are essentially
object model data instances (OM-instances in Fig. 3). We
call them common loads because all concrete database
implementations would have to handle them. They
are object-model-level, rather than concrete-database-
schema-level. To specialize such synthesized loads for
each particular design, the load concretization module
exploits the abstraction function linking concrete designs
to abstract models, but in reverse, and applied as a
concretization function to a common test load for each
concrete design. In the following sections, we describe
the details of our approach.

4 DESIGN SPACE SYNTHESIS

This section presents our approach to synthesize design
tradespaces for ORM using static metrics published in
the database literature [28] [15]. The next two sections
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then detail our approach to dynamic analysis of syn-
thesized tradespaces, specifically synthesizing common
loads and specializing abstract loads to the variant
schemas in the design space, respectively.

We first introduce domain-specific languages (DSLs)
that we developed within the Alloy language to let
developers specify object and relational schemas in Alloy
(§ 4.1). Next, we present formalizations of object-relational
mapping strategies (§ 4.2) as well as verification of such
semantic mapping rules (§ 4.3). We then use these for-
malizations to automate synthesis of design spaces of
OR mappings (§ 4.4).

As an enabling technology, we chose Alloy [30] as
a specification language and satisfaction engine. Alloy
is a formal modeling language with a comprehensible
syntax that stems from notations ubiquitous in object
orientation, and semantics based on the first-order rela-
tional logic [30], making it an appropriate language for
declarative specification of both application data object
model and semantic mapping rules. More specifically,
we chose it for three reasons. First, its logical and rela-
tional operators make Alloy an appropriate language for
specifying object-relational mapping strategies. Second,
its ability to compute solutions that satisfy complex
constraints is useful as an automation mechanism. Third,
Alloy has a rigorously defined semantics closely related
to those of relational databases, thereby providing a
sound formal basis for our approach.

The Alloy Analyzer is a constraint solver that sup-
ports automatic analysis of models written in Alloy.
The analysis process is based on a translation of Al-
loy specifications into a Boolean formula in conjunctive
normal form (CNF), which is then analyzed using off-
the-shelf SAT solvers. With respect to the constraints
in a given model, the Alloy Analyzer can be used
either to find solutions satisfying them, or to generate
counterexamples violating them. The Alloy Analyzer is
a bounded checker, so a user-specified scope on the size
of the domains needs to be specified. In the matter of the
object-relational mappings, the scope states the number
of elements of each top-level signature, such as Class, At-
tribute and Association. The analysis is thus performed
through exhaustive search for satisfying instances within
the specified scopes.

4.1 AlloyOM Domain-specific Language
To carry out the synthesis, we begin by developing
domain-specific languages in Alloy that specify the
source and target languages, for describing object and
relational schemas, respectively. These specifications de-
fine element types, and how they are related and con-
strained to constitute valid expressions in these respec-
tive domains.

Listing 2 outlines the specification of the element types
in the AlloyOM DSL. The DSL built-ins are defined
as top-level Alloy signatures. A signature paragraph
introduces a basic element type and a set of its relations,
called fields, accompanied by the type of each field.

1 a b s t r a c t s ig Class{
2 a t t r S e t : s e t Attr ibute ,
3 id : s e t Attr ibute ,
4 parent : lone Class ,
5 i s A b s t r a c t : one Bool
6 }
7
8 a b s t r a c t s ig A t t r i b u t e{}
9

10 a b s t r a c t s ig Assoc ia t ion{
11 s r c : one Class ,
12 dst : one Class ,
13 s r c m u l t i p l i c i t y : one M u l t i p l i c i t y S t a t e ,
14 d s t m u l t i p l i c i t y : one M u l t i p l i c i t y S t a t e
15 }

Listing 2: Partial specification of the AlloyOM DSL in
Alloy.

The specification defines three main constructs as top-
level signatures to model the basic AlloyOM constructs:
Class, Attribute and Association. Note that these
signatures are defined as abstract, meaning that they
cannot have instance objects without explicitly extending
them.

According to lines 2–5, the Class signature contains
four fields: id, parent, attrSet and isAbstract. The id field
within the Class signature (line 3) represents the identi-
fier of the corresponding class. The inheritance relation-
ship in the object model is represented by the parent
relation in the AlloyOM DSL. Specifically, the inheritance
relationship between two classes of c and p, where
c inherits from p, for example, will represent by the
expression of parent = p specified within the c class
signature definition. The keyword lone specifies that an
element is optional. In this specific case it indicates that
the parent element is optional, and a Class may have
one or no declared parent. The attrSet specifies the
set of attributes as defined for the corresponding class in
the object model. Finally, the isAbstract field denotes
whether a given class is abstract or not; the keyword
one, used in its definition, states that every Class object
is mapped to exactly one Bool object, representing its
abstract state.

To describe each attribute within the AlloyOM DSL,
one can define a signature that extends the corre-
sponding data type signature. The AlloyOM DSL pro-
vides a set of predefined data types, such as In-
teger, Real, String and Bool, that extends the basic
Attribute signature (line 8). Each Association sig-
nature contains four fields (as stated in lines 11–14): src,
dst, src_multiplicity and dst_multiplicity.
The first two fields specify the source and destination
of the association, respectively. Association multiplicity
defines the number of object instances that can be at each
end of the association. The src_multiplicity and
dst_multiplicity fields, thus, represent association
multiplicities of source and destination classes respec-
tively, and can have values of either ONE or MANY.

The code snippet in Listing 3 represents the diagram
of Figure 1 delineating an object model for a simple
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1 one sig Customer extends Class{}{
2 a t t r S e t = customerID +customerName
3 id=customerID
4 i s A b s t r a c t = No
5 no parent
6 }
7
8 one sig Order extends Class{}{
9 a t t r S e t = orderID + orderValue

10 id = orderID
11 i s A b s t r a c t = No
12 no parent
13 }
14
15 one sig CustomerOrderAssociation extends Assoc ia t ion{}{
16 s r c = Customer
17 dst = Order
18 s r c m u l t i p l i c i t y = ONE
19 d s t m u l t i p l i c i t y = MANY
20 }
21
22 one sig PreferredCustomer extends Class{}{
23 a t t r S e t = discount
24 id = customerID
25 parent = Customer
26 i s A b s t r a c t = No
27 }

Listing 3: Object model of Figure 1 formally modeled
in our AlloyOM DSL.

customer-order example. The order class has two at-
tributes of orderID and orderValue, which are as-
signed to the attrSet field of the Order class. The
id field specifies the orderID as the identifier of this
class. The last two lines of the Order signature speci-
fication denote that Order is not an abstract class and
has no parent. Similarly, the code snippet of lines 8–13
represents PreferredCustomer signature definition.
According to the diagram, the PreferredCustomer
class inherits from the Customer class. The expression
on line 11, thus, specifies Customer as the parent of the
PreferredCustomer class.

To assist the users of Trademaker and to further make
our tool chain more accessible, we have developed a
front-end transformer that translates UML-based object
models—simply can be modeled by UML modeling
tools, such as ArgoUML2—to a formal representation in
the AlloyOM language. Figure 4 shows a snapshot of the
AlloyOM model transformer. Such a model transformer
relieves the Trademaker’s user of responsibility for de-
veloping formal specifications, while facilitating the use
of the entire tradeoff analysis tool chain. The AlloyOM
model transformer, along with more details on the Al-
loyOM language, is available from the project’s website
at http://jazz.cs.virginia.edu:8080/Trademaker/help.jsf.

A similarly defined Alloy-embedded relational
schema specifies the co-domain of an object-relational
map. A relation schema, in the relational model [22],
is a set of attributes; a relational schema is thus a set
of relation schemas; a relation, at the instance level,
is a set of tuples over the attributes defined in the
relation schema. Each relation schema has a primary
key that may consist of one or more attributes of a

2. http://argouml.tigris.org/

Fig. 4: A front-end transformer that translates UML-
based object models to a formal representation in the
AlloyOM language.

relation schema. A foreign key is a set of attributes of a
schema used to reference relation instances (i.e., tuples)
of another schema; foreign keys define referential
constraints between relations.

4.2 Formalizing ORM Strategies as Semantic Map-
ping Rules
After specifying the abstractions involved in the source
and destination domains, the next step is to express map-
ping rules as additional predicates that relate elements
of the source domain to the constructs in the destination.
These mapping rules, which basically provide a non-
deterministic operational semantics to expressions in
AlloyOM, are specified once as a semantic mapping
predicate in relational logic. Combining these rules with
a particular AlloyOM source model and finding all
models of the resulting set of constraints reveals the set
of corresponding design solutions.

To define such mapping rules, we rely on object-
relational mapping strategies, informally defined in the
literature [18], [28], [31], [35], and formalize them using
relational logic. Specifically, to provide a basis for precise
modeling of the space of mapping alternatives, we have
formalized ORM strategies in an appropriate level of
granularity.

To manage association relationships, we have formally
specified three ORM strategies of own association table,
foreign key embedding and merging into single table [35]. We
have also specified three more ORM strategies for inheri-
tance relationships: class relation inheritance (CR), concrete
class relation inheritance (CCR) and single relation inheri-
tance (SR) [18]. Furthermore, as the aforementioned ORM
strategies for inheritance relationships are just applicable
to the whole inheritance hierarchies, we have specified
extra predicates for more fine-grained strategies [35]:
Union Superclass, Joined Subclass and Union Subclass, suit-
able to be applied to part of inheritance hierarchies,
letting the developer design a detailed mapping specifi-
cation using the combination of various ORM strategies.
In fact, different fine-grained mapping strategies can be
applied into different parts of a multi-level hierarchy.
There are, however, some constraints that prevent all
possible combinations. To make the idea concrete, in the
rest of this section, we illustrate the semantics of these
strategies that were first briefly introduced in our prior
work [13], [14].
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1 module ORMStrategies
2
3 pred unionSubclass [ c : Class ]{
4 / / Ass ign ing a t a b l e t o e a c h c o n c r e t e c l a s s
5 ( c . i s A b s t r a c t = No) implies { one t : Table |
6 t . t A s s o c i a t e = c and one t . t A s s o c i a t e }
7 one c . ˜ t A s s o c i a t e
8 / / r e l a t i o n a l f i e l d s c o r r e s p o n d i n g t o a t t r i b u t e s o f

t h e a s s o c i a t e d c l a s s
9 ( c . i s A b s t r a c t = No) implies { a l l a : A t t r i b u t e |

10 a in c . a t t r S e t => oneAssocFieldClass [ a , c ] }
11 / / r e l a t i o n a l f i e l d s c o r r e s p o n d i n g t o i n h e r i t e d

a t t r i b u t e s o f t h e c l a s s
12 ( c . i s A b s t r a c t = No and some c . ˆ parent ) implies { a l l a

: A t t r i b u t e |
13 a in c . ˆ parent . a t t r S e t => oneAssocFieldClass [ a , c ] }
14 # c . ˜ t A s s o c i a t e . f i e l d s = # ( c . * parent ) . a t t r S e t
15 / / Ass ign ing t h e pr imary Key
16 ( c . ˜ t A s s o c i a t e ) . primaryKey = ( c . id . ˜ f A s s o c i a t e )
17 c . i s A b s t r a c t = No implies oneAssocFieldClass [ c . id , c ]
18 / / Ass ign ing t h e f o r e i g n Key
19 no c . ˜ t A s s o c i a t e . foreignKey
20 }

Listing 4: A snippet of the Alloy model of the
union subclass strategies for mapping classes within
inheritance hierarchies.

4.2.1 Mapping of inheritance relationships
Listings 4–5 show the semantics of fine-grained strate-
gies for mapping individual classes within inheritance
hierarchies. Each ORM strategy is represented by a
separate Alloy predicate.

Union Subclass ORM strategy. The first Alloy predi-
cate (Listings 4), parameterized by Class c, outlines the
unionSubclass strategy (lines 3–20). This pattern implies
mapping c into a separate relational table, should c be a
concrete class. The tAssociate is a relation from a table
to its corresponding class(es). Using the join operator,
t.tAssociate thus states a set of all classes handled by
the t table. The ∼ operator represents the transpose
operation over a binary relation, which reverses the
order of atoms within the relation. The statement of
line 7, thus, using the multiplicity keyword one states
that c is mapped to exactly one relational table. The
strategy predicate then states, in lines 9–14, that the ta-
ble encompasses relational fields corresponding to both
attributes defined by c and all attributes inherited to
this class. The in keyword represents the set inclusion
operator. The operators ‘ˆ’ and ‘∗’ represent transitive
closure and reflexive transitive closure, respectively. The
‘#’ operator is the Alloy set cardinality operator. The
expression c.ˆparent.attrSet (line 13) represents the set
of all attributes inherited to c from its parents following
one or more traversals along parent edges. As such,
to retrieve object instances of this class, i.e., all objects
whose most specific type is c, only one table needs to be
accessed. This strategy thus implies no referential con-
straint over the mapped relations. As a concrete example,
in the example shown in Figure 2c, a separate table
is associated to the PreferredCustomer class, which is
being mapped by the unionSubclass strategy. Note that
the predicate specification relies on a separate predicate,
oneAssocFieldClass (lines 65–69), that assigns a table

22 pred j o i n e d S u b c l a s s [ c : Class ] {
23 / / Ass ign ing a t a b l e t o e a c h c o n c r e t e c l a s s
24 ( c . i s A b s t r a c t = No) implies { one t : Table |
25 t . t A s s o c i a t e = c and one t . t A s s o c i a t e }
26 one c . ˜ t A s s o c i a t e
27 / / r e l a t i o n a l f i e l d s c o r r e s p o n d i n g t o non− inhe r i t ed

a t t r i b u t e s o f t h e a s s o c i a t e d c l a s s
28 some c . parent implies {
29 # c . ˜ t A s s o c i a t e . f i e l d s = # c . a t t r S e t + 1 / / f o r t h e

f o r e i g n Key
30 } e lse {
31 # c . ˜ t A s s o c i a t e . f i e l d s = # c . a t t r S e t
32 }
33 ( c . i s A b s t r a c t =No) implies { a l l a : A t t r i b u t e |
34 a in c . a t t r S e t => oneAssocFieldClass [ a , c ] }
35 / / Ass ign ing t h e pr imary Key
36 c . ˜ t A s s o c i a t e . primaryKey = c . id . ˜ f A s s o c i a t e
37 c . i s A b s t r a c t = No implies oneAssocFieldClass [ c . id , c ]
38 / / Ass ign ing t h e f o r e i g n Key
39 some c . parent implies {
40 c . ˜ t A s s o c i a t e . foreignKey = c . parent . id . ˜ f A s s o c i a t e }
41 e lse { no c . ˜ t A s s o c i a t e . foreignKey }
42 }

Listing 5: A snippet of the Alloy model of the
joined subclass strategies for mapping classes within
inheritance hierarchies.

field to a class attribute given as input.
Joined Subclass ORM strategy. The joinedSubclass

strategy is then presented in Listing 5, lines 22–42. Using
this strategy, the attributes defined by the class and the
primary key attributes inherited from its super class are
mapped to a separate table (lines 24–34). The table struc-
ture mapped using this pattern simply resembles the
application object model, and the impact of changes in
a class is limited only to the scope of the corresponding
table, thus improving its maintainability. An example for
application of the joinedSubclass strategy is shown in
Figure 2a, that leads to a separate table for Preferred-
Customer with a foreign key to its superclass (Customer)
corresponding table. Different from the unionSubclass
strategy, the relational table mapped using this pattern
only includes attributes defined by the class c, rather
than all its inherited attributes. Object instances are
thus scattered over several rows in different relational
tables. So to retrieve an object instance, it may require
several joins that in turn may negatively affect the query
performance [35].

Union Superclass ORM strategy. The statements
shown in Listing 6 represent the Alloy predicate for the
unionSuperclass mapping strategy, which implies map-
ping c into the same relational table as its super class(es)
are mapped to. Such a table then stores object instances
of c and all its transitive super classes, i.e., those classes
reachable from c via the inheritance relationships (lines
47–48). Thus, when a class in an inheritance hierarchy
is being mapped by the unionSuperclass strategy, all its
super classes should also be mapped—using the same
mapping pattern—into the same table the given class is
mapped to. Moreover, a type indicator field is needed to
distinguish the class type of each row in the table (lines
52–55). In the example of Figure 2b, a table is associated
to both Customer and PreferredCustomer classes, which
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44 pred unionSuperclass [ c : Class ] {
45 / / Ass ign ing a t a b l e t o e a c h c o n c r e t e c l a s s
46 ( c . i s A b s t r a c t = No) => one Table <: c . ˜ t A s s o c i a t e
47 / / C l a s s c and a l l i t s s u p e r c l a s s e s a r e mapped t o a

s i n g l e t a b l e
48 c . * parent . ˜ t A s s o c i a t e = c . ˜ t A s s o c i a t e
49 / / r e l a t i o n a l f i e l d s c o r r e s p o n d i n g t o b o t h a t t r i b u t e s

o f t h e a s s o c i a t e d c l a s s and i t s i n h e r i t e d
a t t r i b u t e s

50 ( c . i s A b s t r a c t = No) implies { a l l a : A t t r i b u t e |
51 a in c . * parent . a t t r S e t => oneAssocFieldClass [ a , c ] }
52 / / The t a b l e has an a d d i t i o n a l f i e l d d i s t i n g u i s h i n g

t h e t y p e o f r e c o r d s t o r e d
53 one f : F i e l d | f . f A s s o c i a t e in DType and
54 f in c . ˜ t A s s o c i a t e . f i e l d s and
55 c . ˜ t A s s o c i a t e . f i e l d s = c . ˜ t A s s o c i a t e . foreignKey + c

. ˜ t A s s o c i a t e . t A s s o c i a t e . a t t r S e t . ˜ f A s s o c i a t e + f
56 / / Ass ign ing t h e pr imary Key
57 c . ˜ t A s s o c i a t e . primaryKey = c . id . ˜ f A s s o c i a t e
58 / / Ass ign ing t h e f o r e i g n Key
59 ( no a : Assoc ia t ion | a . dst in c . * parent ) =>{
60 # ( c . * parent . ˜ t A s s o c i a t e ) . foreignKey = #{ a :

Assoc ia t ion |
61 a . dst in c . * parent and a . d s t m u l t i p l i c i t y = MANY

and no a . ˜ t A s s o c i a t e }
62 }
63 }
64 / / Ass ign ing a r e l a t i o n a l f i e l d t o a c l a s s a t t r i b u t e
65 pred oneAssocFieldClass [ a : At t r ibute , c : Class ] {
66 one f : F i e l d |
67 f . f A s s o c i a t e = a and
68 f in c . ˜ t A s s o c i a t e . f i e l d s
69 }

Listing 6: A snippet of the Alloy model of the
union superclass strategies for mapping classes within
inheritance hierarchies.

are being mapped by the unionSuperclass strategy. This
mapping pattern significantly reduces the number of
tables in the relational schema, and no joins are needed
to retrieve object instances of a single class. However, it
may introduce NULL values into the database. Specifi-
cally, storing object instances of super classes into such
a table mapped using the unionSuperclass strategy in-
troduces NULL values for attributes defined just for a
child class [28].

4.2.2 Mapping of Associations
There are several alternatives for the mapping of an
association in the object model. We illustrate the se-
mantics of the corresponding mapping strategies in the
following. Note that since n-ary associations are typically
transformed into binary ones in design models [35], our
discussion in this section focuses on different possible
mapping alternatives for binary relationships.

Own Association Table ORM strategy. The Alloy
predicate of Listing 7, parameterized by Association asc,
outlines the ownAssociationTable strategy. This pattern
implies mapping each of the classes and the asc to
separate relations. An example of this mapping strategy
is shown in Figure 2a. The representation of the asso-
ciation in a separate table improves comprehensibility
of the relational schema mapped using this pattern,
and supports changes in cardinality of classes involved
at either end of the association. Note that there are
three types of association relationships based on the

70 pred ownAssociationTable [ asc : Assoc ia t ion ] {
71 / / Ass ign ing a t a b l e t o t h e a s s o c i a t i o n and e a c h o f

i t s ends
72 one t : Table | asc . s r c in t . t A s s o c i a t e
73 one t : Table | asc . dst in t . t A s s o c i a t e
74 one t : Table | t . t A s s o c i a t e = asc
75 one asc . ˜ t A s s o c i a t e
76 one asc . s r c . ˜ t A s s o c i a t e
77 one asc . dst . ˜ t A s s o c i a t e
78 / / r e l a t i o n a l f i e l d s c o r r e s p o n d i n g t o a t t r i b u t e s o f

t h e a s s o c i a t e d c l a s s e s
79 assocEnd [ asc . s r c ]
80 assocEnd [ asc . dst ]
81 asc . ˜ t A s s o c i a t e . f i e l d s = asc . s r c . ˜ t A s s o c i a t e .

primaryKey + asc . dst . ˜ t A s s o c i a t e . primaryKey
82 # asc . ˜ t A s s o c i a t e . f i e l d s = 2
83 / / Ass ign ing t h e pr imary Key
84 asc . s r c . ˜ t A s s o c i a t e . primaryKey =
85 asc . s r c . id . ˜ f A s s o c i a t e
86 asc . dst . ˜ t A s s o c i a t e . primaryKey =
87 asc . dst . id . ˜ f A s s o c i a t e
88 asc . ˜ t A s s o c i a t e . primaryKey = asc . s r c . ˜ t A s s o c i a t e .

primaryKey + asc . dst . ˜ t A s s o c i a t e . primaryKey
89 / / Ass ign ing t h e f o r e i g n Key
90 asc . ˜ t A s s o c i a t e . foreignKey = asc . s r c . id . ˜ f A s s o c i a t e +

asc . dst . id . ˜ f A s s o c i a t e
91 fKeysForMany [ asc ]
92 }
93
94 pred assocEnd [ aEnd : Class ] {
95 a l l a : aEnd . a t t r S e t {
96 a ! in Class => oneAssocField [ a ]
97 }
98 aEnd . ˜ t A s s o c i a t e . f i e l d s in
99 aEnd . ˜ t A s s o c i a t e . foreignKey + aEnd . ˜ t A s s o c i a t e .

t A s s o c i a t e . a t t r S e t . ˜ f A s s o c i a t e + DType . ˜ f A s s o c i a t e
100 }
101
102 pred oneAssocField [ a : A t t r i b u t e ] {
103 one f : F i e l d {
104 f . f A s s o c i a t e = a
105 one f . f A s s o c i a t e
106 one a . ˜ f A s s o c i a t e
107 f in a . ˜ a t t r S e t . ˜ t A s s o c i a t e . f i e l d s
108 }
109 }

Listing 7: A snippet of the Alloy predicate for the
own association table strategy for mapping association
relationships.

multiplicities of source and destination classes involved
in such relationships. One-to-one relationships are those
in which association multiplicity at each end is limited
to one. In one-to-many relationships, participation of one
end in the association is greater than one. Finally, in
many-to-many relationships, association multiplicities at
both ends are greater than one. The ownAssociationTable
strategy is applicable to each of these three types. At the
same time, should query performance be an important
issue, it may not be a best mapping alternative.

Foreign Key Embedding ORM strategy. Listing 8
presents the Alloy predicate for the foreignKeyEmbed-
ding ORM strategy. Using this mapping, a foreign key
to the table, that corresponds to the class involved in
the relationship with the multiplicity of one, would be
embedded into the table corresponding to the other end
of the association. A foreign key is a non-empty set
of attributes of a relation which is used to point to
tuples of another relation. Essentially, foreign keys spec-
ify referential constraints between relations. Figure 2b
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110 pred foreignKeyEmbedding [ asc : Assoc ia t ion ] {
111 / / Ass ign ing a t a b l e t o e a c h end o f t h e a s s o c i a t i o n
112 one t : Table | asc . dst in t . t A s s o c i a t e
113 some asc . dst . ˜ t A s s o c i a t e
114 ! ( ( asc . s r c . ˜ t A s s o c i a t e = asc . s r c . ˜ parent . ˜ t A s s o c i a t e )
115 or ( asc . s r c . ˜ t A s s o c i a t e = asc . s r c . parent . ˜ t A s s o c i a t e ) )
116 implies one t : Table | t . t A s s o c i a t e =asc . s r c
117 some asc . s r c . ˜ t A s s o c i a t e
118 / / No t a b l e i s a s s i g n e d t o t h e a s s o c i a t i o n
119 no t : Table | t . t A s s o c i a t e = asc
120 no asc . ˜ t A s s o c i a t e
121 / / r e l a t i o n a l f i e l d s c o r r e s p o n d i n g t o a t t r i b u t e s o f

t h e a s s o c i a t e d c l a s s e s
122 assocEnd [ asc . s r c ]
123 assocEnd [ asc . dst ]
124 / / Ass ign ing t h e pr imary Key
125 asc . s r c . ˜ t A s s o c i a t e . primaryKey =
126 asc . s r c . id . ˜ f A s s o c i a t e
127 asc . dst . ˜ t A s s o c i a t e . primaryKey =
128 asc . dst . id . ˜ f A s s o c i a t e
129 asc . s r c . ˜ t A s s o c i a t e . primaryKey in
130 asc . dst . ˜ t A s s o c i a t e . f i e l d s
131 asc . s r c . ˜ t A s s o c i a t e . primaryKey in
132 asc . dst . ˜ t A s s o c i a t e . foreignKey
133 / / Ass ign ing t h e f o r e i g n Key
134 fKeysForMany [ asc ]
135 }

Listing 8: A snippet of the Alloy predicate for the
foreignKey embedding strategy for mapping association
relationships.

shows an example application of this mapping strategy.
This mapping pattern is applicable to the one-to-one
and one-to-many relationships. Because association rela-
tionships in relational schema are maintained through
the use of foreign keys, this mapping reduces the re-
dundancies observed in relational tables mapped using
mergingOneTable, discussed next. However, relational ta-
bles mapped using this pattern are not as maintainable
as those mapped using the previous pattern, because,
among other things, any cardinality changes to many-
to-many are not easily integrated [35].

Merging into Single Table ORM strategy. The Alloy
predicate of Listing 9 presents the mergingOneTable
mapping strategy, in which both classes and the asso-
ciation are merged into a single relation. Applying this
pattern would result in achieving better query perfor-
mance, as no further joins are needed to retrieve object
instances linked by one-to-one associations. It, however,
may introduce NULL values into the table, especially
when the mapping pattern applies to the other types of
associations, such as one-to-many relationships.

4.3 Verifying Semantic Mapping Rules
Formalizing DSLs and mapping rules in an analyzable
specification language not only enables automatic syn-
thesis of transformed models, but also provides the basis
to formally validate their correctness. By expressing es-
sential properties of object-relational mappings required
to be checked, we then use an automated relational logic
analyzer to verify them. We specify such implications
required to be checked as assertions. Assertions state
a set of constraints intended to follow from specifica-
tions [30]. Correctness of mappings is then checked using

136 pred mergingOneTable [ asc : Assoc ia t ion ] {
137 / / Both C l a s s e s and A s s o c i a t i o n s would be merged i n t o a

s i g l e T a b l e
138 one t : Table {
139 t . t A s s o c i a t e = asc + asc . s r c + asc . dst
140 # t . t A s s o c i a t e = 3
141 }
142 one asc . ˜ t A s s o c i a t e
143 / / r e l a t i o n a l f i e l d s c o r r e s p o n d i n g t o a t t r i b u t e s o f

t h e a s s o c i a t e d c l a s s e s
144 a l l a : asc . ( s r c + dst ) . a t t r S e t {
145 a ! in Class => ( one f : F i e l d {
146 f . f A s s o c i a t e = a
147 f in a . ˜ a t t r S e t . ˜ t A s s o c i a t e . f i e l d s
148 } )
149 }
150 one f : F i e l d {
151 f . f A s s o c i a t e = asc . s r c
152 f in asc . ˜ t A s s o c i a t e . f i e l d s
153 }
154 one f : F i e l d {
155 f . f A s s o c i a t e = asc . dst
156 f in asc . ˜ t A s s o c i a t e . f i e l d s
157 }
158 # F i e l d = # F i e l d . f A s s o c i a t e
159 / / In one−to−one a s s o c i a t i o n r e l a t i o n s h i p s , t h e

pr imary key o f t h e t a b l e a s s o c i a t e d t o t h e
c o m b i n a t i o n o f C l a s s e s and t h e i r A s s o c i a t i o n can
be t h e pr imary key o f e i t h e r o f c l a s s e s , h e r e i t
i s a s s i g n e d t o t h e pr imary key o f t h e s r c o f t h e
a s s o c i a t i o n

160 asc . ˜ t A s s o c i a t e . primaryKey = F i e l d <: asc . s r c . id . ˜
f A s s o c i a t e

161 }

Listing 9: A snippet of the Alloy predicate for the
merging into one table strategy for mapping association
relationships.

a set of Alloy formula, i.e. assertions, that represent
the expected relation between input object models and
output relational schemas.

In the following, we illustrate the contents of two
assertions, represented in Listing 103. The first assertion
(lines 1–3) states that no table should be associated
solely to abstract classes, which is expected to hold in
generated models according to the specified mapping
rules. The next assertion is about the relational fields
of each table. The point of this assertion is that a table
may handle more than one class; it thus should contain
relational fields associated with all those classes. The
tAssociate, which first appeared in line 6 of the
tableFields assertion, is a relation from a table to its
corresponding class(es). Using the reverse join operator,
∼, the expression c.∼tAssociate states the table associ-
ated to the class c, and then another join, .tAssociate,
returns a set of all classes handled by that table. The
expression of lines 6–7, thus, specifies that each table
encompasses relational fields corresponding to attributes
of all relevant classes. In some cases, the associated table
also contains a separate field to indicate the most specific
class for the object represented by each tuple. This type
discriminator field is indicated as DType in the assertion
under consideration.

The analyzer performs scope-complete analysis [30],

3. The complete model, including all assertions specifications, is
available at the project’s website.
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1 a s s e r t noTableForAbstractClasses{
2 a l l c : Class | c . i s A b s t r a c t =Yes => no t : Table | t .

t A s s o c i a t e = c
3 }
4
5 a s s e r t t a b l e F i e l d s{
6 a l l c : Class | c . ˜ t A s s o c i a t e . f i e l d s in
7 c . ˜ t A s s o c i a t e . t A s s o c i a t e . a t t r S e t . ˜ f A s s o c i a t e +
8 c . ˜ t A s s o c i a t e . foreignKey + DType . ˜ f A s s o c i a t e
9 }

Listing 10: Two examples of assertions.

where each assertion is exhaustively checked against
a huge set of model instances up to a certain bound.
In other words, the analyzer is a bounded checker,
guaranteeing the validity of assertions within a bounded
instance space. We bound execution of assertion check-
ing with the ultimate scope used for synthesis of trans-
formed models, and thus expect the validity of assertions
for all generated instances.

4.4 Design Space Exploration
In the previous section, we showed how analyzable
specifications can be used to formalize ORM strategies.
In this section, we tackle the other aspect that needs to be
clarified: how one can apply a design space exploration
approach to generate design spaces of OR mappings
based on those specifications.

A design space is a set of possible design alterna-
tives, and design space exploration (DSE) is the process
of traversing the design space to determine particular
design alternatives that not only satisfy various design
constraints, but are also optimized in the presence of
a set of additional objectives [38]. The process can be
broken down into three key steps: (1) Modeling the space
of mapping alternatives; (2) Evaluating each alternative
by means of a set of metrics; (3) Traversing the space of
alternatives, so characterized, to select one as the chose
design.

4.4.1 Modeling the Space of Mapping Alternatives
For each application object model, due to a variety of
different mapping options (cf. Sect. 4.2) available for each
class, its attributes and associations, and its position in
the inheritance hierarchy, there are several valid variants.
To model the space of all mapping alternatives, we
develop a generic mixed mapping specification based
on fine-grained strategies formalized in previous sec-
tion. This generic mixed mapping specification lets the
automatic model finder choose for each element of the
object model any of the relevant strategies, e.g. any of
the fine-grained generalization mapping strategies for a
given class within an inheritance hierarchy.

Applying such a loosely constrained mixed mapping
strategy into the object model leads to a set of ORM
specifications constituting the design space. While they
all represent the same object model and are consistent
with the rules implied by a given mixed mapping

strategy, they exhibit different quality attributes. For
example, how inheritance hierarchies are being mapped
to relational models affects the required space for data
storage and the required time for query execution.

We called this mapping strategy loosely constrained
because it does not concretely specify the details of the
mapping, such as applying, for example the UnionSub-
class strategy to a specific class. An expert user, though, is
able to define a more tightly constrained mixed mapping
by means of the parameterized predicates Trademaker
provides. The more detailed the mapping specifications,
the narrower the outcome design space, and the less the
required postprocessing search.

4.4.2 Static Analysis of Synthesized Designs

The choice of mapping strategy impacts key non-
functional system properties. Response time perfor-
mance, storage space and maintainability are among
the set of quality attributes defined by the ISO/IEC
9126-1 standard that are influenced by the choice of
OR mappings. To statically measure these attributes in
an ORM design space, we use a set of metrics sug-
gested by Holder et al. [28] and Baroni et al. [15]. The
metrics are called Table Access for Type Identification
(TATI ), Number of Corresponding Table (NCT), Number
of Corresponding Relational Fields (NCRF), Additional
Null Value (ANV), Number of Involved Classes (NIC)
and Referential Integrity Metric (RIM). In the following,
we present three of these metrics for time and space
performance.

Table Accesses for Type Identification (TATI)

Table Accesses for Type Identification (TATI) is a perfor-
mance metric for polymorphic queries [28]. Intuitively,
a high value for TATI(C) implies a longer execution
time for a polymorphic query on C. According to the
definition, given a class C, TATI(C) defines the number
of different tables that correspond to C and all its sub-
classes. Our tools total up TATI values for each class as
the overall TATI measure for each solution alternative.

Number of Corresponding Tables (NCT)

Number of Corresponding Tables (NCT) is a perfor-
mance metric for insert and update queries. Intuitively,
the performance of such queries mainly depends on the
number of tables that hold data of the requested object.
This metric, thus, specifies the number of tables that
contain data necessary to assemble objects of a given
class [28]. According to the definition, given a class C,
NCT(C) equals to NCT of its direct super class, if C is
mapped to the same table as its super class. Otherwise,
if C is mapped to its own table, NCT(C) equals to NCT
of its direct super class plus one. Finally, if C is a root
class, NCT(C) equals to 1. Our tool computes totaled
NCT values over classes as the NCT measure for each
solution alternative.
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Additional Null Value (ANV)
The Additional Null Value (ANV) metric specifies the
storage space for null values when different classes are
stored in a common table [28]. According to the defini-
tion, given a class C, ANV(C) equals to the number of
non-inherited attributes of C multiplied by the number
of other classes that are being mapped to the particular
table to which C is mapped. Our tools present totals for
ANV values over all classes as the ANV measures for
each solution alternative.

To apply these metrics to synthesized solutions, we
designed specific Alloy queries. Here we describe one
for measuring the TATI metric. The others are evaluated
similarly.

TATI(C) = #(C.*(∼parent).∼tAssociate)

Here the dot operator denotes a relational join. The Al-
loy ∼ operator represents the transpose operation over a
binary relation, which reverses the order of atoms within
the relation. Given the tAssociate (abstraction) relation
that maps tables to their associated elements (i.e. Class
or Association) within the object model, its transpose
is the relation that maps each element to its associated
table within the relational structure. The Alloy * operator
represents the reflexive-transitive closure operation of a
relation. Accordingly, the expression of “C.*(∼parent)”
states a set of classes that have the class “C” as their
ancestor in their inheritance hierarchy. The query expres-
sions then, by using the Alloy set cardinality operator #,
computes the TATI metric.

Our static metrics suite comprises six such static
measures. The vector of these functions defines a 6-
dimensional static analysis function applicable to Alloy-
synthesized concrete designs (e.g., Figure 6). Our tools
map this function over all elements of a synthesized
design space to produce a tradeoff surface. The spider di-
agram, shown in Figure 5, illustrates one Pareto-optimal
point on that surface for our example customer-order
system. To display quality measures in one diagram, we
normalized the values. Such diagrams can assist in con-
ducting tradeoff analyses by making it easier to visualize
and compare alternatives. According to the diagram, if
the designer opts for performance, she may decide to use
Sol. 5 instead of Sol. 4, as the latter has worse values for
the TATI and NCT performance metrics.

4.4.3 Exploring, Evaluating and Choosing
The next step is to explore and prune the space of
mapping alternatives according to quality measures.
Trademaker partitions the space of satisfactory mixed
mapping specifications into equivalence classes and se-
lects at most a single candidate from each equivalence
class for presenting to the end-user.

To partition the space, Trademaker evaluates each
alternative with respect to previously described relevant
metrics. So each equivalence class consists of all alter-
natives that exhibit the same characteristics. Specifically,
two alternatives a1 and a2 are equivalent if value(a1, mi)

Fig. 5: Multi-dimensional quality measures for pareto-
optimal solutions.

= value(a2, mi) for all metrics (mi). Because equivalent
alternatives all satisfy the mapping constraints, we select
one alternative in each equivalence class to find a choice
alternative. Given that quality characteristics are usually
conflicting, there is generally no single optimum solution
but there are several pareto-optimal choices representing
best trade-offs.

Having computed satisfying solutions, we then un-
parse these solutions from intermediate representation
in relational logic into a desirable form, here SQL coun-
terparts.

Fig. 6: OR mapping for customer-order example

Figure 6 presents a graphical depiction of an Alloy ob-
ject encoding a synthesized OR mapping solution, where
ovals represent tables, solid rectangles represent classes,
and dotted boxes represent attributes. This solution is
one of five Pareto-optimal solutions in the design space
for our customer-order object model. The diagram is
accurate but edited to omit some details for readability.
In this diagram, Table1 is associated to Customer and
PreferredCustomer classes, and Table0 is associated to
both Order and CustomerOrderAssociation.

From this Alloy solution, our tools generate the SQL
script of Listing 1. The script sets up a database with
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the two tables: Order, with attributes orderID, customerID
and orderValue; and Customer, with attributes, customerID,
customerName, discount, and DType. Both Customer and
PreferredCustomer objects are stored in this table under
this particular mapping strategy, with the DType field
distinguishing the type of record stored.

5 ABSTRACT LOAD SYNTHESIS

Our approach to synthesizing abstract loads starts with
the automated transformation of a given Alloy-OM
model into a related Alloy specification that we call a
load model. We then use the Alloy Analyzer to synthe-
size abstract loads from this load model. Alloy solutions
to the load model encode abstract object model data
instances (OM-instances), which are what we take as syn-
thesized loads with which to test synthesized designs.
This section describes this functionality in more detail.

For each instance of Class and Association in the
Alloy-OM model, our model transformer synthesizes a
signature definition. When the class under consideration
inherits from another class, the synthesized signature
definition extends its parent signature definition. Given
the specification of Order represented in Listing 3, the
following code snippet represents its counterpart in a
synthesized load model.
s ig Order{

orderValue : one Int ,
orderID : one I n t

}

The one multiplicity constraints used in the declara-
tion of elements’ signatures within the Alloy-OM model
(Listing 3) specify them as singleton signatures. While
these constraints are required by the tradeoff space
generator (e.g. to not generate multiple tables for a class
in the model), they are unneeded for load generation,
and thus omitted in the load model. The element at-
tributes in the object model are also declared as fields of
the corresponding load signature definition representing
relations from the signature to the attribute type.

Finally, two sets of constraints are synthesized as
fact paragraphs in the load model to guarantee both
referential integrity of generated data as well as unique-
ness of element identifiers with reference to the set of
element instances to be generated. Referential constraints
require every value of a particular attribute of an element
instance to exist as a value of another attribute in a
different element.

Consider the association relationship between Cus-
tomer and Order classes from our running example
(Figure 2). The code snippet of Listing 11 represents syn-
thesized constraints in the load model for the customer-
order association.

The expression of lines 1–3 states that if any two
elements of type CustomerOrderAssociation have the same
orderID and customerID, the elements are identical. This
constraint rules out duplicate elements. The fact con-
straint of lines 5–8 states that for any orderID and
customerID fields of a CustomerOrderAssociation, there

are Order and Customer instances with the same orderID
and customerID.

Applying the Alloy Analyzer to the derived load
model yields the desired load in the form of object model
data instances (OM-instances). Figure 7 depicts a gener-
ated OM-instance, which is essentially an Alloy solution
object, where ovals represent associations, solid rectan-
gles represent classes, and dotted boxes represent values.
This solution represents two customers with customerID
of 64 and 225, the latter a preferred customer with 10
percent discount, along with their orders. From many
such solutions we derive an abstract (application-object-
model-level, rather than concrete-database-schema-level)
load with which to test the performance of many
database instances.

Improving the efficiency of the load generator. One of
the challenges we faced involved the scalability of this
approach to load synthesis. A large number of solutions
generated by the Alloy Analyzer were symmetric to pre-
viously generated instances, and thus did not contribute
usefully to the load being generated. We explored a
number of ways to improve efficiency of the load gener-
ator. The one that we found worked best is the iterative
refinement of the load model by adding constraints that
eliminate permutations of the already generated OM-
instances. Without this improvement, it took 21 hours
for Trademaker to generate test loads for one of our
experiments. Given this approach, the time was reduced
to about 2 hours—an order of magnitude speed up in
the synthesis of test loads.

6 ABSTRACT LOAD CONCRETIZATION

The next challenge we discuss is to convert abstract
load OM-instance objects into concrete SQL queries on
a per-database basis. This is the task of specializing
abstract load elements to the variant schemas presented
by different solutions in the design space. Our Alloy-to-
SQL transformer handles this task. To create SQL state-
ments for a given database, the Alloy-to-SQL transformer
requires an inverse OR mapping, namely the abstrac-
tion function that describes how a particular, concrete
database schema implements the abstract object model.

Algorithm 1 outlines this transformation for insert
queries, as it suffices to make our point. The approach
supports the generation of select and update queries as
well, which are important, of course, for comprehensive
dynamic analysis.

The logic of the algorithm is as follows. Iterate over all
elements in a given OM-instance (e.g., classes and asso-
ciations) whose values can be populated into databases
through insert statements. Look up the mapping to
determine the table in which the element values should
be stored. For each relational field in the associated table,
if the OM-instance contains a value corresponding to
that field, insert the value into the field. Otherwise, in
the case that the field is a DType, insert the name of the
element into the field. Finally, if the field is a foreignKey,
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Fig. 7: An example of OM-instance.

1 f a c t {
2 a l l o1 , o2 : CustomerOrderAssociation | o1 . orderID = o2 .

orderID and o1 . customerID = o2 . customerID => o1=o2
3 }
4

5 f a c t {
6 a l l o : CustomerOrderAssociation | one c : Order | o . orderID =

c . orderID
7 a l l o : CustomerOrderAssociation | one c : Customer | o .

customerID = c . customerID
8 }

Listing 11: Part of the load model specification generated
for customer-order association.

Algorithm 1: Generate SQL Insert Statements
Input: omi: OM-instance, map: OR mapping
Output: A set of SQL insert statements

1 for element in omi do
2 T = map.TableAssociat(element);
3 F = T.fields;
4 for field in F do
5 value = getValueFromOMI(field);
6 if value != null then
7 add “field = value” into statements
8 end
9 else

10 if field == “DType” then
11 value = element.name;
12 end
13 if isForeignKey(field) then
14 attr =

findAttributeFromAssociation(field);
15 value = getValueFromOMI(attr);
16 end
17 add “field = value” into statements
18 end
19 end
20 end

find the associated attribute from a relevant association
in the given OM-instance, and insert its value into the
field.

Consider the database alternative for our running ex-
ample, in which we store the customer-order association
data into the order table (Figure 2b). In that case, the field
of customerID in the Order table is a foreignKey, and its

1 INSERT INTO ‘ Customer ‘ ( ‘ customerID ‘ , ‘ DTYPE‘ ) VALUES ( 6 4 , ’
Customer ’ ) ;

2 INSERT INTO ‘ Customer ‘ ( ‘ customerID ‘ , ‘ DTYPE‘ ) VALUES ( 2 2 5 , ’
PreferredCustomer ’ ) ;

3 INSERT INTO ‘ Order ‘ ( ‘ orderID ‘ , ‘ orderValue ‘ , ‘ customerID ‘ )
VALUES ( 1 8 4 , 5 1 1 , 6 4 ) ;

4 INSERT INTO ‘ Order ‘ ( ‘ orderID ‘ , ‘ orderValue ‘ , ‘ customerID ‘ )
VALUES ( 3 6 6 , 5 1 0 , 2 2 5 ) ;

Listing 12: Generated SQL insert statements from OM-
instance of Figure 7 for implementation mapping of
Figure 6.

values come from the associated customerOrderAssoci-
ation element.

Listing 12 represents the set of SQL insert statements
generated from the OM-instance of Figure 7 according
to the mapping of Figure 6. The first two generated
statements define insert queries to store instances of
Customer and PreferredCustomer into the Customer
table along with appropriate DType values for each one.
The next two statements then store instances of Order
and CustomerOrderAssociation into the Order table.

7 TOOL IMPLEMENTATION

We have implemented our approach in a tool called
Trademaker, which is freely available4. Trademaker is
a web-accessible tool that implements our ORM syn-
thesis and analysis approach. It supports automated,
specification-driven synthesis of ORM design spaces
and static analysis using the aforementioned metrics. It
provides a web interface, user account and job manage-
ment (job submission, asynchronous execution, status
reporting, persistence), computation and presentation
of Pareto-optimal subsets of synthesized designs under
the given metrics, and synthesis of SQL databases for
selected designs.

Figure 8 presents a screenshot of a Trademaker run.
Rows present Pareto-optimal designs, and columns,
analysis results. It takes an object model as input, ex-
pressed in the Alloy-OM DSL (cf., section 4.1), uses
the Alloy Analyzer to exhaustively enumerate satisfy-
ing solutions, applies static analysis functions to each
design, filters them for Pareto optimality, presents the

4. Research artifacts and experimental data are available at
http://www.jazz.cs.virginia.edu:8080/Trademaker
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Fig. 8: A view of our tool to provide decision-makers
with Pareto-optimal OR mapping solutions based on
static analysis results; columns and rows represent met-
rics and solution alternatives, respectively.

results—design solutions and property estimates in six
dimensions—and delivers usable MySQL scripts to in-
stantiate selected designs.

8 EXPERIMENTAL VALIDITY TEST OF STATIC
PREDICTION RULES

As an experimental test of our approach to specification-
driven, automated dynamic analysis of non-functional
property tradeoffs across design spaces, we apply the
approach to test the validity of the static predictors of
database performance. We formulate, test, and provide
experimental data in support of three driving hypothe-
ses:
• H1: The ordering of alternatives predicted by the

static metrics predicts that of the dynamic analysis
results

• H2: The relative magnitudes of static measures of
alternatives predict those of the dynamic analysis
results

• H3: Dynamic analysis using scale-limited synthe-
sized loads predicts performance under much larger
loads

This section summarizes the design and execution of
our experiment, the data we collected, its interpretation,
and our results.

8.1 Subject Systems
We synthesized design spaces and compared static pre-
dictions with dynamic results for six subject systems, se-
lected from different sources and of a variety of different
domains, ranging from our research lab projects to appli-
cations adopted from the database literature and open-
source software communities. The selected experimental
subjects are representative of a large class of useful appli-
cations at a scale matched to the state-of-the-art synthesis
techniques. Their object models vary in terms of size
and complexity, and contain multiple association and
inheritance relationships, which induce many possible
choices of object-model to relational schema mappings.
Table 1 shows characteristics of these systems in terms
of the number of classes, associations, and inheritance
relationships.

The first is the object model of an E-commerce system
adopted from Lau and Czarnecki [34]. It represents a
common architecture for open-source and commercial E-
commerce systems. It has 15 classes connected by 9 asso-
ciations with 7 inheritance relationships. The second and
third object models are for systems we are developing
in our lab. Decider is another system to support design
space exploration. Its object model has 10 Classes, 11
Associations, and 5 inheritance relationships. The third
object model is for a system, CSOS, a kind of cyber-
social operating system meant to help coordinate people
and tasks. In scale, it has 14 Classes, 4 Associations, and
6 inheritance relationships. The fourth and fifth object
models are from two open source applications. We ob-
tained their object models by reverse engineering of their
database schemas. WordPress is an open source blog
system [3]. Its object model has 13 classes connected by
10 associations with 8 inheritance relationships. Moodle
is a learning management system [1], which is widely
used in colleges and universities. It has 12 classes con-
nected by 8 associations and consists of 4 inheritance
relationships. We also analyzed an extended version of
our customer-order example.

TABLE 1: Subject systems.

Subject # Classes # Associations # Inheritance
System relationships
Decider 10 11 5

E-commerce 15 9 7
CSOS 14 4 6

WordPress 13 10 8
Moodle 12 8 4

Cust-order (ext) 4 2 1

8.2 Planning and Execution
Our experimental procedure involved the synthesis of
both design spaces of database alternatives and several
abstract loads in a variety of sizes for each subject
system. Given the synthesized schemas, we created a
database for each alternative. We then populated gener-
ated data into databases, and ran concrete queries over
those databases. We measured and collected the number
of concrete queries generated from abstract loads for
each database alternative, query execution time, as well
as the size of each database.

We used an ordinary PC with an Intel Core i7
3.40 Ghz processor and 6 GB of main memory, with
SAT4J as our SAT solver. Database queries were per-
formed on a MySQL 5.5.30 database management sys-
tem (DBMS), installed on a machine equipped with
an AMD Opteron 6134 800 Mhz processor and 64GB
memory. Data and statistical information are available
at http://jazz.cs.virginia.edu:8080/Trademaker/data.

Table 2 summarizes the generated solution space for
each subject system. There is one row for each system.
The columns indicate the total number of solutions, the
number of static equivalence classes where equivalence
is determined by equality of static analysis results, and
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TABLE 2: Design space sizes for subject systems.

Subj. Sys. Solutions Eq.Classes Pareto Sols.
Decider 386 154 12

E-commerce 846 360 16
CSOS 278 121 21

WordPress 924 276 13
Moodle 586 144 12

Cust-order (ext) 28 14 10

TABLE 3: Part of the generated data sets for the E-
commerce experiment; the second row shows abstract
loads generated for the E-commerce system within each
data set; each cell in the other rows corresponds to the
size of generated concrete load (in terms of the number
of select/insert statements) for the database alternative
and data set given on the axes.

E-commerce Dataset 1 Dataset 2 Dataset 3
abstract load 862 2,576 164,813

Sol.19 456/678 13,698/20,172 2,471,700/3,100,350
Sol.121 320/540 9,770/16,244 1,647,800/2,276,450
Sol.264 397/618 12,073/18,547 2,142,140/2,770,790
Sol.348 379/600 11,395/17,869 1,977,360/2,606,010

the number of Pareto-optimal solutions under the given
static metrics.

We investigated and compared two different methods
for generation of data sets. The first method generated
data using our formal synthesis methods. For the sec-
ond, we hand-developed a load generator for generating
large loads that nevertheless respect the constraints in
our object models (e.g., referential constraints between
elements).

Three data sets were developed for each subject sys-
tem to support the task of evaluating the static metrics.

Dataset 1. This data set is generated using the Alloy-
based data generator, where the maximum bit-width for
integers is restricted to 5. This leads to the generation of
a small data set for our experiments.

Dataset 2. This data set is generated using our Alloy-
based data generator. The maximum bit-width for inte-
gers is restricted to 10, which leads to the generation of
a larger data set compared with the former data set.

Dataset 3. As with many formal techniques, the com-
plexity of constraint satisfaction restricts the size of mod-
els that can practically be analyzed and synthesized [23],
[32]. For experimental purposes, we hand-implemented
a more scalable data generator. It does not generate
queries directly, but rather replaces the constraint solver
for synthesis of abstract loads. Having synthesized larger
abstract loads in the form of OM-instances, using the
mechanisms already used in the Alloy-based data gener-
ator (cf. Section 5), the generator then transforms abstract
loads into sets of concrete queries targeting diverse
implementation alternatives.

Table 3 presents the size of generated data sets for
some of the solution alternatives for the E-commerce
system. Observe that the sizes of concrete queries—in the
form of select/insert statements—refined from common
abstract loads are different in various solution alterna-

tives, depending on the way that each implementation
mapping alternative refines an abstract object model into
the concrete representation in relational structure (cf.
Section 6).

Table 4 presents the time that it takes to execute
the generated concrete loads for the same solution al-
ternatives, as shown in Table 3, for the E-commerce
system. We have handled uncontrollable factors in our
experiments by repeating each experiment 10 times and
computing the average execution time. According to the
table, the way that each solution alternative refines the
abstract data loads into the concrete SQL statements
directly affects the the time that it takes to execute their
corresponding concrete loads, and thus influences the
performance of the design solution.

In the rest of this section, we present the experimental
data to address the three hypotheses driving our re-
search.

8.3 Results for Hypothesis H1 (Order)
To test the predictive accuracy of our static metrics,
we compared its predictions against the results of our
dynamic analysis. To evaluate our first hypothesis—
whether the relative order of implementation alterna-
tives is predicted by static metrics—we compute Spear-
man correlation coefficients, an appropriate correlation
statistic for order-based consistency analysis. It measures
the degree of consistency between two ordinal vari-
ables [41]. A correlation of 1 indicates perfect correlation,
while 0 indicates no meaningful correlation. Negative
numbers indicate negative correlations.

Table 5 summarizes correlation coefficients between
static metrics and dynamic measures. The data show
reasonably strong but somewhat inconsistent positive
correlations between statically predicted and actual run-
time performance for TATI (average correlation of 0.90)
and NCT (average correlation of 0.88). These metrics
appear moderately to strongly predictive of the relative
ordering databases run-time performance, at least for the
kinds of loads employed in our experiments.

The performance of the ANV predictor varies across
the subject systems. ANV predicts well in the E-
commerce, Decider, and Moodle experiments and mod-
erately in the CSOS data, but weakly in the WordPress
and customer-order-extended sets. Moreover, the results

TABLE 4: The running time (in seconds) to execute the
generated concrete loads (select/insert SQL statement
queries) for the solution alternatives shown in Table 3,
for the E-commerce system. To account for the effects of
uncontrollable factors in our experiments, we ran each
set of data 10 times, and computed the average.

E-commerce Dataset 1 Dataset 2 Dataset 3
Sol.19 0.090/0.313 2.584/5.802 763.920/401.420
Sol.121 0.069/0.255 1.921/4.744 555.079/305.316
Sol.264 0.084/0.276 2.251/5.318 694.825/346.232
Sol.348 0.083/0.272 2.174/5.110 623.970/329.959
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show negative correlation between the ANV metric and
database size. As the number of null values increases,
size decreases. This observation for the ANV metric is in
direct contrast to what is predicted. One possible reason
is that when the ANV metric increases, the number
of tables for the database solution under consideration
decreases. Assuming that the database system efficiently
stores null values, the database size would reduce.

To further evaluate predictive accuracy of static met-
rics, we consider the case in which designers use each
static metric as a two-class classifier. We, thus, measure
precision, recall and F-measure as follows:
Precision is the percentage of those alternatives pre-
dicted by a given metric as more preferable in terms
of a given quality attribute that were also classified as
more preferable by the actual analysis: TP

TP+FP
Recall is the percentage of alternatives classified more
preferable by the actual analysis that were also predicted
as more preferable by the a given metric: TP

TP+FN
F-measure is the harmonic mean of precision and recall:
2∗Precision∗Recall
Precision+Recall

where TP (true positive), FP (false positive), and FN
(false negative) represent the number of solution alter-
natives that are truly predicted as preferable, falsely
predicted as preferable, and missed, respectively.

While the static metrics output predictions of quality
characteristics as natural numbers, our actual dynamic
analysis of query execution performance and required
storage space are in terms of seconds and bytes, respec-
tively. To classify an alternative as preferable, we thus use
median for each set of result values as a threshold. We
measure evaluation metrics for each subject system with
respect to three data sets.

Table 6 summarizes the results of our experiments
to evaluate the accuracy of static metric predictors as
two-class classifiers. The average precision, recall and
F-measure are depicted in Figure 9. The results show
the accuracy of the TATI and NCT metrics in classifying

TABLE 5: Correlation coefficients between the relative
order of solution alternatives predicted by static metrics
and those observed from actual runtime measures.

TATI NCT ANV

Decider
Dataset1 0.93 0.93 -0.98
Dataset2 0.96 0.96 -0.92
Dataset3 0.95 0.92 -0.91

E-commerce
Dataset1 0.97 0.96 -0.95
Dataset2 0.98 0.95 -0.95
Dataset3 0.97 0.94 -0.95

CSOS
Dataset1 0.83 0.76 -0.97
Dataset2 0.57 0.62 -0.79
Dataset3 0.58 0.74 -0.55

WordPress
Dataset1 0.95 0.97 -0.25
Dataset2 0.96 0.97 -0.31
Dataset3 0.96 0.97 -0.26

Moodle
Dataset1 0.95 0.90 -0.98
Dataset2 0.99 0.96 -0.95
Dataset3 0.99 0.92 -0.98

Cust-order(ext)
Dataset1 0.89 0.92 -0.51
Dataset2 0.74 0.53 -0.44
Dataset3 0.66 0.82 -0.56

TABLE 6: Experimental results of evaluating OR metrics
as two-class classifiers.
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Decider
DS1 1 0.75 0.86 0.83 0.83 0.83 0 0 0
DS2 0.83 0.83 0.83 1 1 1 0.17 0.17 0.17
DS3 1 1 1 0.83 0.83 0.83 0.17 0.17 0.17

E-commerce
DS1 1 1 1 1 1 1 0 0 0
DS2 1 1 1 1 1 1 0 0 0
DS3 0.9 0.9 0.9 1 1 1 0 0 0

CSOS
DS1 0.75 0.82 0.78 0.75 0.82 0.78 0.36 0.33 0.35
DS2 0.83 1 0.91 0.67 0.80 0.73 0.36 0.33 0.35
DS3 0.83 1 0.91 0.83 1 0.91 0.36 0.33 0.35

WordPress
DS1 1 1 1 1 1 1 0.14 0.14 0.14
DS2 1 1 1 1 1 1 0.14 0.14 0.14
DS3 1 1 1 1 1 1 0.25 0.29 0.27

Moodle
DS1 1 0.75 0.86 0.88 1 0.93 0.17 0.17 0.17
DS2 1 1 1 0.75 1 0.86 0.17 0.17 0.17
DS3 1 1 1 0.75 1 0.86 0 0 0

Cust-order DS1 1 1 1 1 1 1 0.43 0.60 0.50

(ext) DS2 0.83 1 0.91 0.67 0.80 0.73 0.57 0.67 0.62
DS3 0.83 1 0.91 0.83 1 0.91 0.43 0.60 0.50

Fig. 9: Bar plot of the average precision, recall and
F-measure for considering static metrics as two-class
classifiers.

implementation alternatives in terms of their run-time
performance. The average precision and recall for all
four experiments are about 90%, showing a low rate
of both false positives and false negatives. The ANV
metric, however, achieves an average under 30% in all
evaluation metrics.

The experimental data thus suggests that, under the
generated abstract loads, the relative order of implemen-
tation alternatives predicted by static metrics of TATI
and NCT is indicative of their comparative preference
in actual runtime performance, but this is not the case
for ANV as a static predictor of storage space.

8.4 Results for Hypothesis H2 (Magnitudes)
To address the second hypothesis—relative magnitude of
static predictions matter—we employ a coefficient of de-
termination denoted R2, as a metric for how well actual
outcomes are predicted by the static metrics. Figure 10
plots the results. For brevity, only results from Dataset 3
are presented; other data sets give similar results.

The performance of the predictors varies widely across
systems and predictors. TATI and NCT are predictive
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of performance for four of the systems, i.e., the E-
commerce, Decider, WordPress, and Moodle systems,
but relatively poor predictors for CSOS. TATI performs
poorly in the customer-order-extended data. ANV pre-
dicts size in the E-commerce and Moodle experiments,
and moderately in the Decider and WordPress data, but
inconsistently and weakly in the CSOS data and not at
all in the customer-order-extended set.

We interpret this data as suggesting that the rela-
tive magnitudes of static metrics for various solution
alternatives are not reliably indicative of the relative
magnitudes of actual performance, and that ANV is a
poor indicator of the storage space. One is advised to use
such static metrics with caution. While TATI and NCT
metrics predict the relative order of solution alternatives
with high confidence, the difference in predicted values
of two alternatives is not a good indicator of their actual
run-time difference.

8.5 Results for H3 (Small vs. Large Loads)
To address the third hypothesis—that small, formally
synthesized loads predict the outcomes of much larger
loads—we employ the Pearson product-moment corre-
lation statistic. Pearson measures the degree of linear
dependence between two variables, not necessarily or-
dinal, as opposed to the Spearman test. A correlation
of 1 represents perfect correlation, and 0, no meaningful
correlation.

We summarize correlation coefficients between experi-
mental results obtained from smaller data sets of 1 and 2
and that of the large Dataset 3 in Figure 11. The average
Pearson correlation coefficient between Dataset3 and the
first and second data sets are 88% and 94%, respectively.
These data lend support to the proposition that smaller-
scale test sets produced by specification-driven synthesis
can provide valid predictions of performance under
larger, more realistic loads.

9 DISCUSSION AND LIMITATIONS

The overarching problem this work addresses is inter-
esting and important: the need for improved science
and technologies to support decision making in complex
and poorly understood tradeoff spaces, particularly in-
volving tradeoffs among non-functional properties, also
sometimes called ilities. We need languages in which to
specify design spaces, techniques for synthesizing and
analyzing design spaces, mechanisms for mapping static
and dynamic analysis functions across design spaces,
techniques for validating such metrics, and tools that
enable engineers to use the science to improve real
engineering practice. We also need measures for ilities
that are important but hard to measure today: for evolv-
ability, some dependability properties, affordability of
construction, and more.

Trademaker takes an important step towards this
overarching objective in the context of object-relational
database mappings, but we envision the ideas set forth

in this research to find a broader application in other
computing domains as well. It suggests the possibility
of useful formal languages for specifying design spaces
in support of formal synthesis of both designs and com-
parative analysis loads. We showed that specialization
of common loads is enabled by access to abstraction
functions from concrete to abstract designs, which can be
embedded in the results of design synthesis. Concretiza-
tion functions proved useful not only for scale-limited,
formally synthesized loads, but for concretizing abstract
loads produced by other means.

Our experimental analysis using Trademaker to test
the validity of static predictors of database performance
based on published but not validated metrics indicates
that two of the metrics appear to produce meaningful
signals, while the third appears not useful. The data
also indicate a need for caution in relying on the static
metrics. Their predictive accuracy, even in the “good”
cases, varied across application models. That said, we
can now provide automated dynamic analysis as a fall-
back. We are integrating support for invoking such au-
tomated analysis into our Trademaker tool. Trademaker
itself has real potential utility for object-relational map-
ping and partial application synthesis; but its greater
significance is as a demonstration of our research results
and a testbed for further research on formal tradespace
modeling and analysis.

There are of course limitations in our approach and in
this work. We mention those most relevant to a proper
evaluation of this effort. First, the static metrics we
evaluated sum the values of published metrics over the
elements of each design alternative. We thus extended
the original metrics and our statistical results should
technically be read as pertaining to these extensions of
the original measures.

Second, while our synthesis mechanisms are imple-
mented and working, our infrastructure for running
synthesized concrete loads against synthesized designs
still relies on some manual processing. Our statistical
data were thus derived by dynamic analyses of cer-
tain subsets of our synthesized designs. We selected the
subsets deemed Pareto-optimal by the static metrics. As
our infrastructure matures, we will conduct whole-space
dynamic analyses, which we expect to produce results
consistent with the basic result presented here. We are
on a path to support automated whole-space dynamic
analysis through Trademaker. The work reported in
this paper did nevertheless involve the synthesis and
dynamic analysis of over 300 database alternatives.

Third, our experiments to date tested our hypotheses
for “random” loads of varying sizes. Real applications
will generally produce non-random loads. Whether the
static metrics we tested are predictive for large, real
applications remains unclear. On the other hand, we
offer dynamic analysis at scale as an alternative to static
metrics. The proposed Trademaker tool suite further
supports reasonable extension for new types of test load
generators. In fact, separating abstract load synthesis
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Fig. 10: Correlation between static metrics and actual run-time measure; columns represent scatter plots of observed
values across systems versus predicted values by TATI, NCT and ANV metrics from left to right, respectively; R2

correlation coefficient is shown at the bottom of each plot.
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Fig. 11: Summary of Pearson correlation coefficients
between experimental results obtained from smaller data
sets and that of the large Dataset3.

from load concretization into variant designs, as pro-
posed in the Trademaker architecture (cf. Section 3),
enables extension/revision of each, independent of the
other, thus supports the necessary extensions to enrich
the tradeoff analysis environment. We envision a future
in which some systems run many design variants in
parallel, perhaps with small but representative loads
abstracted from real loads on live systems, to detect
conditions in which dynamic switching to new imple-
mentation strategies should be considered.

Finally, there is the issue of scalability. Using Alloy
as a constraint solver entails scalability constraints. We
can handle object models with tens of classes. Industrial
databases often involve thousands of classes. It is un-
likely that our current implementation technology will
work at that scale. For now, it does have real potential
as an aid to smaller-scale system development. That we
can present an object model for a realistic web service,
synthesize a broad space of ORM strategies, select one
based on tradeoff analysis, automatically obtain an SQL-
database setup script, provide it Java EE, and have much
of an enterprise-type application up and running with
little effort is exciting, even if it does not address (yet)
the most demanding needs of industry.

10 RELATED WORK

We can identify in the literature a large body of research
related to ours. Here, we provide an overview of the
most notable research and examine them in the light of
our research.

Formal derivation of database implementations.
A number of researchers have proposed formal ap-
proaches for deriving database-centric implementations
from high-level specifications [19], [33]. Alchemy refines
Alloy specifications into PLT Scheme implementations
with a special focus on persistent databases [33]. Along
the same line, Cunha and Pacheco proposed an approach
that translates a subset of Alloy into the corresponding
relational database operations [19]. Both Alchemy and
Cunha and Pacheco’s approach refine the specification

into a single implementation, whereas Trademaker gen-
erates spaces of possible database design alternatives.
While these research efforts share with ours the emphasis
on using formal methods, our work differs fundamen-
tally in its emphasis on the generation of spaces of
implementation alternatives, not just point solutions.

Object-relational mapping. A large body of work
has focused on object-relational mapping approaches to
the object-relational impedance mismatch problem [18],
[29], [31], [35]. Philippi [35] categorized the mapping
strategies in a set of pre-defined quality trade-off levels,
which are used to develop a model driven approach
for the generation of OR mappings. This work similar
to many other work we studied derives a single de-
sign solution from input specifications. Moreover, they
did not apply static metrics, nor dynamic analysis to
measure the effectiveness of design alternatives. Our
technique is inspired in part by the work of Cabibbo and
Carosi [18], discussed more complex mapping strategies
for inheritance hierarchies, in which various strategies
can be applied independently to parts of a multi-level
hierarchy. Our approach is novel in having formalized
ORM strategies previously informally described in some
of these research efforts, thereby enabling automatic
generation of OR mappings for each application object
model.

Drago et al. [21] considered OR mapping strategies
as a variation points in their work on feedback provi-
sioning. They extended the QVT-relations language with
annotations for describing design variation points, and
provided a feedback-driven backtracking capability to
enable engineers to explore the design space. While this
work is concerned with the performance implications of
choices of per-inheritance-hierarchy OR mapping strate-
gies, it does not attack the problem that we address,
the automation of dynamic analysis through synthesis
of design spaces and fair loads for comparative dynamic
analysis.

The other relevant thrust of research has focused
on mapping UML models enriched with OCL invari-
ants into relational structures and constraints. Among
others, Heidenreich et al. [27] developed a model-
driven framework to map object models represented
in UML/OCL into declarative query languages, such
as SQL and XQuery. While Heidenreich et al.’s ap-
proach concentrates on mapping OCL invariants into
an implementation-level language to enforce semantical
data integrity at the implementation level, Trademaker
automatically generates database schemas mainly based
on structural constraints. Badawy and Richta [6] pro-
vided some rules guiding derivation of declarative con-
straints and triggers from OCL specifications. These two
research work are complementary. Extending the same
line, Al-Jumaily et al. [26] developed a model-driven
tool transforming the OCL constraints into SQL triggers.
Demuth et al. [20] also discussed a number of different
approaches to implement OCL-to-SQL mapping, and
developed a tool that transforms each OCL invariant
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into a separate SQL view definition. Different from
these research efforts transforming an object model to
a single counterpart in relational structures, Trademaker
generates tradeoff spaces of object-relational mappings
with focus on structural mapping alternatives, rather
than transformation of integrity constraints.

Generating test loads. Numerous techniques have
been developed for generating testing loads [16], [17],
[32], [36], [43], including the generation of realistic loads
for TPC benchmarks [2]. Among others, Khalek et al.
proposed a query-aware test generation technique, called
ADUSA [32]. Given a database schema and an SQL
query as inputs, ADUSA then exhaustively generates
non-isomorphic test databases. Similar to many other
techniques including ours, ADUSA uses a constraint
solver as a test generation engine. However, our work is
different in that no prior technique generates common
test loads over spaces of alternative schemas. Doing this
requires enforcement of abstract design constraints as
well as constraints implied by concretization mappings
for each alternative. Trademaker, to our knowledge, is
the first tool with this capability.

Constraint solving for analysis and synthesis. Fi-
nally, constraint solving for synthesis and analysis has
increasingly been used in a variety of domains [5], [7]–
[12], [25], [39], [40], [44]. Sketeching [5] is a synthesis
technique in which programmers partially define the
control structure of the program with holes, leaving the
details unspecified. This technique uses an unoptimized
program as correctness specification. Given these partial
programs along with correctness specification as inputs,
a synthesizer — developed upon a SAT-based constraint
solver — is then used to complete the low-level details
to complete the sketch by ensuring that no assertions
are violated for any inputs. This work shares with ours
the common insight on both using partial specifications
and synthesis based on constraint solving. However,
our work focuses on automating mapping from prac-
tically meaningful abstract application object models to
database design structures.

Along the same line, Srivastava et al. [39] developed
a proof-theoretic synthesis, in which the user provides
relations between inputs and outputs of a program in
the form of logical specifications, specifications of the
program control structure as a looping template, a set
of program expressions, and allowed stack space for the
program to be synthesized. It then generates a constraint
system such that solutions to that set of constraints lead
to the specified program. They have shown feasibility
of their approach by synthesizing program implementa-
tions for several algorithms form logical specifications.

Different from the aforementioned techniques that
mainly focus on low-level details of programs, Trade-
maker tackles the automated tradeoff space analysis of
ORMs, by synthesizing spaces of design alternatives
and common loads over such spaces. It thus relieves
the tedium and errors associated with their manual
development. To the best of our knowledge, Trademaker

is the first formally precise technique for automated
synthesis and dynamic analysis of tradeoff spaces for
object-relational mapping.

11 CONCLUSION

This paper makes several contributions to the science
and engineering of software-intensive systems: a novel
approach for formal, automated tradeoff analysis de-
rived by synthesis from relational logic models; a prin-
cipled approach to load concretization for specializing
common loads to large numbers of variant implemen-
tations; and Trademaker, an accessible and functional
tool enabling tradeoff analysis in large design spaces for
the particular domain of object-relational mapping, and
a testbed for ongoing research of the kind reported in
this paper. This paper also contributes to our broader
research program, which is increasingly focused on spec-
ifying, validating, realizing, and certifying acceptable
tradeoffs among non-functional properties, which re-
mains a research challenge of the first order.
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