Reducing Combinatorics in GUI Testing of Android Applications

Nariman Mirzaei† Joshua Garcia† Hamid Bagheri† Alireza Sadeghi‡ Sam Malek∗
†Department of Computer Science
George Mason University
nmirzaei@gmu.edu
‡Department of Informatics
University of California, Irvine
{joshug4,hamidb,alirezs1,malek}@uci.edu

ABSTRACT
The rising popularity of Android and the GUI-driven nature of its apps have motivated the need for applicable automated GUI testing techniques. Although exhaustive testing of all possible combinations is the ideal upper bound in combinatorial testing, it is often infeasible, due to the combinatorial explosion of test cases. This paper presents TrimDroid, a framework for GUI testing of Android apps that uses a novel strategy to generate tests in a combinatorial, yet scalable, fashion. It is backed with automated program analysis and formally rigorous test generation engines. TrimDroid relies on program analysis to extract formal specifications. These specifications express the app’s behavior (i.e., control flow between the various app screens) as well as the GUI elements and their dependencies. The dependencies among the GUI elements comprising the app are used to reduce the number of combinations with the help of a solver. Our experiments have corroborated TrimDroid’s ability to achieve a comparable coverage as that possible under exhaustive GUI testing using significantly fewer test cases.

Keywords
Android, Software Testing, Input Generation

1. INTRODUCTION
With well over a million apps, Android has become one of the dominant mobile platforms [16]. Android app markets, such as Google Play, have created a fundamental shift in the way software is delivered to consumers, with thousands of apps added and updated on a daily basis. The majority of these apps are developed by entrepreneurs that do not have the resources for properly testing their software. Hence, there is an increasing demand for applicable automated testing techniques. One key obstacle towards achieving test automation for GUI-driven Android apps is the lack of effective techniques for test input generation.

A recent study of existing tools by Choudhury et al. [15] claims Android Monkey [1], a random-testing program for Android, to be the winner among the existing test input generation tools. Android Monkey provides a random mechanism that often achieves shallow code coverage. Several recent research efforts [8, 9, 11, 21, 27, 38], including our own 28, 31, have aimed to improve Android testing practices. However, to the best of our knowledge, no prior research has explored a fully automated combinatorial GUI testing approach in the context of Android.

This is mainly because exhaustive combinatorial GUI testing is often viewed to be impractical due to the explosion of possible combinations for even the smallest applications [19]. A more practical alternative is t-way combinatorial testing [33], where all combinations for only a subset of GUI widgets (i.e., t) are considered [20]. But even under t-way testing, the number of generated test cases could grow rapidly. Moreover, without a systematic approach to determine the interactions, arbitrary selection of t widgets to be combinatorially tested is bound to be less effective than an exhaustive approach in terms of both code coverage and fault detection.

An opportunity to automate the testing activities in Android is presented by the fact that apps are developed on top of an Application Development Framework (ADF). The Android ADF ensures apps developed by a variety of suppliers can interoperate and coexist together in a single system (a phone), as long as they conform to the rules and constraints imposed by the framework. The Android ADF constrains the life cycle of components comprising an app, the styles of communication among its software components, and the ways in which GUI widgets (e.g., buttons, check-boxes) and other commonly needed functionalities (e.g., GPS coordinates, camera) can be accessed. An underlying insight in our research is that the knowledge of these constraints along with the metadata associated with each app can be used to automate many software testing activities, specifically combinatorial testing of apps.

In this paper, we present TrimDroid (Testing Reduced GUICombinations for Android), a fully-automated combinatorial testing approach for Android apps. Given an Android APK file, TrimDroid employs static analysis techniques that are informed by the rules and constraints imposed by the Android ADF to identify GUI widgets that interact with one another. Thus, the set of interacting widgets become candidates for t-way combinatorial testing. By avoiding the generation of tests for widgets that do not interact, TrimDroid is able to significantly reduce the number of tests.

For identifying the interactions, TrimDroid statically analyzes the control- and data-flow dependencies among the widgets and actions available on an app. Finally, TrimDroid uses an efficient constraint solver to enumerate the test cases covering all possible combinations of GUI widgets and actions.

Our evaluation of TrimDroid shows that it achieves the same code coverage as exhaustive combinatorial testing, but reduces the number of test cases by 57.86% on average and by as much as 99.9%. This reduction is important, as it not only reduces the time it takes to execute the test cases, but also significantly decreases the effort required to inspect the test results.

1An APK file is a Java bytecode package used to install Android apps.
The paper is organized as follows. Section 2 presents an illustrative app to motivate and describe the research. Section 3 provides an overview of TrimDroid. Sections 4 and 5 describe the extraction of required models and dependencies from apps. Sections 6 and 7 describe enumeration of execution scenarios and generation of test cases, respectively. Section 8 presents our experimental evaluation of TrimDroid. The paper concludes with an overview of the related research and a discussion of our future work.

2. ILLUSTRATIVE EXAMPLE

We use a simple Android app, called Expense Reporting System (ERS), to illustrate our research. This app allows a user to maintain a log of meal expenses incurred during a trip. Figure 1 depicts two of ERS’s Activities: NewReportActivity and ItemizedReportActivity.

NewReportActivity is the main Activity, i.e., it is the first screen presented to the user when an app is invoked. From NewReportActivity, the user can select the Destination, enter an allowable expense Amount, the Currency, and initiate the creation of two types of reports: Itemized Report and Quick Report. ItemizedReportActivity allows the user to enter an itemized list of meal expenses, including (1) the total days of the trip, and (2) the number of meals purchased on the trip’s first and last day. When Total Days is 1 (i.e., the first and last days are the same), the check-boxes corresponding to the last day meals are disabled (see Figure 1(a)). On the other hand, QuickReportActivity (not shown in Figure 1 for brevity) allows the user to provide an aggregate number for the meal expenses incurred on a trip.

Regardless of the approach used for entering the expenses, the user is led to a confirmation page, where she can submit the expenses, and is presented with a summary report that she can save. An overview of the relationships among the Activities comprising the ERS are depicted in Figure 3.

Testing of GUI-driven apps, such as ERS, requires utilizing a large number of event sequences. These sequences are often generated by GUI interactions involving radio-boxes, check-boxes, drop-down lists, etc. Exhaustive combinatorial testing [20], i.e., a brute-force approach that tries all possible GUI combinations, is often computationally prohibitive.

An alternative approach to exhaustive testing is t-way combinatorial testing [25]. Consider a GUI screen under test that has a total of n widgets. t-way combinatorial testing requires that all possible t-way combinations of widget values are selected, where t < n. The most common type of t-way testing is pairwise testing, where t = 2 [13]. Although t-way testing produces a smaller number of tests, it is less effective than exhaustive testing in terms of both code coverage and fault detection. For instance, when pairwise testing is used, code that depends on the interaction of three or more GUI widgets may remain uncovered.

To illustrate the challenges of combinatorial testing, consider a situation in which the user clicks on the ItemizedReport button of NewReportActivity and subsequently on the Next button of ItemizedReportActivity (see Figure 1). NewReportActivity contains the Destination drop-down list with 10 choices, and the Currency check-box with 3 exclusive choices. Let us also assume two values of 100 and 0 have been identified as proper input classes for the Amount field. This would result in a total of $10 \times 3 = 30$ unique combinations for NewReportActivity. Similarly, ItemizedReportActivity contains the Total Days drop-down list with 6 choices, the First Day Meals and Last Day Meals, each of which has 3 inclusive choices, resulting in a total of $6 \times 3^2 = 54$ unique combinations from ItemizedReportActivity. For testing both activities together, TrimDroid produces $60 \times 48 = 2,880$ tests, representing a reduction of 20,160 tests compared to the exhaustive approach.

Assuming an accurate extraction of dependencies through static analysis, the reduced set of tests generated using TrimDroid would

Since the widget values selected on one Activity could impact the behavior that is manifested in subsequent Activities, for GUI system testing, we also need to consider the interaction of widgets across Activities. Thus, the number of all unique tests for the above use case is $60 \times 384 = 23,040$. The number of tests would continue to grow if we consider the other Activities comprising this app. This approach is infeasible in practice, in terms of both the effort required to execute the tests and the effort required in assessing the results.

TrimDroid drastically reduces the number of tests for achieving a comparable coverage as exhaustive GUI testing. The insight guiding our research is that not all GUI widgets and actions interact with one another. To that end, TrimDroid statically extracts the control- and data-flow dependencies among the GUI widgets, event handlers, and Activities of an app, and it does so without access to source code, rather than from the app’s APK file.

An example of GUI widget interaction can be gleaned from Figure 1. Here, we can see that when Total Days obtains a value of 1, Last Day Meals check-boxes are disabled, thus indicating a dependency between these two widgets, implying that their combinations should be tested. On the other hand, if our analysis indicates that Total Days and First Day Meals are indeed independent of one another, we can safely conclude that their combinations do not need to be tested. TrimDroid detects such dependencies, which provide the basis for combinatorial generation of tests.

To appreciate the significant reductions possible this way, consider the use case of ERS described earlier. TrimDroid generates only $\max \{ (6 \times 2^2), 23 \} = 48$ tests for ItemizedReportActivity when the Next button is clicked. That represents a reduction of 336 combinations compared to the exhaustive approach. TrimDroid realizes that the $(6 \times 2^3) = 48$ possible combinations for Total Days and Last Day Meals are independent of the $2^3 = 8$ possible combinations for First Day Meals. Since we can use combinations of independent widgets in the same test, the dependent widgets with the biggest number of unique combinations determine the number of generated tests. Here, the 48 combinations for Total Days and Last Day Meals are merged with the 8 combinations for First Day Meals to produce 48 widget combinations for ItemizedReportActivity. For testing both activities together, TrimDroid produces $60 \times 48 = 2,880$ tests, representing a reduction of 20,160 tests compared to the exhaustive approach.
be as effective as exhaustively generated tests in terms of their coverage and fault detection power.

3. APPROACH OVERVIEW

Figure 2 depicts a high-level overview of TrimDroid, which is comprised of four major components: Model Extraction, Dependency Extraction, Sequence Generation, and Test-Case Generation. Together, these components produce a significantly smaller number of test cases than an exhaustive combinatorial technique, yet achieve a comparable coverage.

Similar to our previous work [29], Model Extraction produces two types of models by statically analyzing an Android app:

- Interface Model (IM) provides a representation of all the GUI inputs of an app, including the input widgets and events (actions) for each Activity. TrimDroid uses the IM to determine how a GUI screen can be exercised in order to generate the tests for it.
- Activity Transition Model (ATM) is a finite state machine representing the event-driven behavior of an Android app, including the relationships among its Activities and their event handlers (transitions). Since our research targets GUI testing, we only extract information that is related to Activities, not other Android components (e.g., Services). Figure 2 depicts the ATM for the entire ERS app.

These models are represented in Alloy [22], a formal specification language based on first order relational logic. Alloy specifications can be analyzed using Alloy Analyzer, thereby allowing us to systematically explore the combinatorial space with the help of a constraint solver.

In a step parallel to Model Extraction, Dependency Extraction identifies GUI-induced dependencies among app elements using a combination of control- and data-flow analysis techniques. Dependency Extraction identifies three types of dependencies (1) when an Activity depends on the widget values from a preceding Activity (e.g., the button handler method uses the selected value of a check-box, and (2) when a GUI event handler depends on a widget value, e.g., a drop-down menu is disabled, because a check-box is not selected, and (3) when an Activity depends on the widget values from a preceding Activity (e.g., the widget values of a drop-down menu are directly from the layout file). We use the same layout files for each widget, such as its name, id, input type, etc. Our current implementation extracts the input classes for widgets that provide the ATM representation in the form of Alloy [22]. These dependencies are represented in the form of Alloy specifications and used by Test-Case Generation in a later step for pruning the combinatorial space of tests.

Sequence Generation uses the Alloy Analyzer to synthesize sequences of events that cover the paths in the ATM. Each path in the ATM represents a sequence of events in a possible use case. A good coverage of the ATM is essential for achieving high code coverage. TrimDroid covers the paths using the prime path coverage criterion, known to subsume most other graph coverage criteria [10].

Finally, Test-Case Generation constructs system tests by performing three key steps. First, it traverses the sequences of events representing the paths produced by Sequence Generation. Second, for each step in a given sequence, it uses Alloy Analyzer to generate value combinations for different GUI widgets. To that end, Test-Case Generation utilizes (1) the sets of dependent widgets generated by Dependency Extraction and (2) the specification of each widget in the IM. Lastly, Test-Case Generation merges the value combinations to create tests that cover the entire sequence of events in each path of the ATM. The generated tests can then be executed using Robotium [6], an Android test-automation framework.

3 All Android components are activated via Intent messages. An Intent message is an event for an action to be performed along with the data that supports that action.

4. MODEL EXTRACTION

TrimDroid extracts two types of Alloy models for each app: Interface Model (IM) and Activity Transition Model (ATM). We define each model and describe the extraction process for each in the remainder of this section.

4.1 Interface Model

The IM provides information about all of the GUI inputs of an app, such as the widgets and input fields belonging to an Activity. More formally, the IM is defined as follows:

Definition 1. The IM of an app is a tuple \((A, E, W, I) \), where

- \(A \) is a finite, non-empty set of Activities of the app.
- \(E \) is a finite set of event handlers of the app (e.g., onClick()) that handle a button click. Each Activity \(a \in A \) has a set of event handlers \(eHandlers(a) \subseteq E \).
- \(W \) is a finite set of GUI widgets of the app (e.g., a check-box, radio-button). Each Activity \(a \in A \) has a set of widgets \(widgets(a) \subseteq W \).
- \(I \) is a finite set of input classes for widgets of the app. Each widget \(w \) has a set of input classes \(ic(w) \subseteq I \). Each input class is a partition of the input domain of each widget. For instance, input classes of a check-box are checked and unchecked, while input classes of a drop-down menu are its choices.

Model Extraction obtains the IM by analyzing the information contained in the meta-data included in an Android APK file, namely its XML-based manifest and layout files. More specifically, Model Extraction determines all the Activities within an app from its manifest file. Subsequently, for each Activity, Model Extraction parses the corresponding layout file to obtain all information for each widget, such as its name, id, input type, etc. Our current implementation extracts the input classes for widgets that provide users with a list of options, such as check-boxes and drop-down menus, directly from the layout files. We use the same layout files to define the domain space of text-boxes into different classes based on the limits imposed on the text box values (e.g., max length). For unbounded text boxes, and other unbounded widgets, we use a configurable set of input classes that can be defined by the user.

4.2 Activity Transition Model

An ATM represents the high-level behavior of an app’s GUI in terms of its Activities and the transitions resulting from invocations of its event handlers. More formally, the ATM is defined as follows:

Definition 2. The ATM of an app is a finite state machine represented as a tuple \((A_0, E, F) \), where

- \(A_0 \) is a finite, non-empty set of Activities.
- \(A_0 \) is the starting Activity (i.e., main Activity), defined in an app’s manifest file.
• \(E\) is a finite set of directed transitions from the starting Activity to final Activities, labeled by event-handler names. Each transition represents an event handler and denoted as \(a_i \xrightarrow{\text{a}_i} a_j\), where \(a_i, a_j \in A\) and \(e_k\) is an event handler.

• \(F\) is a finite, non-empty set of final Activities in the ATM.

Figure 3 shows the ATM for the ERS app. To obtain an ATM such as this, Model Extraction first determines the Activities \(A = \{a_0, a_1, a_2, a_3, a_4\}\) comprising the app from its manifest file. To determine the transitions between the Activities, Model Extraction performs a depth-first traversal of main Activity’s call graph starting from its onCreate() method, which we know from Android’s ADF specification to be the starting point of all apps. In the context of ERS, this corresponds to NewReportActivity’s onCreate() method. For each encountered node in the call graph, Model Extraction checks whether it would result in an activity transition, and if so, adds it to set \(E\).

A call may result in a transition in two ways:

1. Inter-component transition: these are implicit calls that result in the transfer of control from one Activity to another Activity. For instance, in the example of ERS in Figure 1 when the Itemized Report button is clicked, the corresponding handler calls Android’s startActivity method, which sends an Intent message resulting in the transfer of control to ItemizedReportActivity’s onCreate() method. In this case, we extract the destination from the Intent, and add the following transition to the model: \(E = E \cup \{a_0 \xrightarrow{\text{onCreate(ItemizedReport)}} a_2\}\).

2. Intra-component transition: these are implicit calls to GUI event handlers in an Activity that result in a transition back to the same Activity. For instance, the ItemizedReportActivity has a click event associated with its Reser button. This event is handled by the Activity’s onClick() method that is registered with that button. In this case, we add the following transition to the model: \(E = E \cup \{a_2 \xrightarrow{\text{onClick(Reset)}} a_2\}\).

Upon traversing the call graph of \(a_0\), the above process repeats for all of the Activities remaining in \(A\). Finally, we populate the set \(F\) with the Activities that do not have any outgoing inter-component transitions, and if they do, it is only to nodes that precede them.

We implemented the Model Extraction component on top of Soot, a static-analysis framework for Java [37]. To analyze an Android app, TrimDroid utilizes the Dexpler transformer [33] to translate Android’s Dalvik bytecode to Jimple, Soot’s intermediate representation. By leveraging Soot and Dexpler, TrimDroid works with an app’s source code as well as its APK file.

5. Dependency Extraction

TrimDroid uses the dependencies among the app elements to determine the combinations that should be tested, and those that can be safely pruned. To that end, Dependency Extraction determines three types of dependencies as described further below.

![Activity Transition Model for the ERS app](image)

Algorithm 1: wDep

Input: \(a \in A\)
Output: \(WD \subseteq \mathcal{P}(\text{widgets}(a))\)

1. \(WD \leftarrow \emptyset;\)
2. \(\text{depPairs} \leftarrow \emptyset;\)
3. foreach \(\text{meth} \in a\) methods do
 4. \(\text{foreach} w \text{ used in a conditional statement}\)
 5. \(\text{if isWidget}(w)\) then
 6. \(\text{foreach} w_{1b} \text{ used along either branch of stmt}_1\) do
 7. \(\text{depPairs} \leftarrow \text{depPairs} \cup \{\{w_{1b}, w\}\};\)
 8. \(\text{foreach} r \text{ defined along either branch of stmt}_1\) do
 9. \(\text{foreach} w_2 \in \text{widgetsWhoseValueAffects}(r)\) do
 10. \(\text{depPairs} \leftarrow \text{depPairs} \cup \{\{w_2, w\}\}\);
 11. \(\text{foreach} \text{conditional statement} stmt_2\) that uses \(r, w\) do
 12. \(\text{depPairs} \leftarrow \text{depPairs} \cup \{\{w_2, w\}\}\);
 13. \(\text{foreach} w_{1a} \text{ used along either branch of stmt}_1\) do
 14. \(\text{depPairs} \leftarrow \text{depPairs} \cup \{\{w_{1a}, w\}\}\);
 16. \(WD \leftarrow \text{merge}(\text{depPairs});\)
17. \(WD \leftarrow WD \cup \text{isolateRemainingWidgets}(WD, \text{widgets}(a));\)

5.1 Widget Dependency

Two widgets \(w_1\) and \(w_2\) are dependent if combinations of their values affect an app’s control or data-flow. Widget combinations that affect the control-flow impact the code coverage of generated tests; widget combinations that affect the data-flow determine the state of the system under test. Here are two possible dependencies between \(w_1\) and \(w_2\) that our approach detects:

(Case 1) \(w_2\)’s use depends on the value of \(w_1\). This can occur in two situations. First, a widget \(w_1\) is used in a conditional statement, and widget \(w_2\) is used along either branch of that statement. An example of the first case is shown below, where lastBreakFast is dependent on totalDays:

```java
if ((String.valueOf(totalDays.getSelectedItem()).equals("1"))) {
    lastBreakFast.setEnable(false); }
```

The second situation occurs when the value of widget \(w_1\) affects a reference \(r\), and \(w_2\)’s use depends on the value of \(r\). An example of this case is shown below, where the use of totalDays is indirectly dependent on firstBreakfast based on the variable mealsCount:

```java
if (firstBreakFast.isChecked()) {
    mealsCount++; 

if (mealsCount > 0) {
    totalMeals = totalDays.getValue() * 3 + mealsCount;
}
```

(Case 2) In a conditional statement, widget \(w_1\) is used and reference \(r\) is defined in its block, and \(r\) is later used in the block of another conditional statement, where \(w_2\) is used. An example of this case is shown below, where the value combinations of firstBreakfast and firstLunch impact the value of mealsCount:

```java
if (firstBreakFast.isChecked()) {
    mealsCount++; 

if (firstLunch.isChecked()) {
    mealsCount++; 
```
5.2 Handler Dependency

If any of its definitions refers to a widget. At this point, \(wDep \) distinguishes the two cases that result in widget dependencies.

To determine the first situation of Case 1, \(wDep \) checks if any other variable \(w_{1a} \) is used and references a widget (lines 6–7 of Algorithm 1). If so, \(wDep \) creates a widget dependency \(\{w_{1a}, w\} \) (line 8 of Algorithm 1).

To obtain widget dependencies for Case 2, \(wDep \) identifies any variable \(r_i \) defined after the conditional statement where \(w \) is referenced (line 9 of Algorithm 1). For any \(r_i \) whose value is affected by widget \(w_2 \) (line 10 of Algorithm 1), \(wDep \) creates the widget dependency \(\{w_2, w\} \) (lines 11–12 of Algorithm 1). Here, widgetsWhoseValueAffects \((r_i) \) returns the widgets used in a conditional statement whose value affects a reference \(r_i \) by traversing \(r_i \)'s definition-use chain.

To identify the second situation of Case 1, \(wDep \) further checks if reference \(r_i \) is used in a second conditional statement (line 13 of Algorithm 1). If a reference to a widget \(w_{1b} \) is used along either branch, then \(wDep \) creates a widget dependency \(\{w_{1b}, w\} \) (lines 14–15 of Algorithm 1).

The widget dependency pairs are then merged (line 16). Two widget dependency pairs are merged if any of their elements intersect. For instance, two dependency pairs \(\{w_a, w_b\} \) and \(\{w_b, w_a\} \) are merged, and the resulting set \(\{w_a, w_b\} \) is stored in \(WD \). Finally, widgets that do not interact with any other widget, and thus not part of any dependency pair set, are each isolated into their own singleton set and added to \(WD \) (line 17).

5.2 Handler Dependency

To further reduce the number of test cases, Dependency Extraction identifies the dependencies between widgets and event handlers. This kind of dependency occurs when a widget value is used in an event handler, indicating that all combinations of the widget and the event resulting in the invocation of event handler should be tried. As an example of this, consider the following code snippet, where the value of totalDays is used in the onClick() method of NextButton in the ItemizedReportActivity of ERS:

```java
public class NextButton implements OnClickListener {
    public void onClick(View v) {
        totalDaysValue = String.valueOf(totalDays);
        setSelectedItem();
        ...
    }
}
```

If an event handler uses multiple widgets, all combinations of those widgets according to their widget dependencies need to be tested together with the handler’s event.

Thus, the pruning of irrelevant test combinations is achieved through determining the widgets that are not used by event handlers. For example, the onClick() handler for the Reset button of ItemizedReportActivity clears the screen regardless of the values of the widgets. Hence, no value combinations of the widgets on ItemizedReportActivity need to be tested with the Reset button.
solver to exhaustively synthesize the space of possible paths. Each path in the \(\text{ATM}\) represents a sequence of event handlers triggered in a possible use case for the system. These paths can be generated using any given coverage criteria (e.g., node coverage, edge-pair coverage). TrimDroid relies on \emph{prime path coverage} as it has been shown to \emph{subsume} most other graph coverage criteria \cite{10}. A coverage criterion \(\alpha\) subsumes coverage criterion \(\beta\), if and only if 100\% \(\alpha\) coverage implies 100\% \(\beta\) coverage \cite{35}.

TrimDroid represents an \(\text{ATM}\) in the form of an Alloy model \cite{22}. Alloy is a formal modeling language with a comprehensible syntax that stems from notations ubiquitous in object orientation, and semantics based on the first-order relational logic \cite{22}, making it an appropriate language for declarative specification of both application models and properties to be verified. Listing \ref{lst:atm} shows (part of) the Alloy specification of \(\text{ATM}\), specifically the signatures for \emph{activity}, \emph{simplePath} and \emph{primePath}. Each Activity has a set of event handlers (\(\text{eHandlers}\)) and a field (\(\text{isStart}\)), indicating whether it is a starting activity or not. Lines 4–11 present the \emph{simplePath} signature along with its \emph{facts} that specify the elements involved in, and the semantics of, a \emph{simple path}, respectively. A simple path is a sequence of \emph{transitions} from the starting activity (i.e., \(a_0\)), where no activity node appears more than once, except possibly when the first and last nodes are the same. A \emph{prime path} then, as specified in lines 12–14, is a simple path that does not appear as a proper sub-path of any other simple path. An example of a prime path in the \(\text{ATM}\) of Figure \ref{fig:atm}: \(a_0 \xrightarrow{\delta_1} a_1 \xrightarrow{\delta_2} a_2 \xrightarrow{\delta_2} a_3 \xrightarrow{\delta_3} a_4\).

A test path satisfies prime path coverage if and only if it starts from a starting node and ends in a final node while covering a prime path in a \emph{graph} \cite{10}. The prime-path criterion limits visits of each loop to one, since simple paths have no internal loops. It also limits the number of generated paths, as it only contains paths that are not sub-path of any other path. The \(\text{ATM}\) of our running example (see Figure \ref{fig:atm}) thus includes three prime paths, automatically generated using Alloy Analyzer.

7. TEST GENERATION

Each system test \(st \in \text{ST}\) is comprised of a sequence of \emph{activity} tests: \(st = \langle at_{a_0} at_{a_1}, \ldots, at_{a_n} \rangle\). An \emph{activity test} consists of widget value combinations and an event that exercises a particular Activity and results in a transition, either to itself or to another Activity, according to \(\text{ATM}\).

TrimDroid generates the system tests in two steps. First, it generates the activity tests using the widget value combinations and events available on each Activity. Afterwards, it combines activity tests into a sequence that represents a GUI system test to cover a particular prime path.

To illustrate, we use the execution scenario for the ERS app shown in Figure \ref{fig:ers}. The \(\text{ATM}\) for ERS (recall Figure \ref{fig:atm}) shows its five activities (denoted as \(a\) and their transitions (denoted as \(e\)). The input classes for widgets on \(\text{NewReportActivity}\) are captured in Figure \ref{fig:activity}, where \(ic(w)\) indicates the possible values for widget \(w\). Figure \ref{fig:transition} captures the same information for \(\text{ItemizedReportActivity}\). In addition, the widget dependencies (recall Algorithm \ref{alg:dep}), handler dependencies (recall Algorithm \ref{alg:hdep}), and activity dependencies (recall Algorithm \ref{alg:act}) are all denoted in Figure \ref{fig:dependencies}.

7.1 Activity Test Generation

We generate tests for an Activity \(a\) in three steps:

\begin{itemize}
 \item[(Step 1)] For each event \(e \in \text{eHandlers}(a)\), we use Alloy Analyzer to enumerate over all combinations of widget values in \(a\) that are dependent on \(e\). To determine those combinations, we utilize the set of handler dependencies. Let \(h \in hDep(a,e)\) comprise a set of dependent widgets with respect to an event handler \(e\). We calculate \(WC_h\), i.e., the widget combinations for \(h\), using the Alloy Analyzer, as the Cartesian product of all the input classes for its widgets:

\[
WC_h \equiv \bigotimes_{j=1}^{n} ic(w_j), \text{where } w_j \in h
\]

For instance, in ERS as shown in Figure \ref{fig:dependencies} we can see that \(hDep(a_0,e_1)\) is comprised of two sets: \{\text{dest}\} and \{\text{amount}\}. Each one of these two sets indicates a widget dependency among its members, as well as a handler dependency with respect to \(e_1\) (i.e., \("\text{ItemizedReport.onClick}\)). We can determine the combination of their elements as shown in Figure \ref{fig:dependencies}.

\begin{itemize}
 \item[(Step 2)] To generate tests for Activity \(a\) with respect to event \(e\), every widget \(w \in h\), where \(h \in hDep(a,e)\), must be assigned a value. To achieve this, all widget combinations, i.e., all instances of \(WC_h\), are combined into one final set. However, since these widget values are independent from one another, we simply need to \emph{merge} them, rather than calculate their cross-product, as follows:

\[
WC_{hDep(a,e)} \equiv merge(H), \text{where } H = \{h| h \in hDep(a,e)\}
\]

\end{itemize}

\begin{itemize}
 \item[(Step 3)] Given a set of sets \(S\), let \(m = \forall s \in S, max(|s|)\), we merge all members of \(S\) into \(C\) defined as follows:

\[
C = \{c_i| c_i = \bigcup_{s \in S} x_i mod(|s|), \text{where } 0 \leq i \leq (m-1) \wedge x_i \in s\}
\]

Thus, considering the widget combination in Figure \ref{fig:dependencies}, we can calculate the final set of combinations for Activity \(a_0\) (\(\text{NewReportActivity}\)) in the context of event handler \(e_1\) (\(\text{ItemizedReport.onClick}\)) as shown in Figure \ref{fig:merge}.

\begin{itemize}
 \item[(Step 3)] As shown in Figure \ref{fig:merge}, \(|ic(\text{dest})| = 10\), \(|ic(\text{cur})| = 3\) and \(|ic(\text{amount})| = 2\). Thus, merging \(WC_{\text{dest}}\) with \(WC_{\text{amount}}\) produces 30 unique possible combinations. Note that since \(WC_{\text{amount}}\) only has 2 combinations, when we merge it with \(WC_{\text{dest}}\), which has 30 combinations, we simply need to ensure all of its unique values are included in the generated tests. In this case, we chose values 100 and 0 for the first two combinations and simply chose 100 for all the remaining combinations. Since we know that \(\text{amount}\) does not interact with the other widgets, we just need to ensure all of its unique values are included in the combinations. However, we still need to include a value for \(\text{amount}\) for all combinations, as the event handler depends on it.

\end{itemize}
To illustrate the process, consider a situation in ERS where the goal is to generate a system test for the path \(a_0 \xrightarrow{e_0} a_1 \xrightarrow{e_1} a_2 \) in Figure 4. There is an activity dependency between \(a_0 \) and \(a_2 \) with respect to \(e_1 \), i.e., \(aDep(a_0, e_1, a_2) = true \) as shown in Figure 4c. We thus create all combinations of activity tests for both activities in that transition to build the system tests \(ST \), as shown in Figure 5.

Figure 5: System tests for the path \(a_0 \xrightarrow{e_0} a_1 \xrightarrow{e_1} a_2 \) in ERS

Our approach produces a total of 30 system tests for this path, each indicated as a sequence in the set \(ST \). Following the generation of system tests, Test-Case Generation transforms each test case to proper Robotium format for execution [6].

8. EVALUATION

To evaluate our approach, we measure TrimDroid’s ability to reduce test suites, while maintaining effectiveness. To assess effectiveness, we compare TrimDroid’s code coverage and execution time against exhaustive combinatorial testing as well as prior Android testing techniques. Specifically, we investigate the following three research questions:

- **RQ1**: How do TrimDroid, exhaustive GUI combinatorial, and pairwise testing compare with respect to the size of generated test suites and their execution time?

- **RQ2**: How do TrimDroid, exhaustive GUI combinatorial, and pairwise testing compare with respect to code coverage?

- **RQ3**: How effective is TrimDroid compared to prior Android test automation techniques?

For investigating these questions, we use several real-world apps from an open-source repository, called F-Droid [4]. Each selected app satisfies the following criteria: (1) its source code is available; and (2) it uses only standard GUI widgets of the Android Application Development Framework, e.g., it is a native mobile app.
rather than a web mobile app. The first criterion ensures that we can properly measure code coverage; the second criterion is due to the limitation of our static program analysis that only supports standard Android libraries and widgets. These apps are selected from different categories, such as productivity, entertainment, and tools.

Table 1 lists these apps. For each App, Table 1 depicts its size as measured using lines of code (LOC). We compare TrimDroid's coverage against exhaustive combinatorial testing, since its coverage subsumes the coverage of all other combinatorial testing techniques. We used prime path coverage criterion (recall Section 6) for both exhaustive testing and TrimDroid to allow for a fair comparison.

We also compare TrimDroid's coverage with M[agi]C—a pairwise GUI combinatorial testing technique that has been applied on Android apps, among others. M[agi]C requires the user to manually construct two types of models for the software under test: a model identifying the input classes for all the widgets, and a model that captures the transitions between the screens. In fact, the former is equivalent to TrimDroid's ATM, and the latter to its IM. To ensure a fair comparison, we manually transformed the ATM and IM models that TrimDroid generated automatically for each app into models that can be used by M[agi]C. M[agi]C uses a post-optimization algorithm that reduces the number of generated test cases after executing them once. This is achieved by removing the input combinations for paths that share events. Finally, we did not use the optimization option of M[agi]C to ensure the generated test cases achieve the maximum code coverage.

Although assessing TrimDroid's fault-detection ability is a primary concern of ours, currently there is no organized set of open-source Android apps with known defects and fault reports that can be used to evaluate TrimDroid's fault detection ability. Alternatively, mutation testing can be used, where the mutants replicate actual faults. Unfortunately, there is no support for mutation testing of Android apps to this date. Particularly, no fault model exists for Android apps, preventing production of mutants that can substitute for real faults. One of the authors has recently begun to investigate the challenges of mutation testing for Android applications.

All of our experiments were conducted on a machine with 16GB memory and a quad core 2.3GHz processor. We used Android Virtual Devices (Android emulators) with 2GB RAM, 1GB SD Card, and the latest version of Android that is compatible with the app, except for Dynodroid, whose in-box emulator uses Android 2.3. A fresh emulator was created for each app along with only default system applications. During the experiments, we used EMMA to monitor code coverage. Specifically, we measured line coverage by running all of the generated test cases on each app. TrimDroid, subject apps, and our research artifacts are publicly available.

8.1 Test-Suite Reduction

To answer RQ1, we compare the test suites generated by TrimDroid, exhaustive combinatorial testing and M[agi]C in terms of size and execution time. For each App, Table 1 shows the size and execution time of test cases for both techniques. The table also shows the reduction of test cases compared to exhaustive combinatorial testing in the right-most column.

We observe that in most cases TrimDroid is able to significantly reduce the number of generated tests compared to exhaustive testing. TrimDroid, on average, generates 57.86% fewer tests compared to exhaustive testing. The smaller number of tests that would need to be inspected, especially for human engineers, would result in significant savings in time and effort. By doing so, TrimDroid reduces the time needed to execute the tests by 57.46% on average. The savings are more pronounced in certain cases. For Password-Generator, TrimDroid eliminates more than 479,000 tests, which is a reduction in tests by multiple orders of magnitude. Furthermore, exhaustive testing crashes for PasswordGenerator (as denoted by the dash in Table 1) before generating all the app’s test cases, as the massive size of its generated test suite depletes our machine’s memory.

On average, TrimDroid generates 2 times more test cases than M[agi]C. However, as described later, the tests generated by TrimDroid achieve a substantially higher code coverage. Recall that while TrimDroid adopts t-way testing, where t is determined according to the dependencies extracted through program analysis, M[agi]C uses a fixed t for all apps, i.e., two. Apps for which TrimDroid has produced more tests than M[agi]C, harbor complex dependencies involving three or more widgets. Apps for which TrimDroid has produced fewer tests are lacking dependencies among their widgets, indicating that the pairwise strategy is producing unnecessary tests.

8.2 Effectiveness - Exhaustive and Pairwise

To answer RQ2, we compare the statement coverage resulting from the execution of test suites generated by TrimDroid, M[agi]C and exhaustive testing. The results are summarized in Figure 6. Each application is identified along the horizontal axis, while the vertical axis shows the statement coverage achieved by TrimDroid, M[agi]C and exhaustive testing. In all cases, TrimDroid achieves at least the same statement coverage as exhaustive testing and the same or better statement coverage than M[agi]C. For the Password-Generator app, exhaustive testing’s failure to complete is depicted as 0% coverage, since the inability to generate the test suite is effectively 0% statement coverage.

Note that some subject apps (e.g., autoanswer and httpmon) heavily use Service components. Unlike Activity components, Service components are responsible for handling events initiated by the system rather than the GUI. For example, autoanswer provides Services that perform a task based on a set of predefined preferences when a phone call is received. Given that TrimDroid’s focus is on GUI testing, it is no surprise that it does not achieve good coverage for these types of apps. In fact, when we compare against the highest possible coverage for a GUI-based testing approach in such apps, namely exhaustive GUI testing, we observe that TrimDroid achieves the same coverage.

Thus, in comparison to exhaustive testing, the results show that, although TrimDroid significantly reduces the number of tests, and subsequently their execution time, the resulting code coverage is not degraded at all. In principle, however, due to the limitations of static analysis (e.g., unsupported Android libraries), it is possible for TrimDroid to achieve less coverage than exhaustive testing, even though our experiments have not yet revealed such instances.

On average, TrimDroid achieves 13% more statement coverage than M[agi]C. This result supports the effectiveness of using the proposed dependency-based heuristics for reducing the number of tests, rather than fixed strategies, such as pairwise testing, that compromise on coverage.

8.3 Effectiveness - Other Android Testing

A meaningful comparison of Android test automation techniques is generally difficult, as each has its own unique objective. Our objective in TrimDroid has been to reduce the number of tests in combinatorial GUI testing of Android apps without compromising on coverage. On the other hand, several prior techniques have aimed to maximize code coverage through search-based techniques, regardless of the number of tests it takes to do so, which could pose a significant burden when the assessment of whether the tests have passed or failed entails manual effort. Nevertheless, we compare against the code coverage and execution time achieved by four prior techniques: Monkey, Dynodroid, M[agi]C and our prior work, EvoDroid.
Table 1: Pruning effect in TrimDroid

<table>
<thead>
<tr>
<th>App</th>
<th>LOC</th>
<th>Exhaustive Testing</th>
<th>M[agi]C</th>
<th>TrimDroid</th>
<th>Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>HashPass</td>
<td>429</td>
<td>128 515</td>
<td>15 50</td>
<td>32 126</td>
<td>75.00%</td>
</tr>
<tr>
<td>Tipster</td>
<td>423</td>
<td>36 243</td>
<td>20 44</td>
<td>24 156</td>
<td>33.33%</td>
</tr>
<tr>
<td>MunchLife</td>
<td>631</td>
<td>10 84</td>
<td>9 37</td>
<td>8 56</td>
<td>20%</td>
</tr>
<tr>
<td>Blinklight</td>
<td>851</td>
<td>54 252</td>
<td>5 36</td>
<td>22 112</td>
<td>59.25%</td>
</tr>
<tr>
<td>JustSit</td>
<td>849</td>
<td>50 236</td>
<td>10 42</td>
<td>16 74</td>
<td>68%</td>
</tr>
<tr>
<td>autoanswer</td>
<td>999</td>
<td>576 5655</td>
<td>17 196</td>
<td>12 118</td>
<td>97.91%</td>
</tr>
<tr>
<td>AnyCut</td>
<td>1095</td>
<td>6 38</td>
<td>4 38</td>
<td>6 38</td>
<td>0%</td>
</tr>
<tr>
<td>DoF Calculator</td>
<td>1321</td>
<td>1174 7292</td>
<td>107 953</td>
<td>30 373</td>
<td>97.44%</td>
</tr>
<tr>
<td>Divide&Conquer</td>
<td>1824</td>
<td>12 85</td>
<td>5 47</td>
<td>4 32</td>
<td>66.66%</td>
</tr>
<tr>
<td>PasswordGenerator</td>
<td>2824</td>
<td>48000 –</td>
<td>58 351</td>
<td>418 1263</td>
<td>99.91%</td>
</tr>
<tr>
<td>TippyTipper</td>
<td>2953</td>
<td>26 238</td>
<td>30 172</td>
<td>25 225</td>
<td>3.84%</td>
</tr>
<tr>
<td>androidToken</td>
<td>3680</td>
<td>454 13336</td>
<td>19 189</td>
<td>42 686</td>
<td>90.74%</td>
</tr>
<tr>
<td>httpMon</td>
<td>4939</td>
<td>42 407</td>
<td>34 235</td>
<td>28 292</td>
<td>33.33%</td>
</tr>
<tr>
<td>Rememberer</td>
<td>5915</td>
<td>48 633</td>
<td>24 194</td>
<td>17 320</td>
<td>64.58%</td>
</tr>
</tbody>
</table>

Android Monkey, a widely used testing technique developed by Google, represents the state-of-practice and operates by sending random inputs and events to the app under test. Dynodroid uses several heuristics to improve on the number of inputs/events used by Monkey, and thus achieves similar coverage with fewer generated events. As both Monkey and Dynodroid are based on pseudo-random testing, using the same low number of events that are generated by TrimDroid may not be a fair comparison. To address that, we ran both Dynodroid and Monkey with 2,000 input events, which is the maximum input size for Dynodroid.

EvoDroid is a system testing technique that implements a novel evolutionary testing algorithm. EvoDroid’s fitness is designed to maximize the statement coverage through exhaustively exploring the search space for event sequences. Note that EvoDroid is a search-based testing technique; thus, using the same low number of events that are generated by TrimDroid is not adequate for the evolutionary search to be effective. On the other hand, the main goal of TrimDroid is to generate a limited number of tests, which is crucial when the evaluation of tests (i.e., oracle) involves manual effort. To summarize, EvoDroid is intended to exhaustively test event sequences; TrimDroid is designed to comprehensively test the input space of UI widgets, using a limited number of event sequences identified by utilizing prime paths. Consequently, a fair one-to-one comparison of the two techniques might not be possible. Having said that, we ran EvoDroid for ten evolutionary generations on all apps, which is the same setup as that used in [29], and compare the resulting statement coverage.

Few other tools exist, but we were unable to include them in our experiments, as we could not properly run them after significant consultation with their developers. A²E [12] aims to discover the Activities comprising an app by covering a model similar to our notion of ATM. We were unable to run A²E on any of our apps using the virtual machine provided by its developers. A²E gets stuck when trying to start Troyd [24]—an integration testing framework for Android utilized by the tool.

We also attempted to run SwiftHand [14]. It uses (1) machine learning to infer a model of the app during testing, (2) the inferred model to generate user inputs that visit unexplored states of the app, and (3) the execution of the app on the generated inputs to refine the model. SwiftHand exits with an exception failing to locate the main Activity of the app. Based on our analysis, the issue may reside in a model of models for testing that are covered using a depth-first search strategy for generation of event sequences and random input data. Our work differs from them as we use prime path coverage, which subsumes all other graph coverage criteria, to generate the event sequences. We further generate the inputs for GUI widgets in a combinatorial fashion rather than using randomly generated input.

In addition, TrimDroid runs 134 times faster than Dynodroid, 78 times faster than EvoDroid, 1.5 times slower than M[agi]C, and about 3 times slower than Monkey. TrimDroid’s slower performance in comparison to M[agi]C and Monkey can be attributed to the analysis performed for extracting the models as well as the application of heuristics for reducing the number of tests.

9. RELATED WORK

In this section, we describe the most relevant research from two areas: Android testing and combinatorial testing.

9.1 Android Testing

The Android development environment ships with a powerful testing framework [1] that is built on top of JUnit. Robolectric [5] is another framework that separates the test cases from the device or emulator and provides the ability to run the tests directly by referencing the Android library. While these frameworks automate the execution of the tests, the test cases themselves still have to be manually developed.

Several prior approaches build on random testing techniques. Amalfitano et al. [8–9] described a crawling-based approach that leverages completely random inputs to generate unique test cases. Hu and Neamtiu [21] presented a random approach for generating GUI tests that uses Android Monkey. Dynodroid [27] incorporates several heuristics to improve on Android Monkey’s performance.

Several prior approaches have focused on the extraction of models for Android testing. ORBIT [38] is a grey-box model creation technique that creates a GUI model of the app for testing. A²E [12] is a static taint analysis technique for building an app model for automated exploration of an app’s Activities.

Unlike TrimDroid, these approaches focus on the construction of models for testing that are covered using a depth-first search strategy for generation of event sequences and random input data. Our work differs from them as we use prime path coverage, which subsumes all other graph coverage criteria, to generate the event sequences. We further generate the inputs for GUI widgets in a combinatorial fashion rather than using randomly generated input.

Choudhary et al. [15] compare several of the testing techniques supported by Dynodroid. We could not run the current version of EvoDroid on DivideAndConquer due to use of unsupported APIs.

The results show that TrimDroid is able to achieve higher code coverage in most cases. Note that TrimDroid is targeted at GUI testing, and therefore only generates GUI events, while Dynodroid and EvoDroid support both system events as well as GUI events. As a result, for some apps, TrimDroid cannot achieve the same coverage as Dynodroid and EvoDroid. Nevertheless, TrimDroid’s coverage, on average, outperforms Monkey by 27.36%, Dynodroid by 16.33%, M[agi]C by 14%, and EvoDroid by 4%.
mentioned above by evaluating them according to four criteria: code coverage, fault detection capabilities, ease of use, and compatibility with different Android SDK versions. Their results show that Monkey outperforms other studied approaches along the four mentioned criteria. They suggest that using a combination of these approaches may result in better performance. To that end, TrimDroid utilizes a combination of a model-based testing approach and a combinatorial approach.

Jensen et al. [23] presented a system testing approach that combines symbolic execution with sequence generation. The goal of their work is to find valid sequences and inputs to reach pre-specified target locations, while TrimDroid aims to maximize the code coverage. Anand et al. [11] presented an approach based on concolic testing of a particular Android library to identify the valid GUI events using the pixel coordinates. Unlike our research, their approach does not generate systems tests, nor do they generate the tests in a combinatorial fashion. Finally, in our own prior research, we have developed techniques based on evolutionary search as well as symbolic execution for testing Android apps. Unlike our prior work, TrimDroid is targeted at GUI testing and explores a new combinatorial testing approach.

9.2 Combinatorial Testing

Combinatorial testing has shown to be an effective approach in GUI-based testing [39]. Approaches such as [18,36] propose using greedy or heuristic algorithms to generate minimal sets of tests for a given combinatorial criteria. Nguyen et al. [32] proposed an approach that leverages manually constructed behavioral models of an app in pairwise testing of GUI-based applications. Kim et al. [25] introduced the idea of using static analysis to filter irrelevant features when testing software product lines. Petke et al. [34] showed that higher strength of t-way testing can be practical and effective in pruning the test combinations, they have some known limitations. For example, the IM is constructed by analyzing the layout XML files statically, which does not handle cases where the Activity views are defined dynamically. In addition, our static analysis is subject to false negatives in certain rare cases, e.g., dependencies due to widget values being stored/read from the SD card, or dependencies occurring through global variables. Our future research involves improving the analysis to support such cases.

Recall from Section 3 that our current implementation uses a predefined set of input classes for unbounded widgets. In our future work, we plan to extend our previous work [30,31] on symbolic evaluation of Android apps to systematically derive the input classes for those widgets.

The premise of our work is that the only available resource for automated testing is an app’s APK file. If an app’s specification is also available (e.g., in a formal machine-interpretable format), one could investigate the extraction of interactions from the app’s specification as well as its implementation for combinatorial test generation. In practice, most apps on the market lack specifications that can be used effectively for automated testing. However, this means that if two widgets should have a dependency according to the intended specification of the software, but the implemented software does not have such a dependency, possibly because the developer failed to correctly realize the specification, TrimDroid would not generate tests to exercise those combinations.

In this work, we have focused on automatic test case generation, rather than automatic test oracle construction, resulting in oracles that determine whether test cases pass or fail. We believe that it will be necessary to have the user in the loop to generate oracles that assess intended app behaviors. Hence, reducing the number of test cases to be inspected is certainly beneficial. Moreover, the ability to generate tests that can achieve high code coverage has applications beyond testing for functional defects: Energy issues, latency, memory, and reliability problems are important concerns in the context of mobile devices that are often effectively detected by executing the code.

10. CONCLUSION AND FUTURE WORK

We presented a fully-automated approach for generating GUI system tests for Android apps using a novel combinatorial technique. Our approach employs program analysis to partition the GUI input widgets into sets of dependent widgets. Thus, the GUI widgets with dependencies become candidates for combinatorial testing. We then use an efficient constraint solver to enumerate the test cases covering all possible combinations of dependent GUI widgets. Our experimental evaluation shows that TrimDroid is able to significantly reduce the number of tests in comparison to exhaustive combinatorial testing, without any degradation in code coverage.

While our program analysis heuristics have shown to be quite effective in pruning the test combinations, they have some known limitations. For example, the IM is constructed by analyzing the layout XML files statically, which does not handle cases where the Activity views are defined dynamically. In addition, our static analysis is subject to false negatives in certain rare cases, e.g., dependencies due to widget values being stored/read from the SD card, or dependencies occurring through global variables. Our future research involves improving the analysis to support such cases.

Recall from Section 3 that our current implementation uses a predefined set of input classes for unbounded widgets. In our future work, we plan to extend our previous work [30,31] on symbolic evaluation of Android apps to systematically derive the input classes for those widgets.

The premise of our work is that the only available resource for automated testing is an app’s APK file. If an app’s specification is also available (e.g., in a formal machine-interpretable format), one could investigate the extraction of interactions from the app’s specification as well as its implementation for combinatorial test generation. In practice, most apps on the market lack specifications that can be used effectively for automated testing. However, this means that if two widgets should have a dependency according to the intended specification of the software, but the implemented software does not have such a dependency, possibly because the developer failed to correctly realize the specification, TrimDroid would not generate tests to exercise those combinations.

In this work, we have focused on automatic test case generation, rather than automatic test oracle construction, resulting in oracles that determine whether test cases pass or fail. We believe that it will be necessary to have the user in the loop to generate oracles that assess intended app behaviors. Hence, reducing the number of test cases to be inspected is certainly beneficial. Moreover, the ability to generate tests that can achieve high code coverage has applications beyond testing for functional defects: Energy issues, latency, memory, and reliability problems are important concerns in the context of mobile devices that are often effectively detected by executing the code.

11. ACKNOWLEDGMENTS

This work was supported in part by awards CCF-1252644 from the National Science Foundation, D11AP00282 from the Defense Advanced Research Projects Agency, W911NF-09-1-0273 from the Army Research Office, HSHQDC-14-C-B0040 from the Department of Homeland Security, and FA95501610030 from the Air Force Office of Scientific Research.
12. REFERENCES

