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ABSTRACT
The Alloy specification language, and the corresponding Al-
loy Analyzer, have received much attention in the last two
decades with applications in many areas of software engi-
neering. Increasingly, formal analyses enabled by Alloy are
desired for use in an on-line mode, where the specifications
are automatically kept in sync with the running, possibly
changing, software system. However, given Alloy Analyzer’s
reliance on computationally expensive SAT solvers, an im-
portant challenge is the time it takes for such analyses to
execute at runtime. The fact that in an on-line mode, the
analyses are often repeated on slightly revised versions of a
given specification, presents us with an opportunity to tackle
this challenge. We present Titanium, an extension of Alloy
for formal analysis of evolving specifications. By leveraging
the results from previous analyses, Titanium narrows the
state space of the revised specification, thereby greatly re-
ducing the required computational effort. We describe the
semantic basis of Titanium in terms of models specified in
relational logic. We show how the approach can be realized
atop an existing relational logic model finder. Our experi-
mental results show Titanium achieves a significant speed-up
over Alloy Analyzer when applied to the analysis of evolving
specifications.

CCS Concepts
•Software and its engineering → Formal methods;
Software verification; Software evolution;

Keywords
Formal Verification, Evolving Software, Relational Logic,
Partial Models.

1. INTRODUCTION
Formal specification languages and the corresponding anal-

ysis environments have long been applied to a variety of
software engineering problems. Most notably, the Alloy lan-
guage and the corresponding analysis engine, Alloy Ana-

lyzer [23], have received a lot of attention in the software
engineering community. Alloy provides a lightweight object
modeling notation that is especially suitable for modeling
structural properties of a software system. It has been used
to solve a variety of software engineering problems, includ-
ing software design [12,13,15,24], code analysis [8,9,33,41],
and test case generation [26, 30]. Given a model of a soft-
ware system in Alloy, the Alloy Analyzer uses a SAT solver
to automatically analyze the software system’s properties,
specified in the form of predicates and formulas.

Formal specifications have much in common with the com-
plex software systems they represent; namely they are hard
to develop and tend to evolve. Construction of formal
specifications is a non-trivial task. Just like most complex
software systems, formal specifications are developed iter-
atively [17], where in each iteration some elements of the
model are modified, removed, and new ones are added, until
the desired fidelity is achieved. In each iteration, the spec-
ification is analyzed to help the developer assess its utility,
fix flaws, and plan the next set of changes.

In addition, as software systems tend to evolve over time,
formal specifications representing them need to evolve as
well. The evolution of specifications, however, is not limited
to those that are constructed manually. In fact, automated
means of generating formal specifications from software ar-
tifacts [11,16,26,33,35,41], often through some form of pro-
gram analysis, have made it significantly easier to maintain
an up-to-date specification for a changing software system.
Such techniques have made it possible to verify an evolving
specification of a software system, after the initial deploy-
ment of software, possibly at runtime, and as it changes.
In such settings, the evolving specification is continuously
analyzed in real-time to assess the properties (e.g., secu-
rity [8, 9, 33]) of the corresponding software.

In spite of its strengths, Alloy Analyzer’s reliance on com-
putationally heavy SAT solvers means that it can take a sig-
nificant amount of time to verify the properties of software.
The ability to analyze the specifications efficiently is quite
important, especially when they are developed through an
iterative process. The development of a complex specifica-
tion often involves repeated runs of the analyzer for debug-
ging and assessment of its semantics. In an online mode,
where the specifications are kept in sync with the chang-
ing software, and the analysis is performed at runtime, the
time it takes to verify the properties of software is of even
greater importance. There is, thus, a need for mechanisms
that facilitate efficient analysis of evolving specifications in
response to incremental changes. An opportunity to reduce
the analysis time is presented by the fact that in the afore-
mentioned scenarios, specifications are unlikely to change
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completely from one analysis to the next. It is, therefore,
desirable to be able to leverage the results of analysis per-
formed on a specification to optimize any subsequent anal-
yses on its revisions. However, Alloy Analyzer, as well as
its other variants (e.g., Aluminum [34]), do not provide any
mechanism to leverage the results of analysis across evolving
specifications, even if they are substantially overlapping.

In this paper, we introduce Titanium, an extension of Al-
loy Analyzer for efficient analysis of evolving Alloy speci-
fications. The efficiency gain is due to a new method of
determining the analysis bounds. In the conventional Alloy
Analyzer, the user-defined bounds used to run the analysis
determine the scope of search for models within a finite do-
main. The user-defined bound, however, is typically not the
tightest bound for a problem. The tightest bound for a prob-
lem is effectively determined when all model instances are
found. While this observation by itself is of little value when
analyzing an Alloy specification from scratch, it is quite valu-
able when the analysis is targeted at evolving, substantially
overlapping specifications, and forms the intuition behind
our research.

Titanium first analyzes the structure of a revised speci-
fication, and identifies a set of relational variables that are
shared with the originating specification. It then uses the in-
stances produced for the original specification to potentially
calculate tighter bounds for such relational variables in the
revised specification. By tightening the bounds, Titanium
reduces the search space, enabling the SAT solver to find the
model instances at a fraction of time needed for the origi-
nal bounds. The experimental results show that, with the
proposed optimization, Titanium achieves significant gains
in speed compared to the conventional Alloy Analyzer.

This paper makes the following contributions:

• Efficient analysis of evolving specifications. We pro-
pose a novel approach for analyzing evolving Alloy
specifications that reduces the state space by adjust-
ing the analysis bounds, thereby achieving significant
speed-ups.

• Formal description. We formally describe the semantic
basis of this approach in terms of models specified in
relational logic, and demonstrate how it can be realized
atop an existing relational logic model finder, without
compromising soundness and completeness.

• Implementation. We have realized the analysis tech-
nique by modifying the Alloy Analyzer environment,
resulting in a new version of the tool, which we have
made publicly available [4].

• Experiments. We present empirical evidence of the
efficiency gains using both Alloy specifications found
in the prior work and those synthesized in a systematic
fashion.

The remainder of this paper is organized as follows. Sec-
tion 2 uses an illustrative example to describe the intuition
behind our technique as well as the necessary background.
Section 3 provides a formal description of our approach. Sec-
tion 5 presents our experimental results obtained in our anal-
ysis of both real and synthesized specifications. Section 6 re-
views the related research. Finally, Section 7 concludes the
paper with a summary of our contributions and the avenues
of future research.

1 (a) a simple model of typing in Java
2 abstract sig Type {
3 subtypes: set Type
4 }
5 sig Class, Interface extends Type {}
6 one sig Object extends Class {}
7 sig Instance {
8 type: Class
9 }

10 fact TypeHierarchy {
11 // Object, root of subtype hierarchy
12 Type in Object.∗subtypes
13 // no self−subtyping
14 no t: Type | t in t.ˆsubtypes
15 // subtype at most one class
16 all t: Type | lone t.˜subtypes & Class
17 }
18 pred Show {
19 some Class − Object
20 some Interface
21 }
22 run Show for 2 but 3 Type

1 (b) an updated version of the model
2 sig Variable {
3 holds: lone Instance,
4 type: Type
5 }
6 fact TypeSoundness {
7 all v: Variable | v.holds.type in v.type
8 }

Listing 1: Alloy specification examples: (a) a
specification describing Java typing and (b) new
constructs added to the revised specification.

2. ILLUSTRATIVE EXAMPLE
This section motivates our research and illustrates our op-

timization technique using a simple example. We describe
the example using the Alloy [6] and Kodkod notations [43].
Section 3 presents a more detailed discussion of our ap-
proach.

Consider the Alloy specification for a simplified model of
typing in Java, shown in Listing 1. This specification is
adopted from [6], and distributed with the Alloy Analyzer.
Each Alloy specification consists of (1) data types, (2) for-
mulas that define constraints over data types, and (3) com-
mands to run the analyzer. Essential data types are specified
in Alloy by their type signatures (sig), and the relationships
between them are captured by the the declarations of fields
within the definition of each signature. The running exam-
ple defines 5 signatures (lines 2–9): Types are partitioned
into Class and Interface types, with Object introduced as a
singleton extending Class. Each Type may have a set of
subtypes, and each Instance has a specific Class type.

Facts (fact) are formulas that take no arguments, and de-
fine constraints that every instance of a specification must
satisfy, thus restricting the instance space of the specifica-
tion. The formulas can be further structured using pred-
icates (pred) and functions (fun), which are parameterized
formulas that can be invoked. The TypeHierarchy fact para-
graph (Listing 1, lines 10–17) states that Object is the root
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1 {T1 ,T2 ,O1 , I1 , I 2 }
2

3 Object : ( 1 , 1 ) : : {{O1} ,{O1}}
4 C l a s s : ( 0 , 2 ) : : {{} ,{{T1} ,{T2}}}
5 I n t e r f a c e : ( 0 , 2 ) : : {{} ,{{T1} ,{T2}}}
6 I n s t a n c e : ( 0 , 2 ) : : {{} ,{{ I 1 } ,{ I 2 }}}
7 s ub t ype s : ( 0 , 9 ) : : {{} ,{{O1 ,O1} ,{O1 ,T1} ,{O1 ,T2} ,{T1 ,O1} ,{T1 ,T1} ,{T1 ,T2} ,{T2 ,O1} ,{T2 ,T1} ,{T2 ,T2}}}
8 t ype : ( 0 , 6 ) : : {{} ,{{ I1 ,O1} ,{ I1 , T1} ,{ I1 , T2} ,{ I2 ,O1} ,{ I2 , T1} ,{ I2 , T2}}}
9

10 ( a l l t : Object + C l a s s + I n t e r f a c e | ! ( t i n ( t . ˆ sub t ype s ) ) ) && . . .
11 // ——————————————————————————————————————————
12 // The upper bound for the subtypes relation in the updated specification is tightened by Titanium:
13 s ub t ype s : ( 0 , 4 ) : : {{} ,{{O1 ,T1} ,{O1 ,T2} ,{T1 ,T2} ,{T2 ,T1}}}

Listing 2: Kodkod representation of the Alloy module of Listing 1.

of the subtype hierarchy; that no Type is a subtype of itself
(neither directly nor indirectly); and that each Type may be
a subtype of at most one Class.

Analysis of specifications written in Alloy is completely
automated, but bounded up to user-specified scopes on the
size of data types. In particular, to make the state space
finite, certain scopes need to be specified that limit the num-
ber of instances of each type signature. The run specification
(lines 18–22) then asks for model instances that contain at
least one Interface and one Class distinct from Object, and
specifies a scope that bounds the search for model instances
with at most two elements for each top-level signature, ex-
cept for Type bounded to three elements.

In order to analyze such a relational specification bounded
by the specified scope, both Alloy Analyzer and Titanium
then translate it into a corresponding finite relational model
in a language called Kodkod [43]. Listing 2 partially shows
a Kodkod translation of Listing 1(a). A model in Kodkod’s
relational logic is a triple consisting of a universe of elements
(also called atoms), a set of relation declarations including
their lower and upper bounds specified over the model’s uni-
verse, and a relational formula, where the declared relations
appear as free variables [43].

The first line of Listing 2 declares a universe of five un-
interpreted atoms.1 In this section, we assume an interpre-
tation of atoms, where the first two (T1 and T2) represent
Type elements, the next one (O1) an Object element, and
the last two (I1 and I2) Instance elements.

Lines 3–8 declare relational variables. Similar to Alloy,
formulas in Kodkod are constraints defined over relational
variables. While in Alloy these relational variables are sep-
arated into signatures, that represent unary relations estab-
lishing a type system, and fields, that represent non-unary
relations, in Kodkod all relations are untyped, with no dif-
ference between unary and non-unary relational variables.

Kodkod further allows specifying a scope over each re-
lational variable from both above and below by two rela-
tional constants. In principle, a relational constant is a pre-
specified set of tuples drawn from a universe of atoms. These
two sets are called upper and lower bounds, respectively.
Every relation in a model instance must contain all tuples
in the lower bound, and no tuple that is not in the upper
bound. That is, the upper bound represents the whole set
of tuples that a relational variable may contain, and a lower
bound a partial solution for a given model.

1Abbreviated atom names are chosen for readability, and do
not indicate type, as in Kodkod all relations are untyped.

// model instance 1
Object : {{O1}}
C l a s s : {{T1}}
I n t e r f a c e :{{T2}}
I n s t a n c e : {{}}
s ub t ype s : {{O1 ,T2} ,{T2 ,T1}}
t ype : {{}}

// model instance 2
Object : {{O1}}
C l a s s : {{T1}}
I n t e r f a c e :{{T2}}
I n s t a n c e : {{ I 1 } ,{ I 2 }}
s ub t ype s : {{T2 ,T1} ,{O1 ,T1}}
t ype : {{ I1 , T1} ,{ I2 , T1}}

Listing 3: Two arbitrarily selected instances for the
specification of Listing 1(a).

Consider the Object declaration (line 3), its upper and
lower bounds both contain just one atom, O1, as it is defined
as a singleton set in Listing 1. The upper bound for the
variable subtypes ⊆ Type × Type (line 7) is a product of
the upper bound set for its corresponding domain and co-
domain relations, taking every combination of an element
from both and concatenating them.

The Kodkod’s finite model finder then explores within
such upper and lower bounds defined for each relational
variable to find instances of a formula, which are essentially
bindings of the formula’s relational variables to relational
constants in a way that makes the formula true. Listing 3
shows two different instances for the specification of List-
ing 1(a). A model instance can essentially be viewed as an
exact bound, where the upper and lower bounds are equal.

After analyzing the specification, both Alloy Analyzer and
Titanium produce the same instance set comprising 72 mod-
els (including symmetries), through enumerating all valid in-
stances, in relatively the same amount of time, i.e., 421 and
419 ms, respectively. However, if the specification were to
change, Titanium would leverage the instances produced for
the original specification to potentially set a tighter bound
for the shared relational variables, which in turn reduces the
size of the state space, and improves the analysis time.

Figure 1 shows a simplified, schematic view of the Tita-
nium approach, using an example consisting of 5 relational
variables. As shown in Figure 1(a), the user-defined bounds
scope the state space in the analysis of original specification.
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(a) (b) (c)

Figure 1: Simplified, schematic view of the Titanium approach, where the dimensions represent relational variables,
in this case five hypothetical relational variables R1, R2, R3, R4 and R5: (a) user-defined bounds for the original
specification, (b) instance set for the original specification, and (c) tightened bounds for the relations that remain
unaffected in the revised specification, i.e., R1, R2 and R3.

Each relational variable can be assigned a value within the
user-defined bounds. A value assignment to all relational
variables in such a way that do not violate constraints de-
rived from the specification represents a satisfying model
instance, and depicted as a pentagon in Figure 1b. The
key observation is that once the satisfying model instances
are found, we are able to tighten the bounds for a given
specification, such that the same specification, or one that
is substantially the same, can be solved significantly faster.
Figure 1(c) shows a situation in which the revised specifica-
tion does not affect R1, R2, and R3, and thus Titanium is
able to set tighter bounds than those specified by the user
for those relations. Of course, changed relations and those
newly added or affected by changed relations (R4’ and R5’
in the case of this example) would maintain the user-defined
bounds for the analysis.

Consider Listing 1(b), for example, where a new signature
Variable is added, which may hold an Instance, and has a
declared Type. The additional fact paragraph then states
that each Instance held by a Variable should have types that
are subtypes of the Variable’s declared Type.

Given the updated specification, this time Titanium lever-
ages the results of the previous run to set a tighter bound
for relational variables that have not been changed and have
no dependency on the other changed variables. In this par-
ticular example, the upper bound for the subtypes relation
in the updated model is tightened by Titanium (Listing 1,
lines 12–13). Out of 9 possible combination of Type× Type
elements, just 4 pairs are valid, as the Object element (O1 )
is the root in the subtype hierarchy (line 11), and it can-
not be a subtype for the other Type elements (T1 and T2 ).
This can be easily calculated by taking the union of satisfy-
ing model instances from the previous run. The exploration
space thus would be reduced. As a result, Titanium is faster
in finding a model instance, taking 51 ms for it compared to
275 ms that it takes for Alloy Analyzer to produce the first
model instance. The time required to compute the whole
instance set would also improve from 1574 ms to 1099 ms,
in this simple example.

3. APPROACH
Editing an Alloy specification produces a new finite re-

lational specification, i.e., a Kodkod problem, with finitely
many distinct model instances. In this section, we show
how solutions for the original specification can potentially
be used to narrow the exploration space of the revised spec-
ification, and in particular, whether they constitute a partial
solution, i.e., a lower bound, and/or a (partial) upper bound
for variables in the new specification.

Our algorithm is described in two steps. First, we assume
that the set of relations for the two models are equal. We
then discuss the general algorithm where the universe of
discourse, including relations, may change.

3.1 Basic Reasoning
Definition 1 (instance set). Let i be a model instance sat-
isfying the model specification S, i |= S. We call I(S) an
instance set for a model specification S, where each model
instance i ∈ I(S) satisfies the model specification S:

I(S) = {i| i ∈ I(S) ∧ i |= S})

Definition 2 (model specialization). Let S and S ′ be model
specifications defined over the same set of relational vari-
ables. We say S is a specialization of S ′, S ≤ S ′, if and
only if each model in the instance set of S is also a model
instance for S ′, I(S) ⊆ I(S ′).

Four different scenarios are possible, depending on the
model specialization relation between instance sets of the
two specifications:

• Superset: S ≤ S ′, where the instance set of the re-
vised specification includes the original specification’s
instance set. I(S) thus constitutes the lower bound for
relations in S ′, as each model instance for S is also a
valid instance for S ′. They essentially represent a pri-
ori known part, i.e., a partial instance, for the changed
model specification, S ′, reducing the scope of the SAT
problem to be solved to find potentially new instances,
and thereby improving performance of the analysis.

• Subset: S ′ ≤ S, where the instances of the revised
specification are contained in the original specifica-
tion’s instance set. I(S) thus constitutes the upper
bound for relations in S ′, as each model instance for
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S ′ is among model instances already found by solving
S, relieving the need to be rediscovered.

• Equivalent: S ≤ S ′ ∧ S ′ ≤ S, where a set of model
instances for S ′ is equivalent to that of the model S,
or I(S) = I(S ′).

• Arbitrary: No specialization relation exists, thus no
efficiency gains are possible for the analysis of specifi-
cation S ′.

Note that when the user specified scope has been increased
in the analysis of the revised specification, Titanium is still
able to adjust the lower bound, but not the upper bound.
We can then reduce the problem of model specialization to
the following propositional formula [42], where P(S) denotes
the propositional formula for a model S:

P(S) ≤ P(S ′) ≡ (P (S)⇒ P (S′)) (1)

Intuitively, it states that all satisfying solutions to P(S)
are solutions to P(S ′), or more formally, the set of model
instances for P(S) is a subset of the instance set of P(S ′),
I(P(S)) ⊆ I(P(S ′)), if and only if P (S) implies P (S′).

Note that finite relational models can be represented as
propositional models using standard techniques [19, 23, 43].
Indeed, the Alloy Analyzer relies on Kodkod [43] that trans-
lates specifications in Alloy’s relational logic into proposi-
tional formulas, which then can be solved by off-the-shelf
SAT solvers. Specifically, a relational model, S, in Kodkod
translates into a formula, P(S), in propositional logic. There
is a one-to-one correspondence between a relational model,
S, and its counterpart propositional model, P(S), notwith-
standing the peripheral variables introduced as a byproduct
of the translation process. The relationship between a model
specification and its correspondence model instances defined
above for propositional models are thus preserved for finite
relational models under this mapping.

For each pair of specifications S and its revision S ′, we
can check whether any model specialization holds between
them with a SAT solver, by determining whether the for-
mula P (S)⇒ P (S′) is a tautology (i.e., whether its negation
is not satisfiable). However, solving the negation formula
P (S) ∧ ¬P (S′) can be expensive for large specifications of
substantial systems. To alleviate this problem and render
it more cost-effective, we adjusted the formula by leverag-
ing the fact that the two specifications have many clauses
in common, as one is derived from the other. Specifically,
inspired by Thüm et al. [42], we state P (S) and P (S′) as
follows:

P(S) = pS ∧ c (2)

P(S ′) = pS′ ∧ c (3)

where pS and pS′ denote the conjunction of clauses exclu-
sive to P(S) and P(S ′), respectively, and c the common
clauses. Because pS ∧ c ∧ ¬c is a contradiction, the formula
P (S) ∧ ¬P (S′) = (ps ∧ c ∧ ¬ps′) ∨ (ps ∧ c ∧ ¬c) then can be
rendered as:

P(S) ∧ ¬pS′ (4)

The formula can be further simplified as a disjunction of
several easier to solve formulas, each one is represented as
as a conjunction of P(S) and a sub-expression in the CNF
representation of pS′ . Specifically, consider pS′ with the

Algorithm 1: ExtractBase

Input: F : formulas,R : relations
Output: 〈 bRelations, bFormulas 〉

1 bFormulas← {}
2 bRelations← {}
3 for formula ∈ F do
4 rels = getRelationalV ars(formula)
5 if rels ⊆ R then
6 bFormulas← bFormulas ∪ formula
7 bRelations← bRelations ∪ rels
8 end
9 end

10 return 〈 bRelations, bFormulas 〉

CNF representation of pS′
1
∧ pS′

2
∧ ... ∧ pS′

n
. The formula

P(S) ∧ ¬pS′ then equals:

∨
16 i 6 n

P(S) ∧ ¬pS′
i

(5)

The problem of categorization of model changes per our
specialization definition is now reduced to a disjunction
of several sub-expressions, where each one is significantly
smaller and easier to solve than the original formula. In-
stead of calling a SAT solver to determine satisfiability of
a rather large formula, we can use multiple calls to a SAT
solver, posing a more tractable sub-expression each time. If
any sub-expression determines to be satisfiable, the entire
model specialization evaluates to false, possibly before rea-
soning about all sub-expressions, further improving the ef-
fectiveness of the approach. Moreover, except for one clause
(pS′

i
), multiple calls to a SAT solver solve exactly the same

formula. This enables leveraging the incremental solving
capabilities featured in many modern SAT solvers to make
subsequent runs more efficient (each sub-expression is mod-
eled as a separate addition of new constraints, pS′

i
, to an

already solved formula, P(S)).

3.2 Extended Reasoning
In the following, we present our general approach for sit-

uations where both Alloy specifications are not defined over
the same set of relational variables, i.e., relational variables
may be added or removed as a result of the specification
modification.

Our approach leverages declarative slicing [47], which is a
program slicing technique applicable to analyzable declara-
tive languages. Declarative slicing partitions a declarative
formula specification, such as Alloy and Kodkod, into two
slices of base and derived, where each slice is a disjoint sub-
set of the formula constraints. A base slice is defined by
a set of relational variables, called slicing criterion, to be
constrained by the formula constraints specified in the base
slice, and an instance of which represents a partial solution
that can be extended by an instance of a derived slice for
the entire specification.

More formally, let S = 〈R,F 〉 be a specification, consist-
ing of a set of relational variables R and a set of relational
formulas, F , defined over R. Let Sb.r ⊆ R and Sd.r ⊆ R
partition R, and Sb.f ⊆ F be the formulas that only involve
relations in Sb.r. We call Sb.r a base slice for S if and only
if:
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Algorithm 2: Superset

Input: F : S′.formulas,R : S.relations ∩ S′.relations
Output: lb //adjusted lower bound set

1 〈 bRelations, bFormulas 〉 ← ExtractBase(F,R)
2 lb← S′.lb
3 if bFormulas ⊆ S.formulas then
4 for r ∈ bRelations do
5 lb(r)←

⋂
i∈I(s) i.val(r)

6 end
7 end
8 return lb

Algorithm 3: Subset

Input: F : S.formulas,R : S.relations ∩ S′.relations
Output: ub //adjusted upper bound set

1 〈 bRelations, bFormulas 〉 ← ExtractBase(F,R)
2 ub← S′.ub
3 if bFormulas ⊆ S′.formulas then
4 for r ∈ bRelations do
5 ub(r)←

⋃
i∈I(s) i.val(r)

6 end
7 end
8 return ub

∀ ib ∈ I(Sb) | ∃ id ∈ I(Sd) . ib × id ∈ I(S) (6)

To derive a base slice from the revised specification in a
way that its relations are shared with those of the original
specification, we use a constraint partitioning algorithm.

Algorithm 1 outlines the partitioning process. It gets as
input a set of relational variables, R, and a set of relational
formulas, F . Without loss of generality, we assume that F is
a conjunction of several sub-formulas, i.e., F = ∧formulas.
As an example, the formula in Listing 2, line 10, repre-
sents this form for the constraints specifications in our run-
ning example (Listing 1). The algorithm then iterates over
each such sub-formulas, extracts the set of relational vari-
ables, rels, constrained by the given formula, and evaluates
it against the given set of relational variables, R. If the for-
mula’s variable set, rels, is a subset of R, it is added to the
formulas in the base slice, bFormulas, and rels to the base
slice relation set, bRelations, whose bounds will potentially
be adjusted.

As a result of calling ExtractBase with the formulas of a
specification and the shared relational variables of another
specification, the algorithm produces a bases slice. We thus
can reason about and update the bounds of the revised spec-
ification base slice according to the model specialization re-
lations described in Section 3.1.

Algorithm 2 computes the lower bound for the superset
scenario outlined in Section 3.1. It first calls ExtractBase
with a a set of relational formulas defined in S′ and a set of
relational variables shared between the two specifications as
inputs. Note that the base slice relation set, bRelations, is
a subset of those relations shared between the two specifi-
cations, and they are not necessarily equal. The algorithm
then evaluates a set of formulas in the base slice against
those specified in S. If the extracted formulas form a subset
of S.formulas, that means Sbase is a model specialization

of S′
base, or Sbase ≤ S′

base, as formula (1) is a tautology.
The instance set of Sbase thus constitutes the lower bound
for the corresponding relational variables in S′. Recall from
Section 2 that a lower bound for a relational variable repre-
sents the tuples that the variable must contain. The inter-
section of values assigned to a relation in all instances thus
constitutes a lower bound for that relational variable.

Algorithm 3 computes the upper bound for the subset sce-
nario outlined in Section 3.1. It first calls ExtractBase with
a set of relational formulas defined in S and a set of re-
lational variables shared between the two specifications as
inputs, because this time we want to see whether S′

base is a
model specialization of Sbase. It then evaluates a set of for-
mulas in the base slice against those specified in S’ (rather
than S as done in Algorithm 2). If the extracted formulas
is a subset of S′.formulas, that means S′

base ≤ Sbase. The
instance set of Sbase thus constitutes the upper bound for
their corresponding relational variables in S′. Recall that an
upper bound for a relational variable represents the tuples
that a relational variable may contain. The union of values
assigned to a relation in all instances thus constitutes an
upper bound for that relational variable.

Finally, in the case of equivalent relation (recall Sec-
tion 3.1), both upper and lower bounds need to be tightened.
In essence, the equivalent relation implies the existence of
both superset and subset relations (i.e., S ≤ S ′ ∧ S ′ ≤ S).
Titanium calculates the bounds for equivalent relations by
making consecutive calls to Algorithms 2 and 3.

Titanium, similar to Alloy, is both sound and complete for
the given bounds, yet more efficient for analysis of evolving
specifications. Space constraints prevented us from includ-
ing a proof. But they follow naturally from the algorithms in
Section 3.2 and the discussions, backed with mathematical
notations in Section 3.1.

Note that because the problem of reasoning about Alloy
model edits has been reduced to a satisfiability problem, as
presented in Section 3.1, it could still have an exponential
run-time in the worst case. Therefore, in the implementation
(line 4 in Algorithms 2 and 3), we have taken a computa-
tionally effective approach, in which whenever pS′

i
in for-

mula (5) is not equal to true, we conclude that the formula
P (S) ⇒ P (S′) is not a tautology, and skip the adjustment
of the corresponding bound (either lower or upper). In the
next section, we evaluate the execution time of our algo-
rithm empirically and show that the proposed optimization
technique achieves significant improvement compared to the
Alloy Analyzer.

4. TOOL IMPLEMENTATION
We have implemented Titanium as an extension to the

Alloy relational logic analyzer. To implement the algo-
rithms presented in the previous sections, Titanium modifies
both the Alloy Analyzer and its underlying relational model
finder, Kodkod [43]. The differences between Alloy Analyzer
and Titanium lie in the translation of high-level Alloy mod-
els into low-level bounded relational models, and the facility
to effectively determine the scopes of the updated models
given the instance set of the original specification. The Ti-
tanium tool is publicly available at the project website [4]

5. EXPERIMENTAL EVALUATION
This section presents the experimental evaluation of Tita-

nium. Our evaluation addresses the following research ques-
tions:
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Table 1: Results for publicly available and automatically extracted Alloy specifications.

Alloy Analyzer 4.2 Titanium

Specification #Rels Vars Clauses
Analysis

Vars Clauses
Adj. Analysis

Time (S) Time (S) Time (S)
Decider 47 2,384 3,526 2.549 1,819 2,657 0.507 0.533
Wordpress 54 2,419 3,479 3.718 1,385 1,615 0.245 1.198
Moodle 39 1,054 1,477 2.370 1,034 1,453 0.014 1.598
Ecommerce 70 3446 4705 5.462 1,618 1,682 0.133 0.711

DBLP 80 385 498 1.967 279 352 0.507 1.174
Library 78 254 341 7.411 129 177 0.616 0.510
Coach 86 275 369 0.260 21 24 0.032 0.031
WebML 47 122 178 0.738 119 172 0.050 0.592
GMF Graph 36 350 439 6.186 186 223 0.275 2.488
App Bundle 1 1,288 1,570,839 79,332,736 427.405 5,589 11,822 11.344 16.202
App Bundle 2 1,313 1,874,758 81,500,102 673.887 5,690 12,657 11.070 25.052
App Bundle 3 1,175 1,233,843 63,408,733 168.225 4,835 10,278 10.461 4.235
App Bundle 4 1,064 1,195,927 49,633,639 242.387 4,756 10,082 8.788 8.431
App Bundle 5 1,185 1,454,029 55,447,247 451.082 5,360 11,489 10.990 17.527

• RQ1 What is the performance improvement achieved
by Titanium’s incremental analysis compared to Alloy
Analyzer?

• RQ2 What is the overhead of Titanium? How does the
Titanium’s overhead relate to the size of the original
instance set?

• RQ3 How do the efficiency gains in Titanium relate
to the extent of change in the specification?

Our experimental subjects are Alloy specifications drawn
from a variety of different sources and of different problem
domains. These specifications further vary much in terms
of size and complexity. We have compared the performance
of Titanium to that of the Alloy Analyzer (version 4.2) on
three sets of specifications:

• Publicly available Alloy specifications. We used sev-
eral Alloy specifications taken from the work of other
researchers that were publicly available [11,15].

• Extracted specifications. We used several specifications
extracted automatically by various analysis techniques
that leverage Alloy for analysis of real-world software
systems [9,29].

• Automatically synthesized specifications. We devel-
oped a tool for generating a large number of synthe-
sized Alloy specifications.

The complete list of subject systems and their specifica-
tions are available from the project website [4].

5.1 Improvements in Practice
For an initial evaluation, we wanted to assess the kinds

of improvement one could expect in practice. We thus used
several Alloy specifications that were either publicly avail-
able or automatically extracted from real-world software sys-
tems, as shown in Table 1.

Decider [2] is an object model of a system to support de-
sign space exploration. Its model contains 10 Classes, 11
Associations, and 5 inheritance relationships, all represented
as signature extensions in Alloy.

WordPress and Moodle are object models from two open-
source applications, obtained by reverse engineering their
database schemas. The WordPress model, which is an open

source blog system [5], includes 13 classes connected by 10
associations with 8 inheritance relationships. Moodle is a
learning management system [3], widely used in colleges and
universities. Its model has 12 classes connected by 8 associ-
ations and consists of 4 inheritance relationships.

Ecommerce is the object model of an E-commerce sys-
tem adopted from Lau and Czarnecki [27], that represents
a common architecture for open source and commercial E-
commerce systems. It has 15 classes connected by 9 associ-
ations with 7 inheritance relationships.

The next five specifications, i.e., DBLP, Library, Coach,
WebML, GMF Graph, are class diagrams automatically
transformed into Alloy specifications by the CD2Alloy ap-
paratus [29]. The selected class diagrams are all publicly
available, taken from different sources, and previously pub-
lished as case studies and research papers in the area of UML
analysis.

Finally, the last five rows represent large specifications in-
tended for the assessment of security properties in mobile
platforms. Each one represents a bundle of Android apps
installed on a mobile device for detecting security vulnera-
bilities that may arise as a result of inter-application com-
munication, adopted from [1].

For some of the specifications whose change histories were
available, we actually used different versions of the specifica-
tion, which had been manually developed or automatically
extracted at different times. For others, we made three to
five changes to each specification, such that the updated
specifications still had valid model instances. We used a PC
with an Intel Core i7 2.4 GHz CPU processor and 8 GB of
main memory, and leveraged SAT4J as the SAT solver to
keep the extraneous variables constant during all the exper-
iments. We then compared the performance of Titanium to
that of the Alloy Analyzer (version 4.2) in all these revised
specifications.

The results are provided in Table 1. The table shows the
number of relations for each specification, the size of the
generated CNF, given as the total number of variables and
clauses, the analysis time taken for the model finder, as well
as the overhead time taken by Titanium for adjusting the
analysis bounds. As shown, for some experiments, the size
of CNF variables generated by Titanium is less than those
generated by Alloy. This is because relations with exact
bound, that essentially represent partial instances, do not
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need to be translated into a SAT formula, thus reducing the
size of the generated CNF.

The results demonstrate the effectiveness of our algorithm,
as in every case, and for every update, the analysis time
taken by Titanium for computing the instance set of modi-
fied specifications is less than that of using the Alloy Ana-
lyzer. However, we can also see that the results could vary
greatly, because the improvements could depend on several
factors, most notably the amount of change, and the size of
instance set. This called for further evaluation to determine
how such variations affect the efficiency gains, as described
next.

5.2 Efficiency vs. Size of Instance Set
Since in Titanium we use the instance sets from the prior

run to tighten the bounds for the next run, we expect the
efficiency gains to be more pronounced in cases with larger
instance sets. In this set of experiments, we attempted to
corroborate our intuition and obtain empirical evidence of
this relationship. Since we needed access to a large number
of Alloy specifications and their revisions, we developed a
tool for generating synthesized Alloy models.

Independent variables in our experiments are (a) the size
of an Alloy model, represented as the total number of signa-
tures and fields, as both are indeed translated into relations
in the underlying relational logic, (b) the number of update
operations, and (c) the type of update operations. As depen-
dent variables, we measured the time needed to update the
bounds and the time needed to determine the instance set
for the updated model. We discarded all synthesized Alloy
specifications that do not have any valid model instances,
and repeated the entire process until the appropriate num-
ber of models were generated. In the following, we describe
the approach taken for synthesis of Alloy specifications and
their revisions.

Alloy specification synthesis. Our tool for synthesiz-
ing Alloy specifications takes as input ranges for the size of
signatures, fields, and formulas and generates an Alloy spec-
ification as follows. It starts with the top-level signatures,
which are signatures that are declared independent of any
other signature and do not extend another signature. A top-
level signature may also be defined as an abstract signature,
meaning that it has no elements except those belonging to
its extensions, or defined as a nonempty signature. The gen-
erator then iterates over the set of top-level signatures, and
adds sub-signatures. Within the same iteration, singleton
signatures—that contain a single element—are also added.
In the next step, fields are added as multi-relations (in ad-
dition to signatures that represent unary relations), whose
domains and ranges are given by the already defined signa-
tures.

The last part of the generated module is a set of con-
straints in a freestanding fact paragraph. The constraints
are generated using formula templates that cover operators
defined in the Alloy core language [6], including subset and
equality operators in comparison formulas, conjunction and
universal quantification formulas, and some binary (union
(+), intersection (&), join (.) and product (–>)) and unary
(transpose (∼) and transitive closure (ˆ)) expressions. Note
that the other types of Alloy formulas, such as existential
quantification and disjunction, can be derived from the core
language the generator supports. As a concrete example of
a synthesized specification, Listing 4 shows an Alloy specifi-
cation automatically generated, given 6, 5, and 4 as the size
of signatures, fields and constraint formulas, respectively.

a b s t r a c t s i g A0 {
f 3 : some (A3 + A1)

}
s i g A1 {

f 0 : one A0
}
s i g A2 extends A0 { }
one s i g A3 {

f 1 : some A2 ,
f 4 : one A4

}
s i g A4 { }
one s i g A5 extends A2 {

f 2 : l o n e A0
}

f a c t {
( a l l o : A5 | some o . ( A5 <: f 2 ) )
( a l l o : A3 | # o . ( A3 <: f 1 ) <= # o . ( A3 <: f 4 ) )
# A5 = # A1
# A2 = 3

}
pred show{}
run show f o r 4

Listing 4: An automatically generated Alloy
specification.

Figure 2: Analysis time for bound adjustment over the
size of the original specification instance set.

Revised specification synthesis. To produce an up-
date for an Alloy model, our generator takes as input an
Alloy model and the number of edits. It supports the fol-
lowing edit operations on the Alloy models:

• create or delete a signature without children;

• change the signature multiplicity2, i.e., to set, one, lone
or some (one that is different from the multiplicity de-
fined in the original specification);

• make an abstract signature non-abstract or vice versa;

• move a sub-signature to a new parent signature;

• add a new field to a signature declaration or delete a
field;

• change a multiplicity constraint in a field declaration;

• finally, create a new constraint or delete a constraint.

2A signature multiplicity constrains the size of a set corre-
sponding to that signature type.
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Figure 3: Performance comparison: Analysis time taken
for Alloy Analyzer and Titanium vs. the size of the in-
stance set.

While the first six types of edits revise relations in the
specification, the last one modifies the specification’s formu-
las. The generation and execution of Alloy models and their
updates are done using Alloy’s APIs.

Experimental Results. We ran the generator with pa-
rameters specifying the size of signatures, fields, and formu-
las varying in the ranges of 5–15, 5–10, and 5–10, respec-
tively. The number of edits to create a revised specification
ranged from 1 to 7. For each edit, one of the 7 types of op-
eration was randomly selected and applied. We generated
500 original specifications, and another 500 corresponding
revised specifications, for a total of 1,000 specifications.

Figure 2 shows the boxplots of the analysis time for bound
adjustment over the varying size of instance sets for the orig-
inal specifications. According to the diagram, the execution
time increases roughly linearly with the size of instance sets,
and for a space of size 224,856, it takes just about 7.1 sec-
onds for Titanium to produce an adjusted bound set, show-
ing that the Titanium approach is effective in practice on
specifications with large-scale instance sets.

We then compared performance of Titanium with the Al-
loy Analyzer 4.2. In Figure 3, we show the results of our
measurements, comparing the analysis time taken by each
of the tools as boxplots with a logarithmic scale. On aver-
age, Titanium exhibited a 61% improvement over that of the
Alloy Analyzer. For specifications with very small instance
sets, the difference in performance of the two techniques is
negligible, yet the effects of adjusted bounds are clearly visi-
ble when the size of instance sets increases. As illustrated in
the diagram, the analysis time by the Alloy Analyzer grows
faster than the corresponding time for Titanium. In sum-
mary, Titanium is able to analyze the revised specifications
in a fraction of time it takes to run Alloy Analyzer, and the
difference in analysis time is more pronounced for the larger
instance sets, as we expected.

5.3 Efficiency vs. Extent of Change
We then assessed how the efficiency gains in Titanium re-

late to the extent of change. As a given specification diverges
from the original specification, and the shared variables and
formulas are reduced, the efficiency gains are expected to
gradually diminish. In this set of experiments, we attempted

Figure 4: Percentage of average improvement vs. the
proportion of change for model specifications of size 20
relations.

to corroborate this expectation, and to obtain an empirical
understanding of this relationship.

We generated a specification with a fixed size of 20 re-
lations, and automatically revised the specification by ran-
domly applying the edit operators described in the prior sec-
tion on 1 to 10 of its relations, resulting in a revised specifi-
cation with 5% to 50% change. We then measured the time
taken by both Alloy Analyzer and Titanium in analyzing the
revised specification. We repeated this experiment for 100
times. In this way, we were able to determine whether more
changes decrease the efficiency gains in analysis achieved
through bound adjustments.

The boxplots in Figure 4 show the efficiency gains of us-
ing Titanium over Alloy Analyzer. On average, for specifi-
cations of size 20 relations, one can expect to obtain more
than 50% reduction in analysis time (compared to that of
the Alloy Analyzer) for up to 10% change in the specifi-
cation. After that, the efficiency achieved through bound
adjustments decrease, and for changes above 40% of specifi-
cation, the improvements are reduced to less than 5%. Thus,
the extent to which edits can negatively affect Titanium’s
efficiency gains depends on the proportion of the original
specification that has changed.

6. RELATED WORK
Much work is related to this research. Here, we provide a

discussion of the related efforts in light of our research.
Alloy extensions. The widespread use of Alloy has

driven a number of extensions to the language and its under-
lying automated analyzer [31,32,34,45]. Certain techniques
have been developed for exploring model instances from Al-
loy’s relational logic constraints [18, 28, 34, 39, 43]. Among
others, Aluminum [34] extends the Alloy Analyzer to gen-
erate minimal model instances. It relies on a procedure in
which tuples are iteratively removed from the tuple set of
found model instances until a minimal instance is reached.
Macedo et al. [28] studied the space of possible scenario ex-
plorations in the context of relational logic. This work, sim-
ilar to Aluminum [34], mainly focuses on the order in which
model instances are explored, rather than facilitating the ex-
ploration of the solution space for evolving models. Torlak
and Jackson introduced a heuristic, polynomial-time algo-
rithm to substantially exclude symmetric instances of rela-
tional models [44], given that such model instances present
no additional information. Identifying isomorphisms of rela-
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tional models has no known polynomial-time solution. Mon-
taghami and Rayside [31] extended Alloy to explicitly sup-
port specification of partial models. However, this research
effort does not consider the analysis of evolving specifica-
tions. Indeed, it is commonly acknowledged that develop-
ment of efficient techniques for the analysis of Alloy specifi-
cations is a much needed area of research [45]. However, to
the best of our knowledge, no prior research has attempted
to optimize the performance of analysis time for evolving
Alloy specifications.

Incremental analysis. The other relevant thrust of
research has focused on incremental solving of constraints
specified in the first-order logic [22, 46–48]. Among others,
Uzuncaova and Khurshid partitioned a model of constraints
into a base and derived slices, where solutions to the base
model can be extended to generate a solution for the en-
tire model [47]. Titanium is fundamentally different in that
the problem addressed by Uzuncaova and Khurshid is in the
context of a fixed specification and the evolution of spec-
ification is not considered. Moreover, the two approaches
use declarative slicing for totally different purposes: In [47],
declarative slicing is used to prioritize constraints (to first
analyze constraints with higher priorities). However, Tita-
nium uses declarative slicing to identify a base set of rela-
tions, the bounds of which can potentially be tightened in
the analysis of evolving specification. Ranger [40] uses a di-
vide and conquer method relying on a linear ordering of the
solution space to enable parallel analysis of specifications
written in first-order logic. While the linear ordering allows
for partitioning of the solution space into ranges, there is no
clear way in which it can be extended with incremental anal-
ysis capabilities, essential for analysis of evolving systems.

Effectively reducing the exploration space has been used
in a variety of forms to optimize bounded analysis tech-
niques [7,20,21,37]. Galeotti et al. [20,21] presented a tech-
nique, called TACO, that targets efficient analysis of JML-
specifications for linked data structures, through translating
them into the Alloy language. TACO eliminates the values
that violate constraints introduced by class invariants via
adjusting only the upper bounds for the translated Alloy
fields. Titanium, however, is (1) a general solution, inde-
pendent of any particular domain, (2) capable of adjusting
both upper and lower bounds, and (3) aimed at efficient
analysis of any evolving Alloy specification. To the best of
our knowledge, Titanium is the first, general solution that
supports analysis of evolving Alloy specifications.

Optimization of other techniques relying on con-
straint solving. Related to our research are the applica-
tions of constraint solving techniques to software engineering
problems. Of particular relevance is symbolic execution of
software, which is a means of analyzing a program to de-
termine what inputs cause each part of a program to exe-
cute. A software program is first abstractly interpreted to
identify a set of symbolic values for inputs and conditional
expressions, which when solved with the aide of a solver,
produce concrete values to exercise different branches of the
program. Similar to Alloy Analyzer, due to their reliance
on SAT solving engines, symbolic execution tools face scal-
ability problems. Substantial recent research has focused
on improving the performance of symbolic evaluation tech-
niques [25,36,49,50].

Some of these approaches [25,49] follow the general strat-
egy of storing and reusing previously solved constraints,
which result in less calls to the solver, thereby improving
the performance. But most closely related to our research

is regression symbolic execution [36, 38, 50], where one at-
tempts to co-analyze two program versions which are, often,
very similar. Here, the differences between two versions of
a program are first identified, and the new run of the sym-
bolic execution on the revised program is then only guided
through the regions of the program that have changed. Sim-
ilar to all of these approaches, Titanium aims to improve the
performance of analysis for Alloy specifications. However, in
addition to targeting a different type of analysis (i.e., formal
specifications rather than programs), it employs a different
technique that uses the previously calculated instances to
tighten the bounds on shared relational variables.

7. CONCLUSION
Alloy has found applications in a variety of software en-

gineering problems, from automated synthesis and explo-
ration of design alternatives [14, 15, 24] to analysis of pro-
grams [8,9,33,41] and generation of tests [26,30]. The devel-
opment of solutions for automatically extracting Alloy spec-
ifications from software artifacts has made Alloy practical
for use even after the deployment of software, and possibly
at runtime [8, 10, 33]. Such applications of Alloy, however,
are challenged by the time it takes for an analysis to run,
especially given that the analysis may need to be repeated
frequently.

We presented an approach and an accompanying tool,
dubbed Titanium, that significantly reduces the time it takes
to analyze evolving Alloy specifications. While the approach
is particularly suitable in settings where a specification is
kept in sync with the changing software system, it could
also be as effective in settings where a specification is in-
crementally developed, often involving repeated analysis of
the specification to assess its semantics. Titanium is able
to achieve a significant speed-up by tightening the analysis
bounds without sacrificing soundness and completeness. It
first identifies the shared relational variables between two
versions of a given specification. It then uses the instances
produced for the original specification to determine a tighter
bound for the revised specification, thereby reducing the
state space, enabling the SAT solver to find the model in-
stances for the revised specification at a fraction of time
needed for Alloy Analyzer. Our experimental results using
both real Alloy specifications constructed in the prior work,
as well as synthesized Alloy specifications, corroborate the
significant performance gains achieved through Titanium.

While the results obtained so far are quite promising, we
believe further improvements are possible. Specifically, in
spite of the adjustments made to the analysis bounds, the
solver still needs to solve for the shared constraints. A
promising avenue of future research is a memoization-based
approach, were the constraints solved in a prior analysis of
the model are stored, and retrieved as encountered in the
subsequent analyses. Such an approach would not eliminate
the need for adjusting the bounds for relational variables, as
some of those variables may be used in the derived specifi-
cation.

We have made Titanium, as well as Alloy specifications
and the model synthesizer used in conducting our experi-
ments, publicly available for use by other researchers [4].
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