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ABSTRACT
The rising popularity of mobile apps deployed on battery-
constrained devices has motivated the need for effective
energy-aware testing techniques. Energy testing is generally
more labor intensive and expensive than functional testing,
as tests need to be executed in the deployment environment
and specialized equipment needs to be used to collect energy
measurements. Currently, there is a dearth of automatic
mobile testing techniques that consider energy as a program
property of interest. This paper presents an energy-aware
test-suite minimization approach to significantly reduce the
number of tests needed to effectively test the energy proper-
ties of an Android app. It relies on an energy-aware coverage
criterion that indicates the degree to which energy-greedy
segments of a program are tested. We describe and evaluate
two complementary algorithms for test-suite minimization.
Experiments over test suites provided for real-world apps
have corroborated our ability to reduce the test suite size by
84% on average, while maintaining the effectiveness of test
suite in revealing the great majority of energy bugs.

CCS Concepts
•Software and its engineering→ Software defect anal-
ysis; Software testing and debugging;

Keywords
Test-suite minimization, Coverage criterion, Android, Green
software engineering

1. INTRODUCTION
Mobile apps have expanded into every aspect of our mod-

ern life. As the apps deployed on mobile devices continue
to grow in size and complexity, resource constraints pose an
ever-increasing challenge. Specifically, energy is the most de-
manding and at the same time a limited resource in battery-
constrained mobile devices. The improper usage of energy-
consuming hardware components, such as Wifi and GPS, or

recurring constructs, such as loops and callbacks, can dras-
tically drain the battery, directly affecting the usability of
the mobile device [1, 5, 14].

Recent studies [20, 34] have shown energy consumption
of apps to be a major concern for end users. In spite of
that, many apps are abound with energy bugs, as testing
the energy behavior of mobile apps is challenging. To deter-
mine the energy issues in a mobile app, a developer needs
to execute a set of tests that cover energy-greedy parts of
the program. This is particularly a challenge when apps are
constantly evolving, as new features are added, and old ones
are revised or altogether removed.

Energy testing is generally more time consuming and la-
bor intensive than functional testing. To collect accurate
energy measurements, tests often need to be executed in
the deployment environment (e.g., physical mobile device),
while the great majority of conventional testing can occur
on capacious development environments (e.g., device emula-
tor running on desktop or cloud). With automated mobile
testing tools still in their infancy, developers spend a sig-
nificant amount of their time manually executing such tests
and collecting the energy measurements. The fragmentation
of mobile devices, particularly for Android, further exacer-
bates the situation, as developers have to repeat this process
for each supported platform. Thus, there is an increasing
demand for reducing the number of tests needed to detect
energy issues of evolving mobile software.

Prior research efforts have proposed various test-suite man-
agement techniques, such as test-suite minimization, test
case selection, and test case prioritization, to help devel-
opers effectively assess the quality of software. The great
majority of prior techniques have focused on the functional
requirements (e.g., structural coverage and fault detection
capability), and to a lesser extent non-functional require-
ments. Even among the the work focusing on non-functional
properties, there is a dearth of prior work to account for en-
ergy issues.

In this paper, we present and evaluate a novel, fully-
automated energy-aware test-suite minimization approach
to determine the minimum set of tests appropriate for as-
sessing energy properties of Android apps. The approach re-
lies on a coverage criterion, called eCoverage, that indicates
the degree to which energy-greedy parts of a program are
covered by a test case. We solve the energy-aware test-suite
minimization problem in two complementary ways. We first
model it as an integer programming (IP) problem, which can
be solved optimally with a conventional IP solver. Since the
energy-aware test-suite minimization problem is NP-hard,
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solving the integer programming model when there are many
test cases is computationally prohibitive. We thus propose
an approximate greedy algorithm that efficiently finds the
near-optimal solution.

This paper makes the following contributions:

• To the best of our knowledge, the first attempt at test-
suite minimization that considers energy as a program
property of interest;

• An energy-aware metric for assessing the quality of
test cases in revealing the energy properties of the sys-
tem under test without the need for specialized power
measurement hardware;

• A novel suite of energy-aware mutation operators that
are derived from known energy bugs, in order to evalu-
ate the effectiveness of a test suite for revealing energy
bugs;

• Empirical evaluation of the proposed approach over
test suites for real-world apps, corroborating the abil-
ity to reduce the size of test suites by 84%, on average,
while maintaining a comparable effectiveness of orig-
inal test suite for assessing the energy properties of
Android apps and revealing energy bugs.

The remainder of this paper is organized as follows. Sec-
tion 2 provides a background on energy issues in Android
apps and motivates our work. Section 3 introduces and for-
mulates the energy-aware test-suite minimization problem.
Section 4 provides an overview of our approach, and Sec-
tions 5- 6 describe the details of our coverage metric and
the minimization techniques. Section 7 presents the imple-
mentation and evaluation of the research. Finally, the paper
outlines related research and concludes with a discussion of
future work.

2. BACKGROUND AND MOTIVATION
Energy bugs are the main cause of battery drainage on

mobile and wearable devices. They are essentially faults in
the program that cause the device to consume high amounts
of energy, or prevent the device from becoming idle, even
when there is no user activity. Energy bugs in Android apps
can be categorized as follows:

• Wakelock bugs—acquire an energy-greedy hardware
component and fail to release it. Three major wake-
lock bugs are Wi-Fi wakelock bug [7], CPU wakelock
bug [3], and Sensor wakelock bug [5]. Wakelock bugs
prevent a device from becoming idle and can drasti-
cally drain its battery [14].

• Recurring callback bugs—are high frequency back-
ground services (for example fine-grained location up-
date) that can consume a high amount of energy [1,2,
4, 6].

• Loop bugs—are high frequency loops that repeatedly
utilize an energy-greedy component such as Wi-Fi,
thereby rapidly increase the energy consumption of an
app.

Figure 1 presents an example of such bugs inspired by
those found in real-world Android apps. The code snippet

Figure 1: Code snippet with energy bugs.

depicts a loop that accesses and downloads X files from a
list of servers (line 4–7), processes them (line 8), and closes
the connection (line 9). Before starting the loop, the code
acquires a lock on the Wi-Fi resource (line 2) to prevent
the phone from going into stand-by during download. This
implementation can result in both the wakelock and loop
bugs. Studies have shown that network components can
remain in a high power state, even after a routine has com-
pleted [29,30]. Such a state is referred to as tail energy. Tail
energy is not an energy bug itself, but interleaving a net-
work related code and a CPU-intensive code in a loop can
exacerbate its impact and cause energy bug.

To perform energy testing and find possible energy bugs, a
developer should design test cases that cover energy-greedy
segments of the program—segments that contribute more
to the energy cost of the app—and measure the energy
consumption of device during execution of those test cases.
Spikes in energy measurements that last long period of time
as well as high energy consumption of a device without the
user interacting with the device are good indicators of en-
ergy bugs [14,27].

Figure 2 shows the energy consumption trace of a Nexus
6, during the execution of a test case for the code shown
in Figure 1 that downloads five files, before (solid line) and
after (dashed line) fixing the mentioned energy bugs. Keep-
ing the Wi-Fi connection open during processing the files
increases the average power consumption of the device (the
area under curve). Also, failing to release Wi-Fi lock keeps
the device awake and the phone keeps consuming energy,
even after a routine has completed. By splitting the single
loop into two loops to fix the loop bug (one for downloading
all the files first and one for processing them later) and re-
leasing the Wi-Fi wakelock after downloading files to fix the
wakelock bug, the average power consumption of test case is
decreased and the power state of the device before and after
execution of test case remains the same.

Figure 2: Energy consumption trace of a test case
for the code snippet in Figure 1, before (solid line)
and after (dashed line) fixing energy bugs.
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Testing non-functional properties, particularly energy con-
sumption, which is recently gaining substantial interests due
to the increasing use of battery-constraint devices, is rela-
tively under-explored compared to those aimed at functional
correctness [19]. A test suite of a mobile app is adequate for
energy testing, if it can effectively find all energy bugs in
the code. That is, if test cases of a test suite cover all the
energy-greedy segments of the program that contribute to to-
tal energy cost of the app under different use-cases, the test
suite is adequate for energy testing. Detecting all the en-
ergy bugs in the program is not decidable. For example, for
a small number of data files in Figure 1 (X), the impact of
tail energy might be negligible. However, for a large number
of such files, the loop bug occurs, which can rapidly drains
the battery of the device. As such, deciding what values for
X may result in energy bug is complicated. Testers, thus,
usually settle on coverage metrics as adequacy criteria.

The commonly used coverage metric in test-suite mini-
mization problems, statement coverage, is unable to discrim-
inate among statements according to their energy consump-
tion. Studies have shown that energy consumption varies
significantly across bytecodes [17], lines of code [24], and
system APIs [26]. That is, test cases with the same state-
ment coverage may cover different lines and consume differ-
ent amount of energy during execution. For example, the
test case a, even with a lower statement coverage than the
test case b, may demonstrate higher energy cost, if it exe-
cutes the code that utilizes energy-greedy API calls. As a
result, statement coverage is not a suitable metric for energy-
aware test-suite minimization.

For an energy-aware test adequacy criterion, the energy
consumption needs to be measured, estimated, or mod-
eled for further identification of energy inefficiencies of the
code [14]. Prior research proposed fine-grained approaches
to either measure or estimate the energy consumption of
mobile apps [24, 29]. The precise energy measurement can
be used for optimizing energy usage of an application under
test. However, an intuitive metric for assessing the quality
of test case to identify energy-greedy segments is still miss-
ing. Moreover, most techniques require power measurement
hardware to measure energy cos, which comes with technical
requirements and challenges.

To overcome the limitations of structural coverage met-
rics, we propose a novel energy-aware coverage metric, col-
lectively referred as eCoverage, that indicates the degree to
which energy-greedy segments of a program are covered by a
test. eCoverage discriminates among different energy-greedy
segments based on their energy cost and whether they re-
execute during the execution of test case.

3. ENERGY-AWARE TEST-SUITE MINIM-
IZATION

To clarify our proposed idea for energy-aware test-suite
minimization, we formally define the problem as follows:

Given: (1) A program P consisting of p segments,
S = {s1, s2, . . . , sp}, with m ≤ p energy-greedy segments
∈ S′, to be tested for assessing energy properties of P ; (2)
A test suite T = {t1, t2, . . . , tn} with each test case repre-

sented as a coverage vector ~Vti = 〈vi,1, . . . , vi,m〉, such that
vi,j is 1 if ti covers energy-greedy segment sj , and 0 if ti does
not cover energy-greedy segment sj ; and (3) a non-negative

Figure 3: Energy-aware test-suite minimization
framework.

function w(ti) that represents the significance of a test case
in identifying energy bugs.

Problem: Find the smallest test suite T ′ ⊆ T , such that
T ′ covers all energy-greedy segments covered by T , and for
every other T ′′ that also covers all energy-greedy segments
|T ′| ≤ |T ′′| and

∑
ti∈T ′ w(ti) ≥

∑
ti∈T ′′ w(ti).

Program segments are individual units of a program,
which can be defined fine-grained (e.g., statements) or
coarse-grained (e.g., methods). The energy consumption of
a segment depends mainly on the energy-greedy APIs in-
voked by that segment (e.g., network APIs consume more
energy than log APIs [26]) and on recurring constructs (e.g.,
loops or recurring callbacks [23]). Energy-greedy segments
highly contribute to the total energy consumption of the
program. Therefore, a test case that covers energy-greedy
segments during its execution has a higher significance for
energy testing of app, compared to the one covering less
greedy segments.

To reduce the risk of discarding significant test cases dur-
ing test-suite minimization, we calculate the eCoverage of
each test case. eCoverage takes a value between 0 and 1,
and indicates the degree to which energy-greedy segments
of the program are covered by a test case (more details in
Section 5). The function w(ti) = eCoverageti in problem
definition allows us to characterize the significance of a test
case ti so that we select tests with the highest eCoverage.

There might be several test cases in a test suite that cover
the same energy-greedy segments. Thereby, the original test
suite T can be partitioned into subsets of T1, T2, . . . , Tm ⊆ T ,
such that any test case ti belonging to Tj covers energy-
greedy segment sj ∈ S′. A representative set of test cases
that covers all of the sjs in S′ must contain at least one
test case from each Tj ; such a set is called the hitting set of
T1, T2, . . . , Tm. The minimal hitting set problem is shown
to be NP-hard, using a reduction to the set covering prob-
lem [32]. Our formulation of test-suite minimization is,
therefore, an instance of weighted set cover. The original
test suite might not be intended for energy testing, rather
developed for functional or structural testing. As a result,
the test cases in T might not cover all the energy-greedy
segments, but a subset of them.

4. APPROACH OVERVIEW
Figure 3 depicts our framework for energy-aware test-

suite minimization, consisting of two major components: (1)
Energy-Aware Coverage Calculator (ECC) which is respon-
sible to calculate the eCoverage for each test case, ti, in the
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original test suite of the given app, using program analy-
sis; and (2) Energy-Aware Test-Suite Minimization (ETM)
component that identifies the minimum subset of test cases
from T , suitable for energy testing of the given app.

Our ECC component statically analyzes an app to ob-
tain its call graph and annotates each node of the call graph
with energy cost estimates. Using the execution traces of
test cases in the available test suite, the eCoverage of each
test case will be calculated by mapping execution path in-
formation to the annotated call graph (Section 5).

After computing eCoverage of tests in the test suite, ETM
component produces a minimized test suite suitable for en-
ergy testing, which aids a developer by reducing the effort
needed to inspect the test results, especially for identifying
energy bugs in the code. ETM component performs the
energy-aware test-suite minimization in two complementary
ways, optimal yet computationally expensive integer pro-
gramming (IP) technique, and efficient near-optimal greedy
approach (Section 6).

Using energy-aware test-suite minimization, the search
space for assessing energy properties of the app and identify-
ing plausible energy bugs is reduced to handful of test cases,
helping the developer in fixing such issues with less effort and
time. Our framework also delivers execution traces of test
cases and energy estimate of executed energy-greedy seg-
ments, helping developers to understand which sequences of
invoking energy-greedy segments are more energy consum-
ing and to pinpoint root cause of energy bugs.

In the following two sections, we describe the details of
the Energy-Aware Coverage Calculator and Energy-Aware
Test-Suite Minimization components.

5. ENERGY-AWARE COVERAGE CALCU-
LATOR

For the purpose of this work, we propose eCoverage that
has the following beneficial properties: (1) it is computa-
tionally efficient to measure; (2) it can be defined at different
levels of granularity (e.g., statement, API, or method levels);
and (3) measuring it does not actively require the use of spe-
cial monitoring hardware. We developed a hybrid static and
dynamic analysis approach to calculate the eCoverage.

In this paper, we consider program segments (cf. Prob-
lem Definition in Section 3) to be methods of a program or
system APIs and thereby, the definition of eCoverage is at
the granularity of methods. For illustrating the concepts in

Figure 4: Call graph of a hypothetical Android app.

Figure 5: Overview of the ECC component.

this section, we use a hypothetical app whose call graph is
shown in Figure 4. Each node of the call graph is a segment,
and the colored nodes denote energy-greedy segments that
highly contribute to the energy consumption of the app.

ECC component that is responsible to calculate the eCov-
erage for each test case consists of two sub-components
shown in Figure 5: (1) Static Model Extractor, which stati-
cally analyzes the app to obtain its call graph; and (2) Dy-
namic Integrator, which collects the execution trace of the
input test case, maps it to the call graph, and annotates
call graph segments with the energy estimates in order to
compute eCoverage for the given test case.

To calculate eCoverage, Static Model Extractor first ex-
tracts the app’s call graph and then identifies energy-greedy
segments—methods with at least one system API in their
implementation. For a test case ti, each energy-greedy seg-
ment sj (i.e., a method in an Android app) is then anno-
tated by Dynamic Integrator with a segment score, scj,i,
which represents the estimated amount of energy consump-
tion by the given segment during execution of test case ti.

The segment score is calculated as scj,i = rj × fj,i ×
Ij,i∑
k=1

ek,

where rj denotes the structural importance of energy-greedy
segment sj in the call graph, fj,i represents the frequency
at which energy-greedy segment sj is invoked during execu-
tion of test case ti, Ij,i is the number of system APIs in the
implementation of energy-greedy segment sj invoked during
execution of test ti, and ek is a pre-measured average energy
cost for an API k.

Methods reachable along more paths in a call graph are
more likely to contribute to the energy cost of the app. Thus,
the Static Model Extractor component heuristically calcu-
lates rj as the multiplication of its incoming and outgoing
edges. If the segment is a sink (with no outgoing edge)
or a source (with no incoming edge), we consider only the
number of incoming or outgoing edges, respectively. For ex-
ample, there are two incoming and three outgoing edges for
the segment s10 in the call graph of Figure 4; thus r10 = 6.

To assess the values of fj,i and Ij,i, the Dynamic Inte-
grator component records the invocation of methods and
system APIs in a log file and counts the number of invoca-
tions for segment sj and APIs inside it during execution of
ti. For ek, our approach uses the results from [26] to supply
the average energy cost of each API.

After calculating segment scores and annotating the call
graph, the Dynamic Integrator component computes eCov-
erage of test case ti as follows:

eCoverageti =

m∑
j=1

scj,i × vi,j

m∑
j=1

maxa{scj,1, . . . , scj,a}
(1)
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where m is the number of energy-greedy segments and vi,j is
a binary variable denoting whether test case ti covers energy-
greedy segment sj (cf. Problem Definition). eCoverage takes
a value between 0 and 1. A test with a higher eCoverage is
more likely to reveal the presence of an energy bug with a
substantial impact on the energy consumption of the app.

Similar to other coverage criteria, the denominator com-
putes the ideal coverage that can be achieved and the numer-
ator indicates the coverage achieved by a given test case. In
our formulation of eCoverage, the numerator estimates the
energy consumed by a given test and the denominator es-
timates the highest energy consumed in each energy-greedy
segment, considering all the test cases in the test suite. That
is, the denominator is the maximum segment score estimated
by test cases that cover the energy-greedy segment sj , for
all a test cases that cover it.

6. ENERGY-AWARE TEST-SUITE MINI-
MIZATION

In this section, we describe two approaches to perform
energy-aware test-suite minimization for Android apps. The
first one leverages integer programming, IP, to model the
problem, and the second one is a greedy algorithm. Our
proposed approaches aim to determine the minimum set of
tests appropriate for assessing energy properties of Android
apps and find possible energy bugs in the program.

6.1 Integer Non-linear Programming
The energy-aware test-suite minimization problem can be

represented as an IP model consisting of (1) decision vari-
ables, (2) an objective function, and (3) a constraint system.

6.1.1 Decision Variables
We let the binary variable ti represent the decision of

whether a test case appears in the minimized test-suite or
not. That is, a value of 1 for ti indicates that the minimized
test-suite includes the corresponding test, while a value of
0 indicates otherwise. Using boolean decision variables, the
minimized test suite can be represented as an array of binary
values 〈t1, t2, ..., tn〉, where n is the number of test cases in
the original test suite.

6.1.2 Objective Function
The goal of energy-aware test-suite minimization is to re-

duce the size of test suite, while maintaining the ability of
the original test suite to assess energy properties of the app
and reveal energy bugs. To achieve this goal, test cases in
the minimized test suite should cover all the energy-greedy
segments of the program that are covered by the original test
suite. In addition, tests should be distinguished according
to their ability in identifying energy bugs to avoid discard-
ing important test cases during minimization. To find such
a subset of the original test suite, we formulate the objective
function as follows:

min

n∑
i=1

(1− eCoverageti)× ti (2)

where n is the number of test cases in the original test
suite. Definition of objective with a minimum function en-
sures that the solution is the smallest subset of original test
suite. Since eCoverageti value for a test takes a value be-
tween 0 and 1, a test with high eCoverage has low value for

1− eCoverageti . Thereby, weighing test cases by the coef-
ficient 1− eCoverageti ensures selection of significant test
cases such that

∑
ti∈T ′ eCoverageti ≥

∑
ti∈T ′′ eCoverageti

for any other subset T ′′ ⊆ T with |T ′| ≤ |T ′′| (cf. prob-
lem definition in Section 3). By replacing the formula of
eCoverageti from the Equation 1, the objective function
can be re-written as follows:

min

n∑
i=1

(1−

m∑
j=1

scj,i × vi,j

m∑
j=1

maxa{scj,1, . . . , scj,a}
)× ti (3)

To achieve the optimal solution, the model should select
a test case that covers the largest number of energy-greedy
segments not covered by the previously selected tests. Un-
like code coverage metrics, where a test case contributes to
the coverage by covering a statement or a branch only once,
eCoverage values change depending on the number of times
an energy-greedy segment is covered by tests. The com-
plexity of criterion entails that the coverage vector of each
test case, and consequently its corresponding eCoverage, in
the original test suite should be updated upon each selec-
tion. That is, a test case that covers energy-greedy segments
already covered by previously selected test cases is not sig-
nificant anymore (i.e., not likely to reveal new energy bugs),
therefore its eCoverage should be decreased.

To that end, we weigh each energy-greedy segment by∏
kj

(1− tkj ), as shown in Formula 4, where kj denotes the

number of test cases cover energy-greedy segment sj . If
an energy-greedy segment is covered by at least one of the
selected test cases, this coefficient evaluates to zero. As a
result, test case that covers other uncovered energy-greedy
segments has a higher chance for selection.

min

n∑
i=1

(1−

m∑
j=1

scj,i × vi,j ×
∏

kj
(1− tkj )

m∑
j=1

maxa{scj,1, . . . , scj,a}
)× ti (4)

Note that due to the multiplication of decision variables
in Formula 4, IP formulation of energy-aware test-suite min-
imization is non-linear.

6.1.3 Constraints
To ensure that the minimized test suite covers all the

energy-greedy segments that are covered by the original test
suite, we need to certify that each energy-greedy segment is
covered by at least one of the test cases in the minimized
test suite. Such constraints can be encoded in the IP model
as follows:

n∑
i=1

vi,j × ti ≥ 1 (1 ≤ j ≤ m) (5)

where m denotes the number of energy-greedy segments and
n is the available test cases in the original test suite. The
jth constraint in Formula 5, thus, ensures that at least one
of the test cases covering the energy-greedy segment sj will
be in the minimized test suite. The model does not require
constraints on other segments, since the right hand of the
constraint is 0, which makes the constraint trivial.
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6.2 Integer Linear Programming
There is no known algorithm for solving an integer non-

linear programming (INLP) problem optimally other than
trying every possible selection. Furthermore, for problems
with non-convex functions, IP solvers are not guaranteed to
find a solution [35]. For all of these reasons, we needed to
investigate other options to solve the energy-aware test-suite
minimization problem.

We have leveraged a technique for transforming the above
non-linear problem into a linear one by adding new auxil-
iary variables, v′i,j , defined as vi,j ×

∏
kj

(1− tkj )× ti. As a

result, v′i,j takes a value of 1, if the test case ti covers the
energy-greedy segment sj that is not covered by the previ-
ously selected test cases, and 0 otherwise. The value of 1 for
v′i,j stipulates that the test case ti covers the energy-greedy
segment sj , which is not covered by previously selected test
cases. If a test case does not cover sj , or if it is covered by
the selected test cases, v′i,j takes the value 0. Using auxiliary
variables v′i,j , the objective function of our IP model from
Formula 4 can be rewritten as follows:

min

n∑
i=1

(ti −

m∑
j=1

scj,i × v′i,j

m∑
j=1

maxa{scj,1, . . . , scj,a}
) (6)

In addition to the adjustment of objective function, we
need to introduce additional constraints to control the aux-
iliary variables. To ensure that v′i,j equals to 1 for energy-
greedy segments not previously covered by selected test cases
and equals to 0 otherwise, we add the following set of con-
straints to the model:

v′i,j ≤ ti (∀ sj covered by ti) (7)

n∑
i=1

vi,j × v′i,j = 1 (1 ≤ j ≤ m) (8)

According to Formula 7, if a test case ti is not selected,
then v′i,j takes a value of 0. On the other hand, if the test
case ti is selected, the variable v′i,j can take a value of either
0 (if energy-greedy segment sj is covered by the previously
selected test cases) or 1 (if sj is not covered by the previously
selected test cases). The constraint in the Equation 8 entails
that if sj is covered by one of the selected test cases, the
value of v′i,j for any test case ti which is not selected yet
being set to 0.

The use of auxiliary variables allows us to remove the
multiplication of decision variables from the objective func-
tion. However, this transformation significantly increases
the complexity of the problem, which in turn makes it com-
putationally expensive. The high complexity of ILP ap-
proach for large-size problems motivated us to devise ad-
ditional algorithms.

6.3 Greedy Algorithm
Algorithm 1 outlines the heuristic, energy-aware test-suite

minimization process. It takes the original test suite gener-
ated for an Android app under test as input, and provides a
minimized set of test cases as output. The algorithm first it-
erates over tests in the test suite and computes coverage vec-
tor (line 5) of tests as well as the coverage vector of original
test suite (line 6). It then selects the test case with highest

Algorithm 1: Greedy Algorithm for Energy-
Aware Test-Suite Minimization
Input: T Original Test Suite
Output: T ′ Minimized Test Suite with the same eCoverage

1 T ′ ← {};
2 ~VT ← ~0;

3 ~VT ′ ← ~0;
4 foreach ti ∈ T do

5 ~Vti ← getCoverageInfo(ti );

6 ~VT ← ~VT ∨ ~Vti ;

7 while ~VT ′ 6= ~VT do
8 findMax(tis ∈ {T − T ′}) based on ti.eCoverage;
9 ti ← removeMax(T );

10 T ′ ← T ′ ∪ {ti};
11 ~VT ′ ← ~VT ′ ∨ ~Vti ;
12 foreach ti ∈ T − T ′ do

13 reCalculate( ~Vti , ti.eCoverage);

eCoverage that covers energy-greedy segments not yet cov-
ered by previously selected tests (lines 8–11). Afterwards,
the algorithm updates the coverage vector and eCoverage
value of the remaining tests in the original test suite (lines
12–13). This greedy process then repeats until selected test
cases cover all the energy-greedy segments that are initially
covered by the original test suite.

To make the idea concrete, consider Table 1 that illus-
trates the algorithm through five test cases t1, t2, t3, t4,
and t5 for our running hypothetical app, whose call graph is
shown in Figure 4. Each inner table represents the coverage
vector for the test cases—sorted according to their eCover-
age for a better comprehension—and the coverage vector of
the minimized test suite ( ~VT ′) at one iteration of the algo-
rithm. The first iteration selects t5 (covering segments s1,
s8, s10, and s11) as the test with the highest eCoverage.

Algorithm 1 then updates the coverage vector of the re-
maining test cases. Table 1 shows the updated coverage
information for the test suite in iteration 2 and after the
selection of t5. Since t5 is already selected, the segments
covered by t5 are no longer considered in calculating eCov-
erage of remaining tests. Only the energy-greedy segments
that have not been covered by t5 (s5, s6, s9, and s12) are
included. Test case t1 is then selected at the end of iteration
2. This process repeats until selected test cases in the min-
imized test suite cover all the energy-greedy segments cov-
ered by the original test suite. In this example, the greedy
approach selects t5, t1, t2, and t3 as the minimized test suite
after four iterations.

The example illustrates the point that the greedy algo-
rithm can result in sub-optimal solutions. While the ILP-
based approach solves this problem with three test cases,
t1, t3, and t5, to cover all the energy-greedy segments, the
greedy strategy selects four test cases. This is mainly due
to the fact that the greedy algorithm starts from the test
case with the greatest eCoverage, which may lead to a local
optimum solution.

7. EXPERIMENTAL EVALUATION
In this section, we present the experimental evaluation

of our proposed framework for energy-aware test-suite mini-
mization. Our evaluation addresses the following questions:
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Table 1: Running example for the greedy algorithm
Iteration 1: t5 is selected Iteration 2: t1 is selected

Tests s5 s6 s8 s9 s10 s11 s12 eCov Tests s5 s6 s8 s9 s10 s11 s12 eCov

t2 0 1 0 1 0 0 0 0.42 t4 0 0 0 0 0 0 1 0.01
t1 1 0 0 1 0 0 0 0.53 t3 0 1 0 0 0 0 1 0.04
t3 0 1 0 0 1 0 1 0.54 t2 0 1 0 1 0 0 0 0.12
t4 0 0 1 0 1 0 1 0.63 t1 1 0 0 1 0 0 0 0.23
t5 0 0 1 0 1 1 0 0.69 t5

~V ′
T 0 0 1 0 1 1 0 ~V ′

T 1 0 1 1 1 1 0

Iteration 3: t2 is selected Iteration 4: t3 is selected

Tests s5 s6 s8 s9 s10 s11 s12 eCov Tests s5 s6 s8 s9 s10 s11 s12 eCov

t4 0 0 0 0 0 0 1 0.01 t4 0 0 0 0 0 0 1 0.01
t3 0 1 0 0 0 0 1 0.04 t3 0 0 0 0 0 0 1 0.03
t2 0 1 0 0 0 0 0 0.05 t2
t1 t1
t5 t5

~V ′
T 1 1 1 1 1 1 0 ~V ′

T 1 1 1 1 1 1 1

RQ1. Effectiveness: How effective are our proposed tech-
niques in reducing the size of original test suite? Is
the minimized test suite as effective as the original
test suite in revealing energy bugs?

RQ2. Correlations: What is the relationship between
eCoverage and statement coverage of a test case?
What is the relationship between eCoverage and en-
ergy consumption of a test case?

RQ3. Performance: What is the performance of our proto-
type tool implemented atop a static analysis frame-
work and an IP solver? How scalable are the pro-
posed IP and greedy algorithms?

7.1 Experiment Setup
To evaluate our proposed techniques in practice, we col-

lected real world apps from F-Droid, a software repository
that contains open source Android apps. We randomly se-
lected 15 apps from different categories of F-Droid repository
for evaluation.

We used test cases automatically generated using Android
Monkey [11]. To that end, we ran Monkey for two hours for
all apps, with configuration to generate test cases exercising
500 events (i.e., touch, motion, trackball, and system key
events). We considered the test cases generated during this
time as the original test suite of apps. Prior to applying
optimization techniques, our framework requires obtaining
eCoverage information about the test cases of subject apps.
In addition to eCoverage, we collected statement coverage
information using EMMA [8].

To statically analyze the apps for calculating eCoverage,
Static Model Extractor (Figure 5) employs the Soot frame-
work [13, 33] that provides the libraries for Android static
program analysis. To collect the execution traces of test
cases, we implemented a module using the Xposed frame-
work [12] that records the invocation of methods and sys-
tem APIs in a log file, which is later processed to extract
information about the executed paths in each app.

In calculating eCoverage, we rely on the average energy
consumption of system APIs, ek, measured by Linares and
collegaues [26]. These ek values are obtained by manually
utilizing and running 50 popular apps on Google Play several
times, and is the average of energy consumption of each
API in different scenarios. The energy consumption of APIs
might change depending on the context and the device the
apps are running on. Considering more devices and context
only require additional pre-measured values as an input to
our ECC component, but does not impose any change to the
approach.

We used lp-solve [9], an open source mixed integer linear
programming solver, to solve the IP models, and ran the
experiments on a computer with 2.2 GHz Intel Core i7 pro-
cessor and 16 GB DDR3 RAM. The input files for the solver
are automatically generated using the coverage information
provided by the ECC component. Our research artifacts are
available for download [10].

7.2 RQ1: Effectiveness
To evaluate the effectiveness of our minimization tech-

niques, we compared the percentage of reduction in size of
original test suite for the subject apps. Additionally, we as-
sessed the impact of reduction on the effectiveness of the
original test suite in revealing energy bugs. To assess the
effectiveness of test suite, we developed a novel form of mu-
tation analysis for energy testing according to known energy
bugs in Android apps, as outlined in Section 2.

Table 2 shows examples of our energy-aware mutation
operators. For wakelock mutants, we created the mutants
by injecting the mutation operators in proper parts of the
code. For example, we created Wi-Fi wakelock mutants by
adding the acquire API before the code that is responsible
to download object(s). If the app already used Wi-Fi wake-
lock, we commented out the release API on onPause and
onDestroy methods. For expensive background service mu-
tants, we changed the arguments of the mentioned methods
in Table 2 to a smaller values so that the periodic task ex-
ecuted at a higher rate during execution of test cases. For
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Table 2: List of major energy bugs in Android apps as fault model and corresponding energy-aware mutation
operators

Energy Bug Type Mutation Operator Examples

Wi-Fi wakelock ((WifiManager) getSystemService(Context.WIFI SERVICE)).createWifiLock().acquire()

CPU wakelock ((PowerManager) getSystemService(Context.POWER SERVICE)).newWakeLock().acquire()

Sensor wakelock ((SensorManager)getSystemService(SENSOR SERVICE)).getDefaultSensor(Sensor type)

Recurring callback Timer.schedule(period), Timer.scheduleAtFixedRate(period)

Recurring callback ScheduledThreadPoolExecutor.scheduleAtFixedRate(period),

Recurring callback AlarmManager.setRepeating(intervalMillis), AlarmManager.setInExactRepeating(intervalMillis)

Loop Java loop constructs e.g., while and for

Table 3: Effectiveness of energy-aware test-suite minimization approaches in reducing the size of test-suite
and maintaining the ability to reveal energy bugs

IP Greedy
Apps #Tests LoC #Methods %Killed Reduction %Killed Reduction %Killed

Apollo 150 20,520 1,691 46% 72% 33% 66% 38%
Open Camera 106 15,064 1,035 57% 76% 55% 69% 51%
Jamendo 183 8,709 749 100% 70% 85% 68% 85%
Lightning Browser 100 7,219 427 65% 84% 62% 81% 62%
L9Droid 189 7,458 446 75% 86% 75% 83% 75%
A2DP Volume 130 6,670 395 43% 80% 43% 77% 43%
Blockinger 124 3,924 276 56% 76% 56% 72% 56%
App Tracker 221 3,346 291 50% 88% 50% 85% 50%
Sensorium 229 3,288 259 75% 93% 75% 92% 75%
Androidomatic 156 2,156 91 100% 83% 100% 83% 100%
AndroFish 250 1,499 109 53% 88% 51% 88% 48%
SandwichRoulette 233 1,443 129 100% 87% 100% 86% 100%
anDOF 224 1,176 108 74% 91% 74% 89% 61%
AndroidRun 100 1,021 53 100% 85% 100% 84% 100%
Acrylic Paint 200 936 61 68% 94% 68% 92% 68%

Average - - - 71% 84% 68% 81% 67%

expensive loop mutants, we increased the number of itera-
tions whenever possible, thereby the loop in mutant version
executed more times than the original version of app.

To determine whether an energy mutant is killed, we mea-
sured the energy consumption of the tests using Trepn [15].
We experienced that the energy consumption level of the
device on the post-run phase—after the execution of test
is completed—is higher than the pre-run phase—before the
execution of test—in most of the mutants (recall Figure 2).
Since this pattern was not seen among all the wakelock mu-
tants, we monitored the active system calls to kernel re-
lated to the wakelocks, before and after the execution of
test cases. As a result, a test case kills a wakelock mutant if
the number of wakelocks after the execution of test case is
more than the number of wakelocks before it. For expensive
background service and expensive loop mutants, our mea-
surements demonstrated that a test case kills the mutant, if
the average energy consumption of test case during the exe-
cution of mutant is higher than that of the original version.

Table 3 shows the number of tests in the original test suite
of subject apps (column 2) and the percentage of mutants
killed by the tests in the original test suite (column 5), as
well as percentage of reduction by each proposed minimiza-
tion approach (column 6 and 8 for IP and greedy, respec-
tively) and the percentage of mutants killed by the tests in
the minimized test suites (column 7 and 9 for IP and greedy,
respectively). These results demonstrate that we can on av-

erage reduce the size of a given test suite by 84% using IP
approach and 81% using greedy approach, with a negligible
penalty of loosing effectiveness of the test suite by 3% and
4% using IP and greedy, respectively.

As expected, IP achieves a greater test reduction than
greedy in all cases, corroborating that the solutions pro-
duced by IP are in fact optimal. For the majority of subject
apps, both IP and greedy kill the same number of mutants.
In Apollo app, however, the greedy algorithm achieves a
higher ratio of killed mutants compared to the IP approach.
This can be attributed to two factors: (1) The greedy ap-
proach does not reduce the number of tests as much as IP,
thus, the higher number of killed mutants can be due to the
fact that more tests are executed in the case of greedy. (2)
eCoverage is only an estimate for evaluating the quality of
tests for revealing energy properties of the software. Any
discrepancy between eCoverage and the actual energy cost
of executing a test can prevent the IP and greedy algorithms
from picking the best tests, i.e., tests that kill the mutants.

7.3 RQ2: Correlations

To demonstrate the need for a new coverage metric for en-
ergy testing, we examined the correlation between eCoverage
and statement coverage, as well as its correlation with en-
ergy consumption. Statement coverage is commonly used as
an adequacy metric in test-suite minimization. As a result,
we compared the correlation of eCoverage with statement
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Table 4: Pearson Correlation Coefficient (r) of
<eCoverage, statement coverage> and <eCoverage,
energy cost> series for subject apps

Apps rstatement coverage renergy cost

Apollo 0.21 0.94
Open Camera 0.2 0.57
Jamendo 0.89 0.93
Lightning Browser -0.11 0.99
L9Droid 0.5 0.92
A2DP Volume 0.43 0.82
Blockinger 0.86 0.94
App Tracker 0.35 0.85
Sensorium 0.37 0.72
Androidomatic 0.52 0.85
AndroFish 0.34 0.95
SandwichRoulette 0.59 0.81
anDOF 0.41 0.94
AndroidRun 0.17 0.69
Acrylic Paint 0.1 0.75

coverage to assess the extent in which statement coverage
can be substituted for eCoverage.

To that end, we calculated the Pearson correlation coeffi-
cient for two series of 〈eCoverage, statementcoverage〉 and
〈eCoverage, energyconsumption〉. We estimated the energy
cost of each test case similar to [21], by aggregating the aver-
age energy cost of all system APIs invoked during execution
of test case. Pearson correlation coefficient, a.k.a. Pear-
son’s r correlation, measures the linear relationship between
two variables and takes a value between -1 and +1 inclu-
sive. A value of 1 indicates positive correlation, 0 indicates
no relation, and -1 indicates negative correlation. More pre-
cisely [31], absolute value of r between 0 to 0.3 stipulates no
or negligible relationship, between 0.3 to 0.5 indicates weak
relationship, between 0.5 to 0.7 indicates moderate relation-
ship, and higher than that indicates strong relationship.

The results on Pearson correlation coefficient—denoted by
r—of 2,255 test cases for subject apps are shown in Table 4.
r values in Table 4 indicate that there is almost a negligible
or weak correlation between eCoverage and statement cov-
erage of subject apps. On the other hand, eCoverage holds
a strong correlation with the actual energy cost of a test
case, confirming eCoverage to be a proper metric for energy
testing. We noticed that for two of the subject apps, Ja-
mendo and Blockinger, the correlation between statement
coverage and eCoverage is strong. Our manual investigation
shows that the majority of statements in the implementation
of these two apps are system APIs. As a result, the over-
lap between covered statements and covered APIs are high,
thereby eCoverage is correlated to statement coverage.

7.4 RQ3: Performance
In this section, we evaluate the performance of different

elements of our approach (recall Figure 3).

7.4.1 Energy-Aware Coverage Calculator
Energy-aware coverage calculator, ECC, consists of two

sub-components, Static Model Extractor and Dynamic Inte-
grator. To calculate eCoverage of tests for an app, we need
to extract the app’s call graph, and then map the execution
paths of each test case to the call graph. Figure 6 presents

Figure 6: Performance of Static Model Extractor.

the time taken by the Static Model Extractor to extract call
graphs of the subject apps. The scatter plot shows both the
analysis time and the app size in kilo number of instructions.
According to the results, our approach analyzes 80% of sub-
ject apps in less than one minute to extract their models,
with the overall average of 38 seconds per app.

The performance analyses on test suite of subject apps
show that the time taken by the Dynamic Integrator com-
ponent to calculate eCoverage of tests in the full test suite
is negligible, 2 seconds on average for all subject apps. Our
approach leverages Xposed for run-time instrumentation of
the root Android process, rather than instrumentation of
an app’s implementation. The execution time overhead in-
curred using Xposed to collect execution paths of test cases
is 7.36%±1.22% on average with 95% confidence interval.

7.4.2 Energy-Aware Test-Suite Minimization
To compare the performance of techniques for energy-

aware test-suite minimization proposed in this paper, we
measured the execution time of each approach. Our eval-
uation results indicate that the greedy approach takes less
than a second, 14.2 ± 10.3 milliseconds on average with 95%
confidence interval, to solve the minimization problem. The
execution of the IP approach on the other hand, takes be-
tween 1 second to 7 hours, to minimize test suites of different
subject apps. We observed that the execution time of the
IP approach heavily depends on the characteristics of the
problem, e.g., the number of constraints (bounded by the
size of test suite × number of energy-greedy segments) and
decision variables (the size of test suite).

Figure 7 shows the sensitivity of IP approach for the five
subject apps whose execution time takes more than an hour.
The IP formulation of these apps for their original test suite
consists of over 10,000 constraints. To generate the graph,

Figure 7: Sensitivity of execution time of integer
programming approach to the size of test suite.
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we gradually increased the set of tests included from the full
test suite of these subject apps. We repeated the experi-
ments for 30 times to ensure the confidence interval of 95%
on the average execution time values. It can be seen that
execution time of the IP approach for each app increases
logarithmically, as the size of test suite—number of decision
variables—grows linearly.

These results confirm that the greedy algorithm demon-
strates better performance than IP, and is more scalable to
larger problems. However, the IP approach is optimal and
results in test suites with smaller size. As a result, test suites
generated by the IP approach consume less energy and save
the developer’s time.

8. RELATED WORK
Our energy-aware test-suite minimization is related to

prior work on test-suite maintenance as well as approaches
for measuring and estimating the energy consumption.

Test-Suite Maintenance: Previous work in test-suite
maintenance can be categorized as test-suite minimization,
test case selection, test case prioritization, and test-suite
augmentation techniques [36]. These approaches are cate-
gorized to subcategories in the literature [16] as: (1) Ran-
dom, which selects arbitrary number of available test cases
in an ad hoc manner; (2) Retest all, which naively reruns all
the available test cases; (3) Coverage-based data flow, which
selects test cases that exercise data interactions that have
been affected by modifications; and (4) Safe selection, which
selects every test case that achieves a certain criterion.

The majority of these techniques consider adequacy met-
rics for functional requirements of the test suite and to lesser
extent non-functional requirements [28]. To the best of our
knowledge, there are only few approaches in the literature
that perform test-suite maintenance with respect to the en-
ergy consumption.

Kan [22] investigated the use of Dynamic Voltage and
Frequency Scaling (DVFS) for energy efficiency during re-
gression testing. This work focuses on the assumption that
over the versions of a program that do not have significant
changes in functionality, CPU-bound tests remain CPU-
bound, and similarly IO-bound tests remain IO-bound. It is
effective therefore, to optimize the processor frequency for
the execution of CPU-bound test to achieve a good level of
energy savings. Unlike our approach, which is a test-suite
minimization, this work utilizes retest all [16] technique and
re-runs all the existing tests. In addition, the goal of this
work is to reduce the energy consumption of whole test suite,
rather than selecting tests that are good for energy testing.

Another closely related work is an energy-directed ap-
proach for test-suite minimization [25]. The proposed ap-
proach in these papers tries to generate energy-efficient test
suites that can be used to perform post-deployment testing
on embedded systems. To that end, the authors measured
the energy consumption of test cases, using a hardware, and
used those information to perform test-suite minimization.
This approach is not suitable for energy testing, since it
discards tests with high energy consumption, which are nec-
essary for detecting energy inefficiencies.

Unlike the aforementioned techniques, which focus on run-
ning the test cases in the most energy-efficient way, our ap-
proach selects the minimum subset of the existing test suite
that can be used for energy testing of the Android apps. Our
approach is complementary; an interesting avenue of future

research is a combined multi-objective approach, where both
the energy cost of running the tests and their ability to re-
veal energy defects are considered in the selection of tests.

Energy Consumption: Prior studies related to energy
consumption of Android apps can be categorized into power
modeling and power measurement. Research in power mod-
eling suggests estimating the energy usage of mobile devices
or apps in the absence of hardware power monitors [18,24].
Studies in power measurement make use of specialized hard-
ware to determine an app’s energy consumption at various
granularities. None of these prior studies provide test ade-
quacy metric for determining the energy-efficiency of tests.
As a result, in this paper, we proposed eCoverage as an
energy-aware adequacy metric to perform energy-aware test-
suite minimization.

Li and colleagues [25] proposed the use of execution time
as a metric for test-suite optimization, when energy con-
sumption information is not available. Though collecting
execution time for test cases is easy, using time as a proxy
for energy is controversial. Although some research shows
that execution time is perceived to be positively correlated
with energy consumption [23], others suggest that time is
not an appropriate proxy for identifying energy-greedy seg-
ments of the program [18].

9. CONCLUSION AND FUTURE WORK
As mobile apps continue to grow in size and complexity,

the need for effective testing techniques and tools that can
aid developers with catching energy bugs grows. In this
paper, we presented a fully-automated, energy-aware test-
suite minimization approach to derive the minimum subset
of available tests appropriate for energy testing of Android
apps. The approach employs a novel energy-aware metric for
assessing the ability of test cases in revealing energy bugs.

We described two ways of reducing the tests: an integer
programming formulation that produces the optimal solu-
tion, but may take a long time to execute; and a greedy
algorithm that employs heuristics to find a near-optimal so-
lution, but runs fast. The experimental results of evaluating
the two algorithms on real-world apps corroborate their abil-
ity to significantly reduce the size of test suites (on average
84% in the case of IP and 81% in the case of Greedy), while
maintaining test suite quality to reveal the great majority
of energy bugs. To evaluate the effectiveness of the test
suites, we developed a novel suite of energy-aware mutation
operators that are derived from known energy bugs.

Currently, we are considering several directions for future
work. First, we plan to extend our proposed approach to
other test-suite maintenance problems, i.e. energy-aware
test case prioritization and energy-aware test-suite augmen-
tation. We also plan to build on this work to devise auto-
mated test generation techniques that are targeted at exe-
cuting the energy greedy segments of the program.
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