
Practical, Formal Synthesis and Automatic
Enforcement of Security Policies for Android

Hamid Bagheri Alireza Sadeghi Reyhaneh Jabbarvand Sam Malek
School of Information and Computer Sciences

University of California, Irvine
{hamidb, alirezs1, jabbarvr, malek}@uci.edu

Abstract—As the dominant mobile computing platform, An-
droid has become a prime target for cyber-security attacks. Many
of these attacks are manifested at the application level, and
through the exploitation of vulnerabilities in apps downloaded
from the popular app stores. Increasingly, sophisticated attacks
exploit the vulnerabilities in multiple installed apps, making it
extremely difficult to foresee such attacks, as neither the app
developers nor the store operators know a priori which apps will
be installed together. This paper presents an approach that allows
the end-users to safeguard a given bundle of apps installed on
their device from such attacks. The approach, realized in a tool,
called SEPAR, combines static analysis with lightweight formal
methods to automatically infer security-relevant properties from
a bundle of apps. It then uses a constraint solver to synthesize
possible security exploits, from which fine-grained security poli-
cies are derived and automatically enforced to protect a given
device. In our experiments with over 4,000 Android apps, SEPAR
has proven to be highly effective at detecting previously unknown
vulnerabilities as well as preventing their exploitation.

I. INTRODUCTION

The ubiquity of smartphones and our growing reliance on
mobile apps are leaving us more vulnerable to cyber-security
attacks than ever before. According to the Symantec’s Norton
report [53], in 2013 the annual financial loss due to cyber-
crime exceeded $113 billion globally, with every second 12
people become the victim of cybercrime. An equally ominous
report from Gartner [32] predicts 10 percent yearly growth in
cybercrime-related financial loss through 2016. This growth
is attributed in part to the new security threats targeted at
emerging platforms, such as Google Android and Apple iOS,
as 38% of mobile users have experienced cybercrime [53].
This is, though, nowhere more evident than in the Android
market, where many cases of apps infected with malware and
spyware have been reported [51].

In this context, smartphone platforms, and in particular
Android, have emerged as a topic du jour for security re-
search. These research efforts have investigated weaknesses
from various perspectives, including detection of information
leaks [27], [33], [39], [44], analysis of the least-privilege
principle [28], [30], and enhancements to Android protection
mechanisms [21], [26], [31]. Above and beyond such security
techniques that are substantially intended to detect vulner-
abilities in a single application, researchers have recently
investigated techniques tackling security vulnerabilities that
arise due to the interaction of multiple applications, such as
inter-component data leaks [40], [41], [57] and permission
leaks [17], [38], shown to be quite common in the apps on
the markets.

While the prior techniques mainly aim to find security
weaknesses in existing combination of apps, we are also
interested in the dual of this problem, that is what security
attacks are possible given a set of vulnerable apps? Many
Android malware are embedded in supposedly normal apps
that aim to leverage vulnerabilities in either the platform
or other apps on the market for nefarious purposes [52]. If
we could automatically generate security exploits for a given
combination of apps, it would allow us to identify possible
security attacks before the adversary, and thus protect our
systems prior to the realization of such attacks.

In this paper, we propose a proactive scheme to develop
Android security policies for vulnerabilities that occur due to
the interaction of apps comprising a system. Our approach
aims to automatically find vulnerabilities in a given bundle of
apps and generate specifications of possible exploits for them,
which then can proactively be applied as preventive measures
to guard against yet unknown malicious behavior.

Specifically, we have developed an automated system for
synthesis and enforcement of security policies for Android,
called SEPAR, a Persian word for shield. It combines scalable
static analysis with lightweight formal methods. SEPAR lever-
ages static analysis to automatically infer security-relevant
facts about software systems.1 The app specifications are
sufficiently abstract—extracted at the architectural level—to
be amenable to formal analysis, and to ensure the technique
remains scalable to real-world Android apps, yet represent
the true behavior of the implemented software, as they are
automatically extracted from the app bytecode, and appear
sufficiently detailed to express subtle inter-app vulnerabilities.

SEPAR then uses a SAT-based engine to analyze the system
model against compositional security properties and generate
potential attack scenarios. In fact, it mimics the adversary
by leveraging recent advancements in constraint solving tech-
niques to synthesize possible security exploits, from which
fine-grained security policies are then derived and enforced
for each particular system. The synthesis of system-specific
security policies allows the user to proactively deploy preven-
tive measures prior to the discovery of those exploits by the
adversaries.

To summarize, this paper makes the following contributions:

1By a software system, we mean a set of independently developed apps
jointly deployed on top of a common computing platform, e.g. Android
framework, that interact with each other, and collectively result in a number
of software solutions or services.

• Formal Synthesis of Security Policies: We introduce a
novel approach to synthesize specifications of possible
exploits for a given combination of apps, from which
system-specific security policies are derived. The policy
synthesizer relies on a fully analyzable formal model of
Android framework and a scalable static analysis tech-
nique extracting formal specifications of Android apps.

• Runtime Enforcement of Security Policies: We develop a
new technology to automatically apply and dynamically
enforce the synthesized, fine-grained policies (at the level
of event messaging), specifically generated for a particu-
lar collection of apps installed on the end-user device.

• Experiments: We present results from experiments run
on 4,000 real-world apps as well as DroidBench2.0 test
suite [4], corroborating SEPAR’s ability in (1) effective
compositional analysis of Android inter-application vul-
nerabilities and generation of preventive security poli-
cies, that many of those vulnerabilities cannot be even
detected by state-of-the-art security analysis frameworks;
(2) outperforming other compositional analysis tools also
in terms of scalability; and (3) finding multiple crucial
security problems in the apps on the markets that were
never reported before.

The remainder of paper is organized as follows. Section II
motivates our research through an illustrative example. Sec-
tion III provides an overview of SEPAR. Sections IV, V and VI
describe the details of static model extraction, formal synthesis
and dynamic enforcement of policies, respectively. Section VII
present implementation and evaluation of the research. The
paper concludes with an outline of the related research and
future work.

II. MOTIVATING EXAMPLE

To motivate the research and illustrate our approach, we
provide an example of a vulnerability pattern having to do with
inter-component communication (ICC) among Android apps.
Android provides a flexible model of component communica-
tion using a type of application-level message known as Intent.
A typical app is comprised of multiple components (e.g.,
Activity, Service) that communicate using Intent messages.
In addition, under certain circumstances, an app’s component
could send Intent messages to another app’s components to
perform actions (e.g., take picture, send text message, etc.).
Figure 1 partially shows a bundle of two benign, yet vulnerable
apps, installed together on a device.

The first application is a navigation app that obtains the
device location (GPS data) in one of its components and sends
it to another component of the app via Intra-app Intent messag-
ing. The Intent involving the location data (Listing 1, lines 3–
9), instead of explicitly specifying the receiver component, i.e.,
RouteFinder service, implicitly specifies it through declaring
a certain action to be performed in that component. This
represents a common practice among developers, yet an anti-
pattern that may lead to unauthorized Intent receipt [24], as any
component, even if it belongs to a different app, that matches
the action could receive an implicit Intent sent this way.

On the other hand, the vulnerability of the second applica-
tion, a messenger app, occurs on line 11 of Listing 2, where

1 public class LocationFinder extends Service {
2 public void onStartCommand(Intent intent , int flags , int

startId){
3 LocationManager lm = getSystemService(Context.

LOCATION_SERVICE);
4 Location lastKnownLocation =
5 lm.getLastKnownLocation(LocationManager.GPS_PROVIDER);
6 Intent intent = new Intent();
7 intent.setAction("showLoc");
8 intent.putExtra("locationInfo", lastKnownLocation.

toString());
9 startService(intent);

10 ... }

Listing 1: LocationFinder sends the retrieved location data
to another component of the same app via implicit Intent
messaging.

1 public class MessageSender extends Service {
2 public void onStartCommand(Intent intent , int flags , int

startId) {
3 String number = intent.getStringExtra("PHONE_NUM");
4 String message = intent.getStringExtra("TEXT_MSG");
5 //if (hasPermission())
6 sendTextMessage(number , message);
7 ...}
8 void sendTextMessage (String num, String msg) {
9 SmsManager mngr = SmsManager.getDefault();

10 mngr.sendTextMessage(num,null,msg,null,null);
11 }
12 boolean hasPermission () {
13 if(checkCallingPermission("android.permission.SEND_SMS"

)==PackageManager.PERMISSION_GRANTED)
14 return true;
15 return false;
16 }
17 }

Listing 2: MessageSender receives an Intent and sends a
text message.

MessageSender, specified as a public component in the app
manifest file, uses system-level API SmsManager, resulting
in a message sent to the phone number previously retrieved
from the Intent. This is a reserved Android API that requires
special access permissions to the system’s telephony service.
Although MessageSender has that permission, it also needs to
ensure that the sender of the original Intent message has the
required permission to use the SMS service. An example of
such a check is shown in hasPermission method of Listing 2,
but in this particular example it does not get called (line 6 is
commented) to illustrate the vulnerability.

Given these vulnerabilities, a malicious app can send the
device location data to the desirable phone number via text
message, without the need for any permission. As shown in
Figure 1, the malicious app first hijacks the Intents containing
the device location info from the first app. Then, it sends a
fake Intent to the second app, containing the GPS data and
adversary phone number as the payload. While the example
of Figure 1 shows exploitation of vulnerabilities in components
from two apps, in general, a similar attack may occur by
exploiting the vulnerabilities in components of either single
app or multiple apps. Moreover, since the malicious app
does not require any security sensitive permission, it is easily
concealed as a benign app that only sends and receives Intents.
This makes the detection of such malicious apps a challenging
task for individual security inspectors or anti-virus tools.

The above example points to one of the most challenging
issues in Android security, i.e., detection and enforcement

Fig. 1: A potential malicious application—its signature au-
tomatically generated by SEPAR—leverages vulnerabilities in
other already installed benign applications to perform actions
(like sending device location through text messages) that are
beyond its individual privileges. As the Android access control
model is per app, it cannot check security posture of the entire
system. SEPAR generates and enforces compositional policies
that prevent such an exploit.

of compositional security policies to prevent such possible
exploits. What is required is a system-level analysis capability
that not only identifies the vulnerabilities and capabilities in
individual apps, but also determines how those individual
vulnerabilities and capabilities could affect one another when
the corresponding apps are installed together. In the next
sections, we first provide an overview of SEPAR and then delve
into more details about its approach to address these issues.

III. APPROACH OVERVIEW

This section overviews our approach to automatically syn-
thesize and enforce system-specific security policies for such
vulnerabilities that occur due to the interaction of apps com-
prising a system. As depicted in Figure 2, SEPAR consists
of three main components: (1) The Android model extractor
(AME) that uses static analysis techniques to automatically
elicit formal specifications of the apps comprising a sys-
tem; (2) The analysis and synthesis engine (ASE) that uses
lightweight formal analysis techniques [3] to find vulnerabili-
ties in the extracted app models, and generates specifications
of possible exploits, and in turn, policies for preventing their
manifestation; (3) The Android policy enforcer (APE) that
enforces automatically generated, system-wide policies on
Android applications.

The AME component takes as input a set of Android
application package archives, called APK files. APKs are
dalvik bytecode packages used to distribute and install An-
droid applications. To generate the app specifications, AME
first examines the application manifest file to determine its ar-
chitectural information. It then utilizes different static analysis
techniques, i.e., control flow and data flow analyses, to extract
other essential information from the application bytecode into
an analyzable specification language.

The ASE component, in addition to extracted app specifi-
cations, relies on two other kinds of specifications: a formal
foundation of the application framework and the axiomatized
inter-app vulnerability signatures. The Android framework
specification represents the foundation of Android apps. Our
formalization of these concepts includes a set of rules to lay

Fig. 2: Approach Overview.

this foundation (e.g., application, component, messages, etc.),
how they behave, and how they interact with each other. It can
be considered as an abstract, yet precise, specification of how
the framework behaves. We regard vulnerability signatures
as predicates that model Android inter-app vulnerabilities in
relational logic, representing their essential characteristics as
exhibited when the vulnerability is exploited. All the specifica-
tions are uniformly captured in the Alloy language [3]. Alloy
is a formal specification language based on relational logic,
amenable to fully automated yet bounded analysis.

SEPAR is designed as a plugin-based software that provides
extension points for analyzing apps against different types of
vulnerabilities. In order to analyze each app, we distill each
known inter-app vulnerability into a corresponding formally-
specified signature to capture its essential characteristics, as
manifested when the vulnerability is exploited. Our current
SEPAR prototype supports inter-component vulnerabilities,
such as Activity/Service launch, Intent hijack, privilege es-
calation, and information leakage [21], [24], [35]. Its plugin-
based architecture supports the necessary extensions that can
be provided by users at anytime to enrich the environment.

Given these specifications, the ASE component analyzes
them as a whole for instances of vulnerabilities in the ex-
tracted app specifications, and using formally-precise scenario-
generating tools, such as Alloy Analyzer [3] and Alu-
minum [45], it attempts to generate possible security exploit
scenarios for a given combination of apps. Specifically, we
go beyond the detection of vulnerabilities by asking: what
security attacks are possible given a set of vulnerable apps?

Having computed system-wide policies to prevent the postu-
lated attacks, SEPAR parses and transforms them from models
generated in relational logic to a set of configurations directly
amenable to efficient policy enforcement. Our policy enforcer
(APE) then monitors each vulnerable app at runtime to dynam-
ically intercept event messages, check them against generated
policies, and possibly inhibits their executions if violating any
such policies. As such, to the best of our knowledge, SEPAR is
the first approach capable of detecting and protecting Android
systems against zero-day inter-app attacks.

In the following three sections, we describe the details of
each component in turn.

IV. AME: ANDROID MODEL EXTRACTOR

The AME module, that individually analyzes each app to
extract a model of its behavior, is built upon state-of-the-art
static analysis techniques for the Android framework. This
section describes the extraction process, with an emphasis
on the important improvements on prior work. Due to space
limitations, we have made the detailed algorithms and imple-
mentation of our extensions available at [10].

Architecture Extraction. To obtain an app model, AME
first examines the app manifest file to capture the high-
level architectural information, including the components com-
prising the app, permissions that the app requires, and the
enforced permissions that the other apps must have in order to
interact with the app components. AME also identifies public
interfaces exposed by each application, which are essentially
entry points defined in the manifest file through Intent Filters
of components.

Intent Extraction. The next step of model extraction in-
volves an inter-procedural data flow analysis [20], to track
the Intents and Intent Filters that are declared in code, rather
than the manifest file, as well as their properties. Each Intent
belongs to one particular component that sends it, may have
one recipient component and may include an action, data
and a set of categories. The action field specifies the general
action to be performed in the recipient component; the data
field represents additional information about the data to be
processed by the action; and the categories filed specifies the
kind of component that should handle the Intent. An Intent can
also include extra data. Similar to Intents, each Intent Filter has
a non-empty set of actions and two sets of data and categories.
Note that Intent Filters for components of type Service and
Activity must be declared in their manifest; for Broadcast
Receivers, though, either in the manifest or at runtime.

To resolve the values associated with the retrieved at-
tributes (e.g., the Intent action) AME uses string constant
propagation [25], which provides a suitable solution since,
by convention, Android apps use constant strings to define
these values. In case a property is disambiguated to more
than one value (e.g., due to a conditional assignment), AME
generates a separate entity for each of these values, as they
contribute different exposure surfaces or event messages in
case of Intent Filters and Intents, respectively. AME handles
aliasing through performing on-demand alias analysis [54].
More specifically, for each attribute that is assigned to a heap
variable, the backward analysis finds its aliases and updates
the set of its captured values accordingly.

There are some special cases in implicit invocations of
inter-component entry points, where the caller method trig-
gers a two-way communication between components. Exam-
ples include bindService and startActivityForResult. A
component, for instance, can use startActivityForResult
to start another component, which itself implicitly calls the
first component with a new Intent embodying the results once
finishes running. However, the returning implicit Intent, which
we call passive Intent, includes no information (e.g., action and
category) specifying its target component, making it difficult
for static analyzers to identify the receiver in this second
implicit invocation. Algorithm 1 outlines identifying target

Algorithm 1: Update Passive Intent Target
Input: Intents: Set of all identified Intents
Output: Target components for passive Intents

1 for p in Intents do
2 if p.isPassiveIntent then
3 for i in Intents do
4 if i.hasRequestResult & i.target = p.sender then
5 p.addTarget(i.sender)
6 end
7 end
8 end
9 end

components for passive Intents. The logic of the algorithm is
as follows. For each passive Intent, p, look up Intents that both
request for results and their target components match senders
of p. Insert the senders of such Intents into the target set of p.

Path Extraction. AME analyzes the app using a static taint
analysis to track sensitive data flow tuples < Source,Sink >,
where Source represents a sensitive data (e.g., the device
ID) and Sink represents a method that may leak data, such
as sending text messages. To achieve a high precision in
data flow analysis, our approach is flow-, field-, and context-
sensitive [13], meaning that our analysis distinguishes a vari-
able’s values between different program points, distinguishes
between different fields of a heap object, and that in analysis of
method calls is sensitive to their calling contexts, respectively.
In the interest of scalability, SEPAR’s analysis, however, is
not path-sensitive. The results (cf. Sec. VII) though indicate
no significant imprecision caused by path-insensitivity in the
context of Android vulnerability analysis.

AME uses a set of most frequently used source and sink An-
droid API methods from the literature [47], identified through
the use of machine-learning techniques. To further detect those
paths traversing through different components, we adapted
this set by identifying source and sink methods corresponding
to inter-component communication. The identified sensitive
data flows paths are later used in the ASE module to detect
data leaks vulnerabilities, and thereby to generate respective
policies preventing their potential exploits.

Permission Extraction. To ensure the permission policies
are preserved during an inter-component communication, one
should compare the granted permissions of the caller compo-
nent against the enforced permissions at the callee component
side. Therefore, the permissions actually used by each com-
ponent should be determined. While we already identified the
coarse-grained permissions specified in the manifest file, AME
analyzes permission checks throughout the code to identify
those controlling access to particular aspects of a component
(e.g., recall hasPermission method of Listing 2). In doing so,
it relies on API permission maps available in the literature,
and in particular the PScout permission map [14], one of the
most recently updated and comprehensive permission maps
available for the Android framework. API permission maps
specify mappings between Android API calls/Intents and the
permissions required to perform those calls.

A node could be directly tagged as permission-required
node, or transitively tagged by tracking the call chains. To

find the transitive permission tag, AME performs backward
reachability analysis starting from the permission-required
node. The tagged permission are propagated from all children
to their parent nodes, until reaching to the root nodes. In case
an entry-point node of a component is tagged by a permission,
it will be added to the list of exposed permissions of that
component.

V. ASE: ANALYSIS AND SYNTHESIS ENGINE

We now show that our ideas for automated synthesis of
exploit specifications can be reduced to practice. The insight
that enabled such synthesis was that we could interpret the
synthesis problem as the dual of formal verification. Given a
system specification S, a model M, and a property P, formal
verification asserts whether M satisfies the property P under S.
Whereas the synthesis challenge is given a system specification
S and a property P, generate a model M satisfying property P
under system S. M is an instance model of S that satisfies P.

This observation enables leveraging verification techniques
to solve synthesis problems. As shown in Figure 3, we can
view the bundle of app specifications, Sa, and the framework
specification, S f , collectively as system S and a compositional
security issue as property P, and model them as a set of con-
straints. The problem then becomes to generate a candidate set
of violation scenarios, M, that satisfies the space of constraints:
M |= S f ∧ Sa ∧ P. Our approach is thus based on a reduction
of the synthesis problem into a constraint-solving problem
represented in relational logic (i.e., Alloy). Alloy is a formal
modeling language optimized for automated analysis, with a
comprehensible syntax that stems from notations ubiquitous
in object orientation, and semantics based on the first-order
relational logic [3].

The formulation of the synthesis problem in Alloy consists
of three parts: (1) a fixed set of signatures and facts describ-
ing the Android application fundamentals (e.g., application,
component, Intent, etc.) and the constraints that every appli-
cation must obey. Technically speaking, this module can be
considered as a meta-model for Android applications; (2) a
separate Alloy module for each app modeling various parts of
an Android app extracted from its APK file. The automatically
extracted model for each app relies on the Android framework
specification module (the first item above); and (3) a set
of signatures used to reify inter-component vulnerabilities in
Android, such as privilege escalation.

Alloy is an appropriate language for our modeling and syn-
thesis purposes for several reasons: (1) its simple set theoretic
language, backed with logical and relational operators, was

Fig. 3: Automated synthesis of possible exploit specifications.

sufficiently expressive for formal declarative specification of
both applications and properties to be checked; (2) its ability to
automatically analyze specifications is useful as an automation
mechanism, enabling automatic synthesis of violation scenar-
ios as satisfying solutions; finally, (3) the formal analyzers
available for Alloy (e.g., [45]) translate our high-level model
specifications into a SAT formula that can be solved by off-
the-shelf SAT solvers, and thereby enable utilizing state-of-
the-art constraint solvers for our model synthesis. The rest of
this section first provides a brief overview of Alloy, and then
details different parts of implementing the synthesis problem.

Alloy Overview. Alloy is a declarative language based
on the first-order relational logic with transitive closure [3].
The inclusion of transitive closure extends its expressiveness
beyond first-order logic. Essential data types, that collectively
define the vocabulary of a system, are specified in Alloy by
their type signatures (sig). Signatures represent basic types
of elements, and the relationships between them are captured
by the the declarations of fields within the definition of each
signature. Consider the following Alloy model. It defines two
Alloy signatures: Application and Component. The cmps
relation is defined over these two signatures.

sig A p p l i c a t i o n{
cmps : Component

}
sig Component{}

Analysis of specifications written in Alloy is completely
automated, based on transformation of Alloy’s relational logic
into a satisfiability problem. Off-the-shelf SAT solvers are then
used to exhaustively search for either satisfying models or
counterexamples to assertions. To make the state space finite,
certain scopes need to be specified that limit the number of
instances of each type signature. The following specification
asks for instances that contain at least one Component, and
specifies a scope that bounds the search for instances with at
most two objects for each top-level type (Application and
Component in this example).

pred modelInstance{ some Component }
run modelInstance for 2

When executed, the Alloy Analyzer produces model in-
stances, two of which are shown in Fig. 4. The model instance
of Fig. 4a includes one application and two components, one
of them belongs to no application. Fig. 4b shows another
model instance with two applications, each one having one
component.

Facts (fact) are formulas that take no arguments, and define
constraints that every instance of a model must satisfy, thus
restricting the instance space of the model. The following fact
paragraph, for example, states that each Component should
belong to exactly one Application. Re-executing the Alloy
Analyzer produces a new set of model instances, where while
Fig. 4b is still a valid instance, model of Fig. 4a is eliminated.

fact {
a l l c : Component | one c . ˜ cmps

}

The other essential constructs of the Alloy language include:
Predicates, Functions and Assertions. Predicates (pred) are
named logical formulas used in defining parameterized and

Fig. 4: Two model instances of the above Alloy specification.

reusable constraints that are always evaluated to be either
true or false. Functions (fun) are parameterized expressions. A
function similar to a predicate can be invoked by instantiating
its parameter, but what it returns is either a true/false or a
relational value instead. An assertion (assert) is a formula
required to be proved. It can be used to check a certain
property of a model.

The Alloy language comes with a set of logical and rela-
tional operators. The dot (.) and tilde (∼) operators denote
a relational join of two relations and the transpose operation
over a binary relation, respectively. The transitive closure (ˆ)
of a relation is the smallest enclosing relation that is transitive.
The reflexive-transitive closure (*) of a relation is the smallest
enclosing relation that is both transitive and reflexive.

We will introduce additional details of the Alloy language as
necessary to present our policy synthesis approach. For further
information about Alloy, we refer the interested reader to [3].

Formal Model of Android Framework. Formal modeling
of the Android framework was the subject of earlier work [17].
To make this paper self-contained, this subsection briefly
reviews the model. Listing 3 shows (part of) the Alloy code
describing the meta-model for Android application models.
The complete version of all Alloy models that appear in this
paper are available at [10]. Our model is based on the official
Android documentation [34]. Android is a large and complex
operating system, and modeling it in its entirety would be
infeasible. Thus, we focused on the parts of Android that
are relevant to the inter-component communication and their

1 abstract sig Component{
2 app : one App l i ca t i on ,
3 i n t e n t F i l t e r s : set I n t e n t F i l t e r ,
4 permiss ions : set Permission ,
5 paths : set Deta i ledPath
6 }
7 abstract sig I n t e n t F i l t e r{
8 ac t ions : some Act ion ,
9 dataType : set DataType ,

10 dataScheme : set DataScheme ,
11 ca tegor ies : set Category
12 }
13 fact IFandComponent{
14 a l l i : I n t e n t F i l t e r | one i . ˜ i n t e n t F i l t e r s }
15 fact NoIFforProv iders{
16 no i : I n t e n t F i l t e r | i . ˜ i n t e n t F i l t e r s in Prov ider }
17 abstract sig I n t e n t{
18 sender : one Component ,
19 r ece i ve r : lone Component ,
20 ac t i on : lone Act ion ,
21 ca tegor ies : set Category ,
22 dataType : lone DataType ,
23 dataScheme : lone DataScheme ,
24 ex t ra : set Resource
25 }

Listing 3: Excerpts from the meta-model for Android
application models in Alloy.

1 (a) App1 model
2 open andro idDec la ra t ion
3 . . .
4 one sig Locat ionF inder extends Serv ice{}{
5 app in App1
6 no i n t e n t F i l t e r s
7 paths = pathLocat ionFinder1
8 permiss ions = ACCESS FINE LOCATION
9 }

10 one sig pathLocat ionFinder1 extends Path{}{
11 source = LOCATION
12 s ink = ICC
13 }
14 one sig I n t e n t 1 extends I n t e n t{}{
15 sender = Locat ionF inder
16 no r ece i ve r
17 ac t i on =showLoc
18 ca tegor ies= DEFAULT
19 no dataType
20 no dataScheme
21 ex t ra= LOCATION
22 }
23 (b) App2 model
24 one sig MessageSender extends Serv ice{}{
25 app in App2
26 i n t e n t F i l t e r = I n t e n t F i l t e r 1
27 paths = pathMessageSender1
28 no permiss ions
29 }
30 one sig pathMessageSender1 extends Path{}{
31 source = ICC
32 s ink = SMS
33 }

Listing 4: Excerpts from generated specifications for (a)
App1 (Listing 1) and (b) App2 (Listing 2).

potential security challenges. For example, note the signa-
tures Component and Intent. Signatures defined as abstract
represent types of elements that cannot have an instance
object without explicitly extending them. A component be-
longs to exactly one application, and may have any number
of IntentFilters—each one describing a different interface
(capability) of the component—and a set of permissions re-
quired to access the component. The paths field then indicates
information flows between permission domains in the context
of this component. We define the source and destination
of a path based on canonical permission-required resources
identified by Holavanalli et al. for Android applications [38].
Examples of such resources are NETWORK, IMEI, and SD-
CARD. Thirteen permission-required resources are identified
as source, and five resources as destination, of a sensitive data
flow path. The ICC mechanism augments both source and
destination sets. Note that to eliminate private components
from inter-app analysis, SEPAR considers the component’s
exported attribute. In fact, a component can receive Intents
from other applications, or is public, if its exported attribute
is set or contains at least one Intent filter. Such elimination of
private components from inter-app analysis also contributes
to the scalability of the approach (i.e., less components to be
analyzed).

The fact IFandComponent specifies that each Intent-
Filter belongs to exactly one Component, and the fact
NoIFforProviders specifies that out of four core component
types, only three of them can define IntentFilters; no Intent-
Filter can be defined for Content Provider components.

An Intent belongs to one particular component sending
it, and may have one recipient component. Each Intent may

also include an action, data (type and scheme) and a set
of categories.2 These elements are used to determine to
which component an implicit Intent—one that does not specify
any recipient component—should be delivered. Each of these
elements corresponds to a test, in which the Intent’s element
is matched against that of the IntentFilter. An IntentFilter may
have more actions, data, and categories than the Intent, but
it cannot contain less. The extra field indicates the types of
resources carried by the Intent.

Formal Model of Apps. Listing 4 partially shows the Alloy
specifications for the apps shown in Listings 1 and 2. As
already mentioned (cf. Section IV), these app specifications
are automatically extracted by the AME component from each
Android application. Each app specification starts by importing
the androidDeclaration module (cf. Listing 3). Among other
things, the LocationFinder component contains a sensitive
path (pathLocationFinder1), that represents a data-flow
from where the sensitive GPS data is retrieved, to an Intent
event message. The extra field of the Intent in the generated
Alloy model (line 21) is accordingly set. The path field of the
MessageSender in the generated Alloy model (lines 27, 30–
33) reflects another data-flow path, started from an IntentFilter
and reaches to a node, which uses the data in the body of a
text message. Note that this component does not enforce any
access permission neither in the manifest file nor in the code
(line 28).

Formal Model of Vulnerabilities. To provide a basis for
precise analysis of app bundles against inter-app vulnerabilities
and further to automatically generate possible scenarios of
their occurrence given particular conditions of each bundle,
we designed specific Alloy signatures. Specifically, each vul-
nerability model captures a specific type of inter-component
communication security threat, according to those identified by
Chin et al. [24] and Bugiel et al. [21]. The security property
check is then formulated as a problem of finding a valid
trace that satisfies the vulnerability signature specifications.
If the Alloy Analyzer finds a solution to this problem, the
property is violated; the returned solution encodes an exact
scenario (states of all elements, such as components and
Intents) leading to the violation. As a concrete example, we
illustrate the semantics of one of these vulnerabilities in the
following. The others are evaluated similarly.

Listing 5 presents the GeneratedServiceLaunch signature
along with its signature fact that specifies the elements in-
volved in, and the semantics of, a service launch exploit,
respectively. In short, a malicious component (malCmp) can
launch a component by sending an Intent (malIntent) to an
exported component (launchedCmp) that is not expecting In-
tents from that component. According to line 9, the launched-
Cmp component has a path from the exported interface to a
permission-required resource. It, thus, may leak information or
perform unauthorized tasks, depending on the functionalities
exposed by the victim component.

2The multiplicity keyword some in Alloy denotes that the declared
IntentFilter.actions relation contains at least one element; the key-
word set tells Alloy that categories map each IntentFilter object to
zero or more Category objects, and the keyword lone indicates that this
Intent.component is optional, and an Intent may have one or no declared
recipient component.

1 sig GeneratedServiceLaunch{
2 d is j launchedCmp , malCmp : one Component ,
3 mal In ten t : I n t e n t }{
4 mal In ten t . sender = malCmp
5 launchedCmp in s e t E x p l i c i t I n t e n t [ma l In ten t]
6 no launchedCmp . app & malCmp . app
7 launchedCmp . app in device . apps
8 not (malCmp . app in device . apps)
9 some launchedCmp . paths && launchedCmp . paths . source = ICC

10 some mal In ten t . ex t ra
11 malCmp in A c t i v i t y
12 }

Listing 5: Alloy specifications of Service Launch
vulnerability in Android.

Generating possible exploit scenarios. We run the mod-
ules defined above with a command that tries to satisfy the
vulnerabilities signature facts. Note that Alloy analysis must
be done within a given scope, which specifies an upper bound
for, or an exact, number of instances per element signature.
In our case, the exact scope of each element, such as Appli-
cation and Activity, required to instantiate each vulnerability
is automatically derived from the specification.

If an instance is found, SEPAR reports it along with the
information useful in finding the root cause of the violation,
from which fine-grained security policies are then derived for
the given system. Given our running example, the analyzer
automatically generates the following scenario, among others:

The diagram is accurate for the result that the analyzer
computed, but we have edited it to omit some details for read-
ability. It essentially states the scenario represented in Figure 1,
in which a postulated malicious component, here the generated
App0/Service0 component, can send the device location data
captured from a vulnerable Intent, Intent1 (cf. Listing 4,
lines 14–22), to the desirable phone number via an explicit
Intent, Service0/Intent0, sent to the App2/MessageSender
component that is vulnerable to service launch. Here the
analysis has found that it is possible to devise a malicious
capability that can leverage the vulnerabilities in the apps
installed on the device for nefarious purposes. Given this,
SEPAR formulates a policy, as described next, that prevents
certain Intent-based interactions from occurring to prevent
the exploitation of vulnerabilities, thereby achieving proactive
defense if such a malicious capability were to be installed on
the device.

The next section describes how we can prevent occurrence
of such vulnerability exploits through generation and enforce-
ment of respective policies.

VI. APE: ANDROID POLICY ENFORCER

In the implementation of APE, we faced three possible
alternatives: (1) modify the Android OS to enforce the policies,
(2) modify an app through injection of policy enforcement
logic into the app’s implementation by instrumenting the APK
file, and (3) dynamic memory instrumentation of the app’s
process. We chose the third approach, as it allows SEPAR to
be used on an unmodified version of Android, thereby making
it widely applicable and practical for use by many.

Similar to a conventional access control model [49], our
approach is comprised of two elements: policy decision point
(PDP)—the entity which evaluates access requests against a
policy, and policy enforcement point (PEP)—the entity which
intercepts the request to a resource, makes a decision request
to the PDP, and acts on the received decision. The protected
resources in our research are mainly Android APIs that can
result in ICC calls.

Our Android policy enforcer relies on the Xposed [11]
framework for modifying the behavior of Android apps at
runtime, without making any changes in the apps’ APK files.
It provides mechanisms to “hook” method calls. A hook is
a method that is called before or after a certain method,
making it possible to control pre/post method call activities,
by modifying a method’s parameters, its return values, or even
entirely skipping the call to the method.

The PDP is realized as an independent Android app that
stores the synthesized policies for preventing or allowing
ICC access. Our policies are in the form of event-condition-
action (ECA) rules. The PEP in our case corresponds to
an Xposed module to dynamically intercept event messages.
More specifically, each ICC method in an app’s APK file (e.g.,
startService(Intent)) is hooked, such that whenever it
is invoked, it is first assessed to see whether the operation
should proceed (e.g., Intent to be delivered to its destination)
by calling the PDP. The major advantages of using run-
time process instrumentation over modifying individual apps
are scalability and framework generalization. Additionally,
instrumentation of APK files changes the signature of apps,
which might prevent their proper execution.

PEP hooks these operations and uses PDP to check whether
they are allowed to run or not. Whenever an application is
about to run a sensitive operation, it is checked against the
synthesized policies. The respective application is then allowed
to perform the given operation as long as it conforms to such
policies. Otherwise, the PDP prompts the user for consent
along with the information that would help the user in making
a decision, including the description of security threat as well
as the name and parameters of the intercepted event. Should
the user refuse, the application skips the given operation and
continues with running the subsequent one. As ICC mecha-
nisms in Android are essentially performed by asynchronous
API calls, inhibiting them implies that no response for the
event is ever received, without causing unexpected crashes.
Of course, preventing ICC calls would naturally force the app
to operate in a degraded mode.

Continuing with our running example, SEPAR generates the
following policy, where the conditions in the generated ECA
rule correspond to the properties of the malicious Intent in the
synthesized vulnerability model instance.

{ event : ICC received ,
c o nd i t i on : [{ I n t e n t . ex t ra : LOCATION} ,

{ I n t e n t . r ece i ve r : MessageSender}] ,
ac t i on : user prompt

}

It states that every attempt of sending device LOCATION
data through the MessageSender component must be manually
approved by the user. Observe that each app, such as App2
can, and in this case would, be guarded against more than one
policy at the same time. Indeed, App1 and App2 would also
be guarded with policies generated regarding Intent hijacking
and Service Launch, respectively.

VII. EVALUATION

This section presents the experimental evaluation of SEPAR.
We have implemented SEPAR’s static analysis capability on
top of the Soot [55] framework. We used Flowdroid for intra-
component taint analysis [13], and extended it to improve
precision of analysis especially to support complicated ICC
methods (cf. Section IV). The prototype implementation of
SEPAR only requires the APK files—not the original source
code—which is important, of course, for running it over non-
open source apps. The translation of captured app models
into the Alloy language is implemented using FreeMarker
template engine [6]. The core components of our analysis and
synthesis model are embedded in a relational logic language,
i.e., Alloy [3]. As a back-end analysis engine, SEPAR relies on
Aluminum [45], a recently developed principled scenario ex-
plorer that generates only minimal scenarios for specifications
axiomatized in Alloy. Lastly, our policy enforcer (cf. APE
module) leverages the Xposed framework [11] for preventing
event messages violating synthesized policies.

We used the SEPAR apparatus for carrying out the ex-
periments. Our evaluation addresses the following research
questions:

RQ1. What is the overall accuracy of SEPAR in detecting ICC
(i.e., both inter-component and inter-application) vulner-
abilities compared to other state-of-the-art techniques?

RQ2. How well does SEPAR perform in practice? Can it find
security exploits and synthesize their corresponding pro-
tection policies in real-world applications?

RQ3. What is the performance of SEPAR’s analysis realized
atop static analyzers and SAT solving technologies?

RQ4. What is the performance of SEPAR’s policy enforcement?

A. Results for RQ1 (Accuracy)
To evaluate the effectiveness and accuracy of our analysis

technique and compare it against the other static analysis tools,
we used the DroidBench [4] and ICC-Bench [8] suites of
benchmarks, two sets of Android applications containing ICC
based privacy leaks for which all vulnerabilities are known
in advance—establishing a ground truth. These test cases
comprise the most frequently used ICC methods found in
Google Play apps. The benchmark apps also include unreach-
able, yet vulnerable components; reported vulnerabilities that

involve such unreachable components are thus considered as
false warnings. Using the apps in this benchmark, which is
developed by other research groups, we have attempted to
eliminate internal threats to the validity of our results. Further,
using the same benchmark apps as prior research allows us to
compare our results against them.

We compared SEPAR with existing tools targeted at ICC vul-
nerability detection, namely DidFail [40] and AmanDroid [57].
COVERT [17] only targets a specific type of inter-app vulnera-
bility, i.e. privilege escalation. We excluded COVERT from our
comparison, as all of the apps in DroidBench and ICC-Bench
are examples of information leakage type of vulnerabilities
that COVERT cannot detect. We also tried to run IccTA [41],
another tool intended to identify inter-app vulnerabilities, but
faced technical difficulties. The tool terminated with error
while capturing ICC links. This issue has also been reported by
others [9]. Though we have been in contact with the authors,
we have not been unable to fix it so far.

Table I summarizes the results of our experiments for eval-
uating the accuracy of SEPAR in detecting ICC vulnerabilities
compared to other state-of-the-art techniques. SEPAR succeeds
in detecting all 23 known vulnerabilities in DroidBench bench-
marks, and 7 vulnerabilities out of 9 in ICC-Bench suite. It
correctly finds both cases of privacy leak in bindService4 and
startActivityForResults4. It also correctly ignores two cases
where there are no leaks, since the code harboring those
vulnerabilities is not reachable, i.e., startActivity{4,5}. The
only missed vulnerabilities are the ones that are caused by
dynamic registration of Broadcast Receivers, which is not
handled by SEPAR’s model extractor.

In addition to missing the vulnerabilities in the bound
services, AmanDroid is unable to examine Content Providers
for security analysis. DidFail does even worse. Based on
the results, DidFail found only the vulnerabilities caused by
implicit Intents, missing the vulnerabilities that are due to
explicit Intents, such as information leak. The results show
that SEPAR outperforms the other two tools in terms of both
precision and recall.

B. Results for RQ2 (SEPAR and Real-World Apps)
To evaluate the implications of our tool in practice, we

collected 4,000 apps from the following four different sources:
(1) Google Play [7]: This repository serves as the official
Android app store. Our Google play collection consists of 600
randomly selected and 1,000 most popular free apps in the
market. (2) F-Droid [5]: This is a software repository that
contains free and open source Android apps. Our collection
includes 1,100 apps from this Android market. (3) Malgenome
[61]: This repository contains malware samples that cover the
majority of existing Android malware families. Our collection
includes all (about 1,200) apps in this repository. (4) Bazaar
[2]: This website is a third-party Android market. We collected
100 popular apps from this repository, distinguished from apps
downloaded from Google Play and F-Droid.

We partitioned the subject systems into 80 non-overlapping
bundles, each comprised of 50 apps, simulating a collection
of apps installed on an end-user device. The bundles enabled
us to perform several independent experiments. Out of 4,000
apps, SEPAR identified 97 apps vulnerable to Intent hijack, 124

TABLE I: Comparison between SEPAR, DidFail, and Aman-
Droid. TP, FP and FN are represented by symbols 2�, 4, 2,
respectively. (X#) indicates the number # of detected instances
for the corresponding symbol X.

Test Case DidFail AmanDroid SEPAR

D
ro

id
B

en
ch

2

ICC bindService1 42 2 2�
ICC bindService2 2 2 2�
ICC bindService3 2 2 2�
ICC bindService4 4(22) (22) (2�2)
ICC sendBroadcast1 2� 2� 2�
ICC startActivity1 2 2� 2�
ICC startActivity2 2 2� 2�
ICC startActivity3 2 2� 2�
ICC startActivity4 4
ICC startActivity5 (42)
ICC startActivityForResult1 2 2� 2�
ICC startActivityForResult2 2 2 2�
ICC startActivityForResult3 2 24 2�
ICC startActivityForResult4 (22) 2�42 (2�2)
ICC startService1 42 2� 2�
ICC startService2 42 2 2�
ICC delete1 2 2 2�
ICC insert1 2 2 2�
ICC query1 2 2 2�
ICC update1 2 2 2�
IAC startActivity1 2�4 2 2�
IAC startService1 2� 2 2�
IAC sendBroadcast1 2� 2 2�

IC
C

-B
en

ch
Explicit Src Sink 2 2� 2�
Implicit Action 2� 2� 2�
Implicit Category 2� 2� 2�
Implicit Data1 2� 2� 2�
Implicit Data2 2� 2� 2�
Implicit Mix1 2� 2� 2�
Implicit Mix2 2� 2� 2�
DynRegisteredReceiver1 2 2� 2
DynRegisteredReceiver2 2 2 2

Precision 55% 86% 100%
Recall 37% 48% 97%
F-measure 44% 63% 98%

apps to Activity/Service launch, 128 apps to inter-component
sensitive information leakage, and 36 apps to privilege es-
calation. We then manually inspected the SEPAR’s results to
assess its utility in practice. In the following, we describe
some of our findings. To avoid leaking previously unknown
vulnerabilities, we only disclose a subset of those that we have
had the opportunity to bring to the app developers’ attention.

Activity/Service Launch. Barcoder is a barcode scanner
app that scans bills using the phone’s camera, and enables
users to pay them through an SMS service. It also stores
the user’s bank account information, later used in paying the
bills. Given details of a bill as payload of an input Intent,
the InquiryActivity component of this app pays it through
SMS service. This component exposes an unprotected Intent
Filter that can be exploited by a malicious app for making an
unauthorized payment.

Intent Hijack. Hesabdar is an accounting app for personal
use and money transaction that, among other things, manages
account transactions and provides a temporal report of the
transaction history. One of its components handles user ac-
count information and sends the information as payload of
an implicit Intent to another component. When a component
sends an implicit Intent, there is no guarantee that it will be

received by the intended recipient. A malicious application
can intercept an implicit Intent simply by declaring an Intent
Filter with all of the actions, data, and categories listed in the
Intent, thus stealing sensitive account information by retrieving
the data from the Intent.

Information Leakage. OwnCloud provides cloud-based file
synchronization services to the user. By creating an account
on the back-end server, user can sync selected files on the
device and access synced files to browse, manage, and share.
Our study indicates that OwnCloud app is vulnerable to leak
sensitive information to other apps. One of its components
obtains the account information and through a chain of Intent
message passing, eventually logs the account information in
an unprotected area of the memory card, which can be read
by any other app on the device.

Privilege Escalation. Ermete SMS is a text messaging app
with WRITE SMS permission. Upon receiving an Intent, its
ComposeActivity component extracts the payload of the given
Intent, and sends it via text message to a number also specified
in the payload, without checking the permission of the sender.
This vulnerable component, thus, provides the WRITE SMS
permission to all other apps that may not have it.

C. Results for RQ3 (Performance and Timing)

The next evaluation criteria are the performance benchmarks
of static model extraction and formal analysis and synthesis
activities. We used a PC with an Intel Core i7 2.4 GHz CPU
processor and 4 GB of main memory, and leveraged Sat4J as
the SAT solver during the experiments.

Figure 5 presents the time taken by SEPAR to extract app
specifications for 4,000 real-world apps. This measurement
is done on the data-sets collected from 4 repositories: Google
Play, F-Droid, Malgenome, and Bazaar. The scatter plot shows
both the analysis time and the app size. According to the
results, our approach statically analyzes 95% of apps in less
than two minutes. As our approach for model extraction
analyzes each app independently, the total static analysis time
scales linearly with the size of the apps.

Table II shows the average time involved in compositional
analysis and synthesis of policies for a set of apps. The first
three columns represent the average number of Components,

Fig. 5: Scatter plot representing analysis time for model
extraction of Android apps.

TABLE II: Experiments performance statistics.

Components Intents Intent Time (sec)
Filters Construction Analysis

313 322 148 260 57

Intents, and Intent filters within each analyzed bundle. The
next two columns represent the time spent on transforming
the Alloy models into 3-SAT clauses, and in SAT solving to
find the space of solutions for each bundle. The timing results
show that on average SEPAR is able to analyze bundles of
apps containing hundreds of components in the order of a few
minutes (on an ordinary laptop), confirming that the proposed
technology based on a lightweight formal analyzer is feasible.

D. Results for RQ4 (Policy Enforcement)
The last evaluation criterion is the performance benchmark

of SEPAR’s policy enforcement. To measure the runtime
overhead required for APE (i.e., policy enforcement), we have
tested a set of benchmark applications. Our benchmark appli-
cations repeatedly perform several ICC operations, such as the
startService method. We have handled uncontrollable factors
in our experiments by repeating the experiments 33 times, the
minimum number of repetitions needed to accurately measure
the average execution time overhead at 95% confidence level.
Overall, the execution time overhead incurred by APE for
policy enforcement is 11.80% ± 1.76%, making the effect
on user experience negligible. Note that using the run-time
process instrumentation (cf. section VI), our infrastructure
only introduces overhead with the ICC calls, and does not have
any overhead in terms of the non-ICC calls. Thus, in practice,
the overhead introduced by our approach is significantly less
than 11.80%.

VIII. RELATED WORK

Mobile security issues have received a lot of attention
recently. Here, we provide a discussion of the related efforts
in light of our research.

Android security analysis. A large body of work [16],
[22], [24], [27], [33], [35], [46], [59] focuses on performing
security analysis in the context of Android. Chin et al. [24]
studied security challenges of Android communication, and
developed ComDroid to detect those vulnerabilities through
static analysis of each app. Octeau et al. [46] developed
Epicc for analysis of Intent properties—except data scheme—
through inter-procedural data flow analysis. FlowDroid [13]
introduces a precise approach for static taint flow analysis
in the context of each application component. CHEX [42]
also takes a static method to detect component hijacking
vulnerabilities within an app. These research efforts, like many
others we studied, are mainly focused on Intent and component
analysis of one application. SEPAR’s analysis, however, goes
far beyond single application analysis, and enables synthesis
of policies targeting the overall security posture of a system,
greatly increasing the scope of vulnerability analysis.

The other, and perhaps more closely related, line of re-
search focuses on ICC analysis [17], [40], [41], [57], [59].
DidFail [40] introduces an approach for tracking data flows
between Android components. It leverages Epicc for Intent
analysis, but consequently shares Epicc’s limitation of not

covering data scheme, which negatively affects the precision
of this approach in inter-component path matching. Moreover,
it does not generate nor enforce system-specific policies, as
performed by SEPAR. IccTA, similarly, leverages an intent res-
olution analysis to identify inter-component privacy leaks [41].
IccTA’s approach for inter-component taint analysis is based
on a pre-processing step connecting Android components
through code instrumentation, which improves accuracy of
the results but may also cause scalability issues. Amandroid
also tackles Android ICC-based privacy leaks [57]. It does
not support one of the four types of Android components,
i.e., Content Provider, nor complicated ICC methods, like
startActivityForResult. Along the same line, COVERT [17]
presents an approach for compositional analysis of Android
inter-app vulnerabilities. While this work is concerned with
the analysis of permission leakage between Android apps, it
does not really address the problem that we are addressing,
namely the automated synthesis and dynamic enforcement of
system-specific policies.

Policy enforcement. The other relevant thrust of research
has focused on policy enforcement [15], [23], [37], [39], [48],
[50], [56], [58]. Kirin [28] extends the application installer
component of Android’s middleware to check the permissions
requested by applications against a set of security rules. These
predefined rules are aimed to prevent unsafe combination of
permissions that may lead to insecure data flows. Our work
differs in that it generates system-specific, fine-grain policies
for a given system, rather than relying on general-purpose
policies defined based only on coarse-grain permissions. More-
over, SEPAR is more precise as it dynamically analyzes policy
violations against flows that actually occur at run-time.

Along the same line, some other techniques enforce policies
at runtime. Among others, Kynoid [50] performs a dynamic
taint analysis over a modified version of Dalvik VM. This
approach, similar to many of the previously proposed solu-
tions [26]–[29], requires changes to the Android. ASM [37]
presents an extensible security modules framework that en-
ables apps to define hooks in order to enforce app-specific
security requirements. While this work is concerned with
the design and implementation of a programmable interface
for defining new reference monitors, it does not consider
the problem that we address, the automation of synthesizing
ICC policies. The two approaches are thus complementary in
that SEPAR’s APE module can be realized as ASM hooks.
More recently, DeepDroid [56] presents a policy enforcement
scheme based on dynamic memory instrumentation of system
processes. However, it depends on undocumented internal
architecture of Android framework and its system resources
which may change in future versions without notice.

Overall, all the enforcement techniques we studied rely
on policies developed by users, whereas SEPAR is geared
towards the application of formal techniques to synthesize
such policies through compositional analysis of Android apps.
Our work can complement prior enforcement techniques by
providing highly-precise synthesized policies to relieve the
users of responsibility of manual policy development.

Synthesis. Finally, constraint solving for synthesis and anal-
ysis has increasingly been used in a variety of domains [12],

[18], [19], [36]. These research efforts share with ours the
common insight of using the state-of-the-art constraint solving
for synthesis. Different from all these techniques, SEPAR
tackles the automated detection and mitigation of inter-app
security vulnerabilities in Android, by synthesizing Android-
specific security policies. It thus relieves the tedium and errors
associated with their manual development. To the best of our
knowledge, SEPAR is the first formally-precise technique for
automated synthesis and dynamic enforcement of Android
security policies.

IX. CONCLUDING REMARKS

This paper presents a novel approach for automatic synthesis
and enforcement of security policies, allowing the end-users
to safeguard the apps installed on their device from inter-app
vulnerabilities. The approach, realized in a tool, called SEPAR,
combines static program analysis with lightweight formal
methods to automatically infer security-relevant properties
from a bundle of apps. It then uses a constraint solver to
synthesize possible security exploits, from which fine-grain
security policies are derived and automatically enforced to
protect a given device. The results from experiments in the
context of thousands of real-world apps corroborates SEPAR’s
ability in finding previously unknown vulnerable apps as well
as preventing their exploitation.

The great majority of Android devices run KitKat or older
versions [1], which provide a static permission model. How-
ever, a recently released version of Android (Marshmallow)
provides a Permission Manager that allows users to revoke
granted permissions after installation time. We believe a solu-
tion such as SEPAR becomes even more relevant in this new
version of Android, where the policies have to be fine-tuned to
the user-specific, continuously-evolving configuration of apps.
SEPAR has more potential in such a dynamic setting, as it can
be applied to continuously verify the security properties of
an evolving system as the status of app permissions changes.
SEPAR’s incremental analysis for policy synthesis can then
be performed on permission-modified apps at runtime. In
cases where vulnerabilities are detected and new policies are
synthesized, mitigation strategies could be carried through
the policy enforcer deployed on mobile devices, restricting
communications between certain apps to secure the system.

Our approach has a few limitations. Current implementation
of SEPAR mainly monitors API calls at the bytecode level. It
thus might miss methods executed in native libraries accessed
via Java Native Interface (JNI), or from external sources that
are dynamically loaded. It has been shown that only about
4.52% of the apps on the market contain native code [60].
Supporting these additional sources of vulnerability entails
extensions to our static program analysis and instrumentation
approach to support native libraries. Reasoning about dynam-
ically loaded code is not possible through static analysis,
and thus, an additional avenue of future work is leveraging
dynamic analysis techniques, such as TaintDroid [27] and
EvoDroid [43], that would allow us to extract additional
behaviors that might be latent in apps.

X. ACKNOWLEDGMENT

This work was supported in part by awards CCF-1252644
from the National Science Foundation, D11AP00282 from
the Defense Advanced Research Projects Agency, W911NF-
09-1-0273 from the Army Research Office, HSHQDC-14-
C-B0040 from the Department of Homeland Security, and
FA95501610030 from the Air Force Office of Scientific Re-
search.

REFERENCES

[1] “Android platform versions,” http://developer.android.com/about/
dashboards/index.html#2015.

[2] “Bazaar,” http://cafebazaar.ir/.
[3] D. Jackson, Software Abstractions, 2nd ed. MIT Press, 2012.
[4] “Droidbench2.0,” http://github.com/secure-software-engineering/

DroidBench/tree/iccta/apk.
[5] “F-droid,” https://f-droid.org/.
[6] “Freemarker java template engine,” http://freemarker.org/.
[7] “Google play market,” http://play.google.com/store/apps/.
[8] “Iccbench,” https://github.com/fgwei/ICC-Bench/tree/master/apks.
[9] “Iccta tool on github, reported issues,” https://github.com/lilicoding/

soot-infoflow-android-iccta/issues/7.
[10] “Separ,” https://seal.ics.uci.edu/projects/separ.
[11] “Xposed framework,” http://repo.xposed.info/.
[12] D. Akhawe, A. Barth, P. Lam, J. Mitchell, and D. Song, “Towards a

formal foundation of web security,” in Proc. of CSF, 2010.
[13] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,

Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android
apps,” in Proc. of PLDI, 2014.

[14] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “Pscout: Analyzing the
android permission specification,” in Proc. of CCS, 2012.

[15] M. Backes, S. Gerling, C. Hammer, M. Maffei, and P. von Styp-
Rekowsky, “Appguard–enforcing user requirements on android apps,”
in Proc. of TACAS, 2013.

[16] H. Bagheri, E. Kang, S. Malek, and D. Jackson, “Detection of design
flaws in android permission protocol through bounded verification,” in
Proc. of FM, 2015, pp. 73–89.

[17] H. Bagheri, A. Sadeghi, J. Garcia, and S. Malek, “Covert: Compositional
analysis of android inter-app permission leakage,” IEEE Transactions on
Software Engineering, vol. 41, no. 9, pp. 866–886, 2015.

[18] H. Bagheri and K. Sullivan, “Model-driven synthesis of formally precise
stylized software architectures,” Formal Aspects of Computing, 2016.

[19] H. Bagheri, C. Tang, and K. Sullivan, “Trademaker: Automated dynamic
analysis of synthesized tradespaces,” in Proc. of ICSE, 2014.

[20] E. Bodden, “Inter-procedural data-flow analysis with ifds/ide and soot,”
in Proc. of SOAP, 2012.

[21] S. Bugiel, L. David, Dmitrienko, T. A. Fischer, A. Sadeghi, and
B. Shastry, “Towards taming privilege-escalation attacks on android,”
in Proc. of NDSS, 2012.

[22] Y. Cao, Y. Fratantonio, A. Bianchi, M. Egele, C. Kruegel, G. Vigna,
and Y. Chen, “Edgeminer: Automatically detecting implicit control flow
transitions through the android framework,” in Proc. of NDSS, 2015.

[23] K. Z. Chen, N. M. Johnson, V. D’Silva, S. Dai, K. MacNamara, T. R.
Magrino, E. X. Wu, M. Rinard, and D. X. Song, “Contextual policy
enforcement in android applications with permission event graphs.” in
NDSS, 2013.

[24] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, “Analyzing inter-
application communication in android,” in Proc. of MobiSys, 2011.

[25] A. S. Christensen, A. Møller, and M. I. Schwartzbach, “Precise analysis
of string expressions,” in Proc. of SAS, 2003.

[26] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S. Wallach, “Quire:
Lightweight provenance for smart phone operating systems,” in Proc. of
USENIX, 2011.

[27] W. Enck, P. Gilbert, B. g. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth, “Taintdroid: An information-flow tracking system for
realtime privacy monitoring on smartphones,” in USENIX OSDI, 2011.

[28] W. Enck, M. Ongtang, and P. McDaniel, “On lightweight mobile phone
application certification,” in Proc. of CCS, 2009.

[29] A. P. Felt, H. Wang, A. Moshchuk, S. Hanna, and E. Chin, “Permission
re-delegation: Attacks and defenses,” in Proc. of USENIX Security, 2011.

[30] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
permissions demystified,” in Proc. of CCS, 2011, pp. 627–638.

[31] E. Fragkaki, L. Bauer, L. Jia, and D. Swasey, “Modeling and enhancing
android’s permission system,” in Proc. of ESORICS, 2012.

[32] Gartner Inc., “Gartner reveals top predictions for IT organizations
and users for 2012 and beyond,” http://www.gartner.com/newsroom/id/
1862714, 2011.

[33] C. Gibler, J. Crussell, J. Erickson, and H. Chen, “Androidleaks: Auto-
matically detecting potential privacy leaks in android applications on a
large scale,” in Trust and Trustworthy Computing, 2012.

[34] Google, “Android api reference document,” http://developer.android.
com/reference.

[35] M. Grace, Y. Zhou, Z. Wang, and X. Jiang, “Systematic detection of
capability leaks in stock android smartphones,” in Proc. of NDSS, 2012.

[36] S. Gulwani, “Dimensions in program synthesis,” in Proc. of PPDP,
2010.

[37] S. Heuser, A. Nadkarni, W. Enck, and A.-R. Sadeghi, “Asm: A
programmable interface for extending android security,” in Proc. of
USENIX, 2014.

[38] S. Holavanalli, D. Manuel, V. Nanjundaswamy, B. Rosenberg, F. Shen,
S. Y. Ko, and L. Ziarek, “Flow permissions for android,” in Proc. of
ASE, 2013.

[39] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall, “These
aren’t the droids you’re looking for: Retrofitting android to protect data
from imperious applications,” in Proc. of CCS, 2011, pp. 639–652.

[40] W. Klieber, L. Flynn, A. Bhosale, L. Jia, and L. Bauer, “Android taint
flow analysis for app sets,” in Proc. of SOAP, 2014.

[41] L. Li, A. Bartel, J. Klein, Y. L. Traon, S. Arzt, S. Rasthofer, E. Bodden,
D. Octeau, and P. McDaniel, “Iccta: Detecting inter-component privacy
leaks in android apps,” in Proc. of ICSE, 2015.

[42] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “Chex: statically vetting
android apps for component hijacking vulnerabilities,” in CCS, 2012.

[43] R. Mahmood, N. Mirzaei, and S. Malek, “Evodroid: Segmented evolu-
tionary testing of android apps,” in Proc. of FSE, 2014.

[44] C. Mann and A. Starostin, “A framework for static detection of privacy
leaks in android applications,” in Proc. of SAC, 2012.

[45] T. Nelson, S. Saghafi, D. J. Dougherty, K. Fisler, and S. Krishnamurthi,
“Aluminum: Principled scenario exploration through minimality,” in
Proc. of ICSE, 2013, pp. 232–241.

[46] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden, J. Klein, and Y. L.
Traon, “Effective Inter-Component Communication Mapping in Android
with Epicc: An Essential Step Towards Holistic Security Analysis,” in
Proc. of USENIX Security, 2013.

[47] S. Rasthofer, S. Arzt, and E. Bodden, “A machine-learning approach
for classifying and categorizing android sources and sinks,” in Proc. of
NDSS, 2014.

[48] S. Rasthofer, S. Arzt, E. Lovat, and E. Bodden, “Droidforce: Enforcing
complex, data-centric, system-wide policies in android,” in Proc. of
ARES, 2014, pp. 40–49.

[49] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman, “Role-
based access control models,” Computer, vol. 29, no. 2, pp. 38–47, 1996.

[50] D. Schreckling, J. Posegga, J. Köstler, and M. Schaff, “Kynoid: Real-
time enforcement of fine-grained, user-defined, and data-centric security
policies for android,” in Proc. of WISTP, 2012, pp. 208–223.

[51] A. Shabtai, Y. Fledel, U. Kanonov, Y. Elovici, S. Dolev, and C. Glezer,
“Google android: A comprehensive security assessment,” Security &
Privacy, IEEE, vol. 8, no. 2, pp. 35–44, 2010.

[52] Symantec, “2015 internet security threat report,” Tech. Rep. Vol. 20,
Apr. 2015.

[53] Symantec Corp., “2012 norton study.” http://www.symantec.com/about/
news/release/article.jsp?prid=20120905 02, Sep. 2012.

[54] O. Tripp, M. Pistoia, P. Cousot, R. Cousot, and S. Guarnieri, “An-
dromeda: Accurate and scalable security analysis of web applications,”
in Proc. of FASE, 2013.

[55] R. Valle é-Rai, P. Co, E. Gagnon, L. Hendren, and V. Lam, P.and Sun-
daresan, “Soot - a java bytecode optimization framework,” in Proc. of
CASCON’99, 1999.

[56] X. Wang, K. Sun, Y. Wang, and J. Jing, “Deepdroid: Dynamically
enforcing enterprise policy on android devices,” in Proc. of NDSS, 2015.

[57] F. Wei, S. Roy, X. Ou, and Robby, “Amandroid: A precise and general
inter-component data flow analysis framework for security vetting of
android apps,” in Proc. of CCS, 2014.

[58] R. Xu, H. Saı̈di, and R. Anderson, “Aurasium: Practical policy enforce-
ment for android applications.” in Proc. of USENIX Security, 2012.

[59] Y. Zhou and X. Jiang, “Detecting passive content leaks and pollution in
android applications,” in Proc. of NDSS, 2013.

[60] Y. Zhou, Z. Y. Wang, W. Zhou, and X. Jiang, “Hey, you, get off of
my market: Detecting malicious apps in official and alternative android
markets,” in Proc. of NDSS, 2012.

[61] Y. Zhou and X. Jiang, “Dissecting android malware: Characterization
and evolution,” in Proc. of IEEE Security and Privacy, 2012.

