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ABSTRACT
System designers today are focusing less on point solutions
for complex systems and more on design spaces, often with
a focus on understanding tradeoffs among non-functional
properties across such spaces. This shift places a premium
on the efficient comparative evaluation of non-functional
properties of designs in such spaces. While static analysis
of designs will sometimes suffice, often one must run designs
dynamically, under comparable loads, to determine proper-
ties and tradeoffs. Yet variant designs often present vari-
ant interfaces, requiring that common loads be specialized
to many interfaces. The main contributions of this paper
are a mathematical framework, architecture, and tool for
specification-driven synthesis of design spaces and common
loads specialized to individual designs for dynamic tradeoff
analysis of non-functional properties in large design spaces.
To test our approach we used it to run an experiment to test
the validity of static metrics for object-relational database
mappings, requiring design space and load synthesis for, and
dynamic analysis of, hundreds of database designs.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques

General Terms
Design, Experimentation, Performance

Keywords
Specification-driven Synthesis, Tradeoff Space, ORM, Static
Analysis, Dynamic Analysis

1. INTRODUCTION
Producing systems that achieve acceptable tradeoffs among

non-functional properties remains a major engineering prob-
lem. To address it, engineers are now focusing less on point

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14, May 31–June 7, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2756-5/14/05 ...$15.00.

solutions and more on specifying, populating, and analyz-
ing points and regions in design spaces. The contribution
of this work is an approach to specification-driven synthe-
sis of both design spaces and common loads for fair, com-
parative, dynamic analysis of non-functional properties of
variant designs across such spaces. A key challenge is to
synthesize test loads for fair comparative analysis, because
doing so generally requires specialization of common loads
to the variant interfaces of variant designs. Our goal is to
synthesize both design spaces and such loads automatically
from common, formal, design-space specifications, to enable
specification-driven automated dynamic analysis of tradeoffs
among non-functional properties across large design spaces.

This paper provides one solution to this problem, par-
ticularly for design space models expressible within a rela-
tional logic [20]. Section 2 presents object-relational map-
ping (ORM) as a concrete driving problem. Section 3 presents
a mathematical and solution framework. Section 4 details
an implementation architecture using a relational constraint
language (Alloy) and solver (Alloy Analyzer) for expression
and synthesis of design spaces and loads. Section 5 presents
an experiment using our dynamic analysis approach to test
the validity of static predictors of non-functional properties
of database applications. The rest of the paper presents our
evaluation of this work, related work, and conclusions and
thoughts about future work.

2. DRIVING PROBLEM
While our long-term aim is to improve engineering produc-

tivity and quality through advances in design space science
and technology, our short-term research strategy is to use
the analysis of spaces of object-relation mappings (ORM)
as a tractable and useful driving problem.

In this domain, one starts with an object model as in Fig-
ure 1 and eventually selects one of many possible strategies
for mapping such a model to a relational database, with
tradeoffs in response time, space usage, and evolvability.
Figure 2 illustrates two such strategies; and Listing 1, a
database set-up script derived from one of these solutions.

Simple ORM solutions, many in everyday use, lock one
into either point solutions or highly constrained solution
spaces. To address this problem, our earlier work [6] pre-
sented a capability to synthesize comprehensive ORM de-
sign spaces from formal object model specifications. Given
such a space, the challenge is to develop, validate, and ap-
ply non-functional property prediction (analysis) functions
to designs in the space to predict properties of designs in,
and tradeoffs across, the space.



Figure 1: A simple object model with three classes, Order,
Customer, and PreferredCustomer, a one-to-many asso-
ciation between Customer and Order, and with Preferred-
Customer inheriting from Customer.

Figure 2: Two mapping strategies. White boxes repre-
sent classes; gray titles, corresponding tables, and black and
white arrows, mapping and inheritance relationships. For-
eign keys are marked as fKeys.

Ideally, one has a vector of easily computed, well vali-
dated analysis functions. In that case, mapping this vector
of functions (or, equivalently, this vector-valued function)
across the points in the space yields a multi-dimensional,
non-functional property image of the design space. Trade-
offs, Pareto-optimal solutions, and other critical information
can then be read from the results.

Static analysis functions predict properties from the struc-
tures of design representations. Such functions are often ef-
ficient, but might not be available, validated, or predictive.
This point is clear in our earlier work. Cognizant of the is-
sues, we applied published but not well validated static met-
rics [7,18] to our synthesized ORM spaces. The results were
interesting and promising and allowed us to make progress
in our research, but it was clear that questions remained.

1 CREATE TABLE ‘Order ‘ (
2 ‘ orderID ‘ int (11) NOT NULL,
3 ‘ orderValue ‘ int (11) ,
4 ‘ customerID ‘ int (11) ,
5 KEY ‘ FK customerID idx ‘ ( ‘ customerID ‘ ) ,
6 PRIMARY KEY ( ‘ orderID ‘ )
7 ) ;
8

9 CREATE TABLE ‘ Customer ‘ (
10 ‘DType ‘ varchar (31) ,
11 ‘ d iscount ‘ int (11) ,
12 ‘ customerID ‘ int (11) NOT NULL,
13 ‘ customerName ‘ varchar (31) ,
14 PRIMARY KEY ( ‘ customerID ‘ )
15 ) ;

Listing 1: Synthesized MySQL database creation script
elided for space and readability.

Figure 3: A view of our tool to provide decision-makers
with Pareto-optimal OR mapping solutions based on static
analysis results; columns and rows represent metrics and
solution alternatives, respectively.

Can design decision makers believe such metrics? What are
the actual properties and tradeoffs?

These questions took on added urgency with our produc-
tion, reported here for the first time, of a web-accessible tool
that implements our ORM synthesis and analysis approach.
We call it Trademaker-ORM1 (T-ORM). It supports auto-
mated, specification-driven synthesis of ORM design spaces
and static analysis using the aforementioned metrics. It pro-
vides a web interface, user account and job management (job
submission, asynchronous execution, status reporting, per-
sistence), computation and presentation of Pareto-optimal
subsets of synthesized designs under the given metrics, and
synthesis of SQL databases for selected designs. Figure 3
presents a screen shot of a T-ORM run. Rows present
Pareto-optimal designs, and columns, analysis results. List-
ing 1 presents an SQL database creation script obtained by
selecting a design from the table.

To test the validity of the results that T-ORM reports,
we turned to dynamic analysis. The combination of ample
computing capacity and our ability to synthesize many run-
ning databases for given object models suggested that we
measure properties and tradeoffs of actual running systems,
in the spirit of what Cadar et al. call multiplicity comput-
ing [11]. Doing so could at least validate the static metrics
through statistical analysis of the power of these metrics to
predict dynamically measured results. If we could validate
the static metrics, we could use them for efficient analysis. If
not, we could fall back on less efficient but more trustworthy
dynamic analysis.

The problem was now to figure out how to automate fair
comparative dynamic analysis of diverse database designs.
There are of course many commercial tools for generating
database testing loads from schemas. In our case, however,
many variant schemas implement a common object model.
An application that operates against an object model will
create what we will call an abstract load that any implemen-
tations would have to handle. The translation from abstract
load to concrete operations on a database would be imple-
mented by an application based on a single choice of map-
ping strategy. We faced the need to synthesize hundreds or
thousands of such load specialization functions.

3. ALGEBRAIC MODEL
The insight that enabled such synthesis was that we could

recover, from synthesized database designs, abstraction func-
tions relating designs back to the object model specifica-
tions from which they were derived, and that from these

1www.jazz.cs.virginia.edu:8080/Trademaker



abstraction functions we could derive functions for concretiz-
ing abstract loads synthesized from the same object models.
The commutative diagram in Figure 4 presents the resulting
mathematical structure. Designabst is a set of formal design
space specifications in a particular domain, inductively de-
fined by the grammar and semantics of the language in which
the models are specified. In work to date, we represent de-
sign space specifications as expressions in a domain specific
language embedded in a relational logic.

Designabst Loadabst

Designconc Loadconc

l

t

cl

computeac

Figure 4: Algebraic structure of the Trademaker approach.

To an abstract model, m ∈ Designabst, we apply a de-
sign space synthesis (concretization) function, c, to compute
c(m) ⊂ Designconc, the space of concrete design variants
from which we want to choose a design to achieve desirable
tradeoffs. Relation c can be seen as mapping abstract, in-
tensional models of design spaces to extensional representa-
tions, namely sets of concrete design variants. We represent
the design space synthesis function, c, as a semantic map-
ping predicate in our relational logic, taking expressions in
the abstract modeling language to corresponding concrete
design spaces. Relation a, an abstraction relation, explains
how any given concrete design, d ∈ c(m), instantiates (i.e.,
is a logical model of) its abstract model, m. Function c is
specified once for any given abstract modeling language, as
a semantic mapping predicate in our relational logic.

Relation l, an abstract load generation relation, similarly
maps an abstract model, m ∈ Designabst, to a set of ab-
stract loads l(m) ⊂ Loadabst.

To dynamically analyze a concrete design, d ∈ c(m), an
abstract load, ld ∈ l(m) has to be specialized for the partic-
ular design. The function t, a load concretization function,
serves this purpose. We compute t from a. As long as c(m)
preserves a representation of a in its output, then from any
single design space model, m, we can synthesize a concrete
design space, and both abstract and concretized loads.

The derivation of t from a induces a mapping, cl, from
concrete designs to concrete loads parameterized by a choice
of abstract load. This function completes the commutative
diagram. We do not actually implement this mapping. The
next section describes instantiation of our approach for the
particular domain of object-oriented relational database per-
sistence mappings.

4. MODEL IMPLEMENTATION
This section presents an implementation architecture for

our approach (for ORM). Figure 5 gives a high-level overview.
Boxes represent processing modules, and ovals, module in-
puts and outputs. Abstract models are given as expressions

Figure 5: High-level overview of the TradeMaker implemen-
tation for the particular domain of ORM.

in Alloy-OM, a domain-specific language embedded in Al-
loy’s relational logic language. Roughly speaking, we specify
c and l as predicates in Alloy. Conjoining these predicates to
an Alloy-OM model yields a specification of the desired out-
put space. The Alloy analyzer computes the results, encoded
as Alloy models, which we then unparse into useful forms.
From concrete design models we extract SQL database cre-
ation scripts. From abstract load models combined with
choices of concrete databases, we derive concrete loads rep-
resented as sequences of SQL insert and select queries.

The rest of this section details how we implement the main
components of the approach, corresponding to functions c, l,
and t. Subsection 4.1 explains how we implement c, for syn-
thesizing concrete models from abstract design space speci-
fications; 4.2, how we implement l, for synthesizing abstract
loads from the same specifications; and 4.3, how we imple-
ment t, for concretization abstract loads.

4.1 Design Space Synthesis
Mapping abstract object models to concrete designs was

the subject of earlier work [6]. Novel results since that work
include substantial refinement and validation of mapping
rules and the production of functions that unparse concrete
designs representations, encoded as Alloy objects, into SQL
database creation scripts. This translation is important for
tool users as a key to automating dynamic analysis.

To make this paper self-contained, this subsection briefly
reviews the approach. We then briefly describe relevant new
work. Inspired by a bottom-up model-driven approach [5],
we start by expressing object models in a domain-specific
language embedded in Alloy, called Alloy-OM. We then use
Alloy’s constraint solver to synthesize concrete OR map-
ping strategies, realizing the function, c. The synthesizer
uses our Alloy-encoded formalizations of best practices for
object-relational mapping, described informally in the liter-
ature [10,21,25].

Alloy-OM supports three main constructs: Class, Attribute
and Association. Each class in an (e.g., UML) object model
appears as a Class signature in Alloy-OM. Each attribute
of a given class appears as an Alloy-OM Attribute in the at-
tribute set of the corresponding Alloy-OM Class signature.
Each association in the object model appears as an Alloy-
OM Association signature.

Listing 2 presents a fragment of an Alloy-OM model for
our customer-order example. The Order class has two at-
tributes, “orderID” and “orderValue”, assigned to the “at-
trSet” field of the Order class. The id field specifies the



1 one sig Order extends Class {}{
2 a t t rS e t = orderID + orderValue
3 id=orderID
4 i sAbs t ra c t = No
5 no parent
6 }
7 one sig CustomerOrderAssociation extends

Assoc i a t i on {}{
8 s r c = Customer
9 dst = Order

10 s r c m u l t i p l i c i t y = ONE
11 d s t m u l t i p l i c i t y = MANY
12 }

Listing 2: Order class in Alloy-OM.

orderID as the identifier of this class. The last two lines of
the Order signature specification denote that Order is not
an abstract class and has no parent. Lines 7–12 then spec-
ify the CustomerOrderAssociation, along with the number
of object instances that can be at each end of the associa-
tion, denoted as src and dst multiplicity. Alloy-OM is not
a sophisticated modeling language. The salient point is that
embedding it in Alloy allows us to use Alloy relations to
encode, and the Alloy analyzer to compute, formally speci-
fied semantic mapping rules to other domains: here concrete
database designs and abstract loads for those designs.

Figure 6: OR mapping for customer-order example

Figure 6 presents a graphical depiction of an Alloy object
encoding a synthesized OR mapping solution. This solution
is one of five Pareto-optimal solutions in the design space
for our customer-order object model. The diagram is accu-
rate but edited to omit some details for readability. In this
diagram, Table1 is associated to Customer and Preferred-
Customer classes, and Table0 is associated to both Order
and CustomerOrderAssociation.

From this Alloy solution, our tools generate the SQL script
of Listing 1. The script sets up a database with the two
tables: Order, with attributes orderID, customerID and or-
derValue; and Customer, with attributes, customerID, cus-
tomerName, discount, and DType. Both Customer and Pre-
ferredCustomer objects are stored in this table under this
particular mapping strategy, with the DType field distin-
guishing the type of record stored.

4.2 Abstract Load Synthesis
Our approach to synthesizing abstract loads starts with

the automated transformation of a given Alloy-OM model

1 fact {
2 a l l o1 , o2 : CustomerOrderAssociation | o1 . orderID =

o2 . orderID and o1 . customerID = o2 . customerID
=> o1=o2

3 }
4

5 fact {
6 a l l o : CustomerOrderAssociat ion | one c : Order | o .

orderID = c . orderID
7 a l l o : CustomerOrderAssociat ion | one c : Customer |

o . customerID = c . customerID
8 }

Listing 4: Part of the load model specification generated for
customer-order association.

into a related Alloy specification that we call a load model.
We then use the Alloy Analyzer to synthesize abstract loads
from this load model. Alloy solutions to the load model en-
code abstract object model data instances (OM-instances),
which are what we take as synthesized loads with which to
test synthesized designs. This section describes this func-
tionality in more detail.

For each instance of Class and Association in the Alloy-
OM model, our model transformer synthesizes a signature
definition. When the class under consideration inherits from
another class, the synthesized signature definition extends
its parent signature definition. Given the specification of
Order represented in Listing 2, the following code snippet
represents its counterpart in a synthesized load model.

sig Order{
orderValue : one Int ,
orderID : one Int

}

The one multiplicity constraints used in the declaration
of elements’ signatures within the Alloy-OM model (List-
ing 2) specify them as singleton signatures. While these
constraints are required by the tradeoff space generator (e.g.
to not generate multiple tables for a class in the model), they
are unneeded for load generation, and thus omitted in the
load model. The element attributes in the object model are
also declared as fields of the corresponding load signature
definition representing relations from the signature to the
attribute type.

Finally, two sets of constraints are synthesized as fact
paragraphs in the load model to guarantee both referential
integrity of generated data as well as uniqueness of element
identifiers with reference to the set of element instances to
be generated. Referential constraints require every value of
a particular attribute of an element instance to exist as a
value of another attribute in a different element.

Consider the association relationship between Customer
and Order classes from our running example (Figure 2). The
code snippet of Listing 4 represents synthesized constraints
in the load model for the customer-order association.

The expression of lines 1–3 states that if any two elements
of type CustomerOrderAssociation have the same orderID
and customerID, the elements are identical. This constraint
rules out duplicate elements. The fact constraint of lines
5–8 states that for any orderID and customerID fields of
aCustomerOrderAssociation, there are Order and Customer
instances with the same orderID and customerID.

Applying the Alloy Analyzer to the derived load model
yields the desired load in the form of object model data in-
stances (OM-instances). Figure 7 depicts a generated OM-
instance, an Alloy solution object. This solution represents



Figure 7: An example of OM-instance.

two customers with customerID of 64 and 225, the latter
a preferred customer with 10 percent discount, along with
their orders. From many such solutions we derive an ab-
stract (application-object-model-level, rather than concrete-
database-schema-level) load with which to test the perfor-
mance of many database instances.

Improving the efficiency of the load generator. One of the
challenges we faced involved the scalability of this approach
to load synthesis. A large number of solutions generated by
the Alloy Analyzer were symmetric to previously generated
instances, and thus did not contribute usefully to the load
being generated. We explored a number of ways to improve
efficiency of the load generator. The one that we found
worked best is the iterative refinement of the load model
by adding constraints that eliminate permutations of the al-
ready generated OM-instances. Without this improvement,
it took 21 hours for Trademaker-ORM to generate test loads
for one of our experiments. Given this approach, the time
was reduced to about 2 hours—an order of magnitude speed
up in the synthesis of test loads.

4.3 Abstract Load Concretization
The next challenge we discuss is to convert abstract load

OM-instance objects into concrete SQL queries on a per-
database basis. This is the task of specializing abstract load
elements to the variant schemas presented by different so-
lutions in the design space. Our Alloy-to-SQL transformer
handles this task. To create SQL statements for a given
database, Alloy-to-SQL transformer requires an OR map-
ping, the abstraction function describing how that concrete
database schema implements the abstract object model.

Algorithm 1 outlines this transformation. For brevity, and
because it suffices to make our point, this section focuses
on insert queries. The approach supports the generation of
select and update queries as well, which are important, of
course, for comprehensive dynamic analysis.

The logic of the algorithm is as follows. Iterate over all
elements in a given OM-instance (e.g., classes and associa-
tions) whose values can be populated into databases through
insert statements. Looks up the mapping to determine the
table in which the element values should be stored. For each
relational field in the associated table, if the OM-instance
contains a value corresponding to that field, insert the value
into the field. Otherwise, in the case that the field is a
DType, insert the name of element into the field. Finally, if
the field is a foreignKey, find the associated attribute from
a relevant association in the given OM-instance, and insert
its value into the field.

Consider the database alternative for our running exam-
ple, in which we store the customer-order association data
into the order table (Figure 2b). In that case, the field
of customerID in the Order table is a foreignKey, and its

Algorithm 1: Generate SQL Insert Statements

Input: omi: OM-instance, map: OR mapping
Output: A set of SQL insert statements

1 for element in omi do
2 T = map.TableAssociat(element);
3 F = T.fields;
4 for field in F do
5 value = getValueFromOMI(field);
6 if value != null then
7 add “field = value” into statements
8 end
9 else

10 if field == “DType” then
11 value = element.name;
12 end
13 if isForeignKey(field) then
14 attr = findAttributeFromAssociation(field);
15 value = getValueFromOMI(attr);

16 end
17 add “field = value” into statements

18 end

19 end

20 end

1 INSERT INTO ‘ Customer ‘ ( ‘ customerID ‘ , ‘DTYPE‘ )
VALUES (64 , ’ Customer ’ ) ;

2 INSERT INTO ‘ Customer ‘ ( ‘ customerID ‘ , ‘DTYPE‘ )
VALUES (225 , ’ PreferredCustomer ’ ) ;

3 INSERT INTO ‘Order ‘ ( ‘ orderID ‘ , ‘ orderValue ‘ , ‘
customerID ‘ ) VALUES (184 ,511 ,64) ;

4 INSERT INTO ‘Order ‘ ( ‘ orderID ‘ , ‘ orderValue ‘ , ‘
customerID ‘ ) VALUES (366 ,510 ,225) ;

Listing 5: Generated SQL insert statements from OM-
instance of Figure 7 for implementation mapping of Figure 6.

values come from the associated customerOrderAssociation
element.

Listings 5 represents the set of SQL insert statements gen-
erated from the OM-instance of Figure 7 according to the
mapping of Figure 6. The first two generated statements
define insert queries to store instances of Customer and Pre-
ferredCustomer into the Customer table along with appro-
priate DType values for each one. The next two statements
then store instances of Order and CustomerOrderAssocia-
tion into the Order table.

5. DYNAMIC ANALYSIS EXPERIMENT
As an experimental test of our approach to specification-

driven, automated dynamic analysis of non-functional prop-
erty tradeoffs across design spaces, we apply the approach to
test the validity of the static predictors of database perfor-
mance. We formulate, test, and provide experimental data
in support of three driving hypotheses:

• H1: The ordering of alternatives predicted by the static
metrics predicts that of the dynamic analysis results



• H2: The relative magnitudes of static measures of al-
ternatives predict those of the dynamic analysis results

• H3: Dynamic analysis using scale-limited synthesized
loads predicts performance under much larger loads

This section summarizes the design and execution of our
experiment, the data we collected, its interpretation, and our
results, which include novel findings regarding these metrics.

5.1 Static Metrics Suite
The choice of mapping strategy impacts key non-functional

system properties. Response time performance, storage space
and maintainability are among the set of quality attributes
defined by the ISO/IEC 9126-1 standard that are influenced
by the choice of OR mappings. To statically measure these
attributes in an ORM design space, we use a set of metrics
suggested by Holder et al. [18] and Baroni et al. [7]. The met-
rics are called Table Access for Type Identification (TATI ),
Number of Corresponding Table (NCT), Number of Corre-
sponding Relational Fields (NCRF), Additional Null Value
(ANV), Number of Involved Classes (NIC) and Referential
Integrity Metric (RIM). In this work, we focus on three of
these metrics for time and space performance. Maintainabil-
ity is out of scope as we cannot measure it using dynamic
analysis technique.

5.1.1 Table Accesses for Type Identification (TATI)
Table Accesses for Type Identification (TATI) is a perfor-

mance metric for polymorphic queries [18]. According to the
definition, given a class C, TATI(C) defines the number of
different tables that correspond to C and all its subclasses.
Our tools total up TATI values for each class as the overall
TATI measure for each solution alternative.

5.1.2 Number of Corresponding Tables (NCT)
Number of Corresponding Tables (NCT) is a performance

metric for insert and update queries. This metric specifies
the number of tables that contain data necessary to assem-
ble objects of a given class [18]. According to the definition,
given a class C, NCT(C) equals to NCT of its direct super
class, if C is mapped to the same table as its super class.
Otherwise, if C is mapped to its own table, NCT(C) equals
to NCT of its direct super class plus one. Finally, if C is
a root class, NCT(C) equals to 1. Our tool computes to-
taled NCT values over classes as the NCT measure for each
solution alternative.

5.1.3 Additional Null Value (ANV)
The Additional Null Value (ANV) metric specifies the

storage space for null values when different classes are stored
in a common table [18]. According to the definition, given
a class C, ANV(C) equals to the number of non-inherited
attributes of C multiplied by the number of other classes
that are being mapped to the particular table to which C is
mapped. Our tools present totals for ANV values over all
classes as the ANV measures for each solution alternative.

5.2 Static Analysis of Synthesized Designs
To apply these metrics to synthesized solutions, we de-

signed specific Alloy queries. Here we describe one for mea-
suring the TATI metric. The others are evaluated similarly.

TATI(C) = #(C.*(∼parent).∼tAssociate)

Figure 8: Multi-dimensional quality measures for pareto-
optimal solutions.

Here the dot operator denotes a relational join. The Alloy
∼ operator represents the transpose operation over a binary
relation, which reverses the order of atoms within the rela-
tion. Given the tAssociate (abstraction) relation that maps
tables to their associated elements (i.e. Class or Associa-
tion) within the object model, its transpose is the relation
that maps each element to its associated table within the
relational structure. The Alloy * operator represents the
reflexive-transitive closure operation of a relation. Accord-
ingly, the expression of “C.*(∼parent)” states a set of classes
that have the class “C” as their ancestor in their inheritance
hierarchy. The query expressions then, by using the Alloy
set cardinality operator #, computes the TATI metric.

Our static metrics suite comprises six such static mea-
sures. The vector of these functions defines a 6-dimensional
static analysis function applicable to Alloy-synthesized con-
crete designs (e.g., Figure 6). Our tools map this function
over all elements of a synthesized design space to produce
a tradeoff surface. The spider diagram, shown in Figure 8,
illustrates one Pareto-optimal point on that surface for our
example customer-order system. To display quality mea-
sures in one diagram, we normalized the values. Such dia-
grams can assist in conducting tradeoff analyses by making
it easier to visualize and compare alternatives. According to
the diagram, if the designer opts for performance, she may
decide to use Sol. 5 instead of Sol. 4, as the latter has worse
values for the TATI and NCT performance metrics.

Of course none of this theory or machinery is very use-
ful if the metrics themselves are not predictive of the ac-
tual non-functional (performance) properties of candidate
designs. The rest of this section presents our experiment in
automated dynamic analysis, the goal of which was to help
us answer this question.

5.3 Four Subject Systems
We synthesized design spaces and compared static predic-

tions with dynamic results for four subject systems. The
first is the object model of an E-commerce system adopted
from Lau and Czarnecki [24]. It represents a common ar-
chitecture for open source and commercial E-commerce sys-
tems. It has 15 classes connected by 9 associations with 7
inheritance relationships. The second and third object mod-
els are for systems we are developing in our lab. Decider is
another system to support design space exploration. Its ob-
ject model has 10 Classes, 11 Associations, and 5 inheritance
relationships. The third object model is for a system, CSOS,



a kind of cyber-social operating system meant to help coor-
dinate people and tasks. In scale, it has 14 Classes, 4 Asso-
ciations, and 6 inheritance relationships. We also analyzed
an extended version of our customer-order example.

5.4 Planning and Execution
Our experimental procedure involved the synthesis of both

design spaces of database alternatives and several abstract
loads in a variety of sizes for each subject system. Given the
synthesized schemas, we created a database for each alterna-
tive. We then populated generated data into databases, and
ran concrete queries over those databases. We measured and
collected the numbers of concrete queries generated from ab-
stract loads for each database alternative, query execution
time, as well as the size of each database.

We used an ordinary PC with an Intel Core i7 3.40 Ghz
processor and 6 GB of main memory, with SAT4J as our
SAT solver. Database queries were performed on a MySQL
database management system (DBMS) installed on a ma-
chine equipped with an AMD Opteron 6134 800 Mhz proces-
sor and 64GB memory. Data and statistical information are
available at http://jazz.cs.virginia.edu:8080/Trademaker/data.

Table 1: Design space sizes for subject systems.

Subj. Sys. Solutions Eq.Classes Pareto Sols.
Decider 386 154 12

E-commerce 846 360 16
CSOS 278 121 21

Cust-order (ext) 28 14 10

Table 1 summarizes generated solution space for each sub-
ject system. There is one row for each system. The columns
indicate the total number of solutions, the number of static
equivalence classes where equivalence is determined by equal-
ity of static analysis results, and the number of Pareto-
optimal solutions under the given static metrics.

We investigated and compared two different methods for
generation of data sets. The first method generated data
using our formal synthesis methods. For the second, we
hand-developed a load generator for generating large loads
that nevertheless respect the constraints in our object mod-
els (e.g., referential constraints between elements).

Three data sets were developed for each subject system
to support the task of evaluating the static metrics.

Dataset 1. This data set is generated using the Alloy-
based data generator, where the maximum bit-width for in-
tegers is restricted to 5. This leads to the generation of small
data set for our experiments.

Dataset 2. This data set is generated using our Alloy-
based data generator. The maximum bit-width for integers
is restricted to 10, which leads to the generation a larger
data set compared with the former data set.

Dataset 3. As with many formal techniques, the complex-
ity of constraint satisfaction restricts the size of models that
can practically be analyzed and synthesized [15, 22]. For
experimental purposes, we hand-implemented a more scal-
able data generator. It does not generate queries directly,
but rather replaces the constraint solver for synthesis of ab-
stract loads. Having synthesized larger abstract loads in the
form of OM-instances, using the mechanisms already used
in the Alloy-based data generator (cf. 4.3), the generator

then transforms abstract loads into sets of concrete queries
targeting diverse implementation alternatives.

Table 2: Part of the generated data sets for the ecommerce
experiment; the first row shows abstract loads generated for
the ecommerce system within each data set; each cell in the
other rows corresponds to the size of generated concrete load
for the database alternative and data set given on the axes.

E-commerce Dataset 1 Dataset 2 Dataset 3
abstract load 862 2,576 164,813

Sol.19 (conc. load) 456 13,698 2,471,700
Sol.121 (conc. load) 320 9,770 1,647,800
Sol.264 (conc. load) 397 12,073 2,142,140
Sol.348 (conc. load) 379 11,395 1,977,360

Table 2 presents the sizes of generated data sets for some
of the solution alternatives for the E-commerce system. The
number of concrete queries refined from a common abstract
load is different in various solution alternatives, depending
on the way that each implementation mapping alternative
refines the abstract object model into the concrete represen-
tation in relational structure (cf. 4.3).

5.5 Results for Hypothesis H1 (Order)
To test the predictive power of our static metrics, we com-

pared its predictions against the results of our dynamic anal-
ysis. To evaluate our first hypothesis—whether the relative
order of implementation alternatives is predicted by static
metrics—we compute Spearman correlation coefficients, an
appropriate correlation statistic for order-based consistency
analysis. It measures the degree of consistency between
two ordinal variables [27]. A correlation of 1 indicates per-
fect correlation, while 0 indicates no meaningful correlation.
Negative numbers indicate negative correlations.

Table 3: Correlation coefficients between the relative order
of solution alternatives predicted by static metrics and those
observed from actual runtime measures.

TATI NCT ANV

Decider
Dataset1 0.93 0.93 -0.98
Dataset2 0.96 0.96 -0.92
Dataset3 0.95 0.92 -0.91

E-commerce
Dataset1 0.97 0.96 -0.95
Dataset2 0.98 0.95 -0.95
Dataset3 0.97 0.94 -0.95

CSOS
Dataset1 0.83 0.76 -0.97
Dataset2 0.57 0.62 -0.79
Dataset3 0.58 0.74 -0.55

Cust-order(ext)
Dataset1 0.89 0.92 -0.51
Dataset2 0.74 0.53 -0.44
Dataset3 0.66 0.82 -0.56

Table 3 summarizes correlation coefficients between static
metrics and dynamic measures. The data show reasonably
strong but somewhat inconsistent positive correlations be-
tween statically predicted and actual run-time performance
for TATI (average correlation of 0.84) and NCT (average
correlation of 0.84). These metrics appear moderately to
strongly predictive of the relative ordering databases run-
time performance, at least for the kinds of loads employed
in our experiments.



The performance of the ANV predictor varies across the
subject systems. ANV predicts well in the E-commerce and
Decider experiments and moderately in the CSOS data, but
weakly in the customer-order-extended set. Moreover, the
results show negative correlation between the ANV metric
and database size. As number of null values increases, size
decreases. This observation for the ANV metric is in direct
contrast to what is predicted. One possible reason is that
when the ANV metric increases, the number of tables for the
database solution under consideration decreases. Assuming
that the database system efficiently stores null values, the
database size would reduce.

To further evaluate predictiveness of static metrics, we
consider the case in which designers use each static metric
as a two-class classifier. We, thus, measure precision, recall
and F-measure as follows:
Precision is the percentage of those alternatives predicted
by a given metric as more preferable in terms of a given
quality attribute that were also classified as more preferable
by the actual analysis: TP

TP+FP
Recall is the percentage of alternatives classified more prefer-
able by the actual analysis that were also predicted as more
preferable by the a given metric: TP

TP+FN
F-measure is the harmonic mean of precision and recall:
2∗Precision∗Recall
Precision+Recall

where TP (true positive), FP (false positive), and FN (false
negative) represent the number of solution alternatives that
are truly predicted as preferable, falsely predicted as prefer-
able, and missed, respectively.

While static metrics output predictions of quality charac-
teristics as natural numbers, actual analysis of query execu-
tion performance and required storage space are in terms of
Seconds and Bytes, respectively. To classify an alternative
as preferable, we thus use median for each set of result val-
ues as a threshold. We measure evaluation metrics for each
subject system with respect to three data sets.

Table 4: Experimental results of evaluating OR metrics as
two-class classifiers.
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Decider
DS1 1 0.75 0.86 0.83 0.83 0.83 0 0 0
DS2 0.83 0.83 0.83 1 1 1 0.17 0.17 0.17
DS3 1 1 1 0.83 0.83 0.83 0.17 0.17 0.17

E-commerce
DS1 1 1 1 1 1 1 0 0 0
DS2 1 1 1 1 1 1 0 0 0
DS3 0.9 0.9 0.9 1 1 1 0 0 0

CSOS
DS1 0.75 0.82 0.78 0.75 0.82 0.78 0.36 0.33 0.35
DS2 0.83 1 0.91 0.67 0.80 0.73 0.36 0.33 0.35
DS3 0.83 1 0.91 0.83 1 0.91 0.36 0.33 0.35

Cust-order DS1 1 1 1 1 1 1 0.43 0.60 0.50

(ext) DS2 0.83 1 0.91 0.67 0.80 0.73 0.57 0.67 0.62
DS3 0.83 1 0.91 0.83 1 0.91 0.43 0.60 0.50

Table 4 summarizes the results of our experiments to eval-
uate the accuracy of static metric predictors as two-class
classifiers. The average precision, recall and F-measure are
depicted in Figure 9. The results show the accuracy of the
TATI and NCT metrics in classifying implementation alter-
natives in terms of their run-time performance. The average
precision and recall for all four experiments are about 90%,
showing a low rate of both false positives and false negatives.
The ANV metric, however, achieves the average under 30%
in all evaluation metrics.

The experimental data thus suggests that, under the gen-
erated abstract loads, the relative order of implementation
alternatives predicted by static metrics of TATI and NCT is

Figure 9: Bar plot of the average precision, recall and F-
measure for considering static metrics as two-class classifiers.

indicative of their comparative preference in actual runtime
performance, but this is not the case for ANV as a static
predictor of storage space.

5.6 Results for Hypothesis H2 (Magnitudes)
To address the second hypothesis—relative magnitude of

static predictions matter—we employ a coefficient of deter-
mination denoted R2, as a metric for how well actual out-
comes are predicted by the static metrics. Figure 10 plots
the results. For brevity, only results from Dataset 3 are
presented; other data sets give similar results.

The performance of the predictors varies widely across
systems and predictors. TATI and NCT are predictive of
performance for the E-commerce and Decider systems, but
relatively poor predictors for CSOS. TATI performs poorly
in the customer-order-extended data. ANV predicts size in
the E-commerce experiment, and moderately in the Decider
data, but inconsistently and weakly in the CSOS data and
not at all in the customer-order-extended set.

We interpret this data as suggesting that the relative mag-
nitudes of static metrics for various solution alternatives are
not reliably indicative of the relative magnitudes of actual
performance, and that ANV is a poor indicator of the stor-
age space. One is advised to use such static metrics with
caution. While TATI and NCT metrics predict the relative
order of solution alternatives with high confidence, the dif-
ference in predicted values of two alternatives is not a good
indicator of their actual run-time difference.

5.7 Results for H3 (Small vs. Large Loads)
To address the third hypothesis—that small, formally syn-

thesized loads predict the outcomes of much larger loads—
we employ the Pearson product-moment correlation statis-
tic. Pearson measures the degree of linear dependence be-
tween two variables, not necessarily ordinal, as opposed to
the Spearman test. A correlation of 1 represents perfect
correlation, and 0, no meaningful correlation.

We summarize correlation coefficients between experimen-
tal results obtained from smaller data sets of 1 and 2 and
that of the large Dataset 3 in Figure 11. The average Pear-
son correlation coefficient between Dataset3 and the first
and second data sets are 88% and 94%, respectively. These
data lend support to the proposition that smaller-scale test
sets produced by specification-driven synthesis can provide
valid predictions of performance under larger, more realistic
loads.



Figure 10: Correlation between static metrics and actual run-time measure; rows represent scatter plots of observed values
versus predicted values by TATI, NCT and ANV metrics from top to bottom, respectively; R2 correlation coefficient is shown
at the bottom of each plot.

Figure 11: Summary of Pearson correlation coefficients be-
tween experimental results obtained from smaller data sets
and that of the large Dataset3.

6. OUR EVALUATION OF THIS WORK
The overarching problem this work addresses is interest-

ing and important: the need for improved science to sup-
port decision making in complex and poorly understood
tradeoff spaces, particularly involving tradeoffs among non-
functional properties, also sometimes called ilities. We need
languages in which to specify design spaces, techniques for
synthesizing and analyzing design spaces, mechanisms for
mapping static and dynamic analysis functions across de-
sign spaces, techniques for validating such metrics, and tools
that enable engineers use the science to improve real engi-
neering practice [3,4]. We also need measures for ilities that
are important but hard to measure today: for evolvability,
some dependability properties, affordability of construction,
and more.

This paper contributes some new results to the science

and engineering of tradeoff analysis of non-functional prop-
erties. It suggests the possibility of useful formal languages
for specifying design spaces in support of formal synthesis
of both designs and comparative analysis loads. We showed
that specialization of common loads is enabled by access
to abstraction functions from concrete to abstract designs,
which can be embedded in the results of design synthesis.
Concretization functions proved useful not only for scale-
limited, formally synthesized loads, but for concretizing ab-
stract loads produced by other means. We also presented
an experiment using our tool to test the validity of static
predictors of database performance based on published but
not validated metrics. Two of the metrics appear to pro-
duce meaningful signals, while the third appears not useful.
The data also indicate a need for caution in relying on the
static metrics. Their predictive power, even in the “good”
cases, varied across application models. That said, we can
now provide automated dynamic analysis as a fall-back. We
are integrating support for invoking such automated analy-
sis into our Trademaker-ORM tool. Trademaker-ORM itself
has real potential utility for object-relational mapping and
partial application synthesis; but its greater significance is
as a demonstration of our research results and a testbed for
further research on formal tradespace modeling and analysis.

There are of course limitations in our approach and in this
work. We mention those most relevant to a proper evalu-
ation of this effort. First, the static metrics we evaluated
sum the values of published metrics over the elements of
each design alternative. We thus extended the original met-
rics and our statistical results should technically be read as
pertaining to these extensions of the original measures.



Second, while our synthesis mechanisms are implemented
and working, our infrastructure for running synthesized con-
crete loads against synthesized designs still relies on some
manual processing. Our statistical data were thus derived
by dynamic analyses of certain subsets of our synthesized
designs. We selected the subsets deemed Pareto-optimal
by the static metrics. As our infrastructure matures, we
will conduct whole-space dynamic analyses, which we ex-
pect to produce results consistent the basic result presented
here. We are on a path to support automated whole-space
dynamic analysis through Trademaker-ORM. The work re-
ported in this paper did nevertheless involve the synthesis
and dynamic analysis of over 300 database alternatives.

Third, our experiments to date tested our hypotheses for
“random”loads of varying sizes. Real applications will gener-
ally produce non-random loads. Whether the static metrics
we tested are predictive for large, real applications remains
unclear. On the other hand, we offer dynamic analysis at
scale as an alternative. We envision a future in which some
systems run many design variants in parallel, perhaps with
small but representative loads abstracted from real loads on
live systems, to detect conditions in which dynamic switch-
ing to new implementation strategies should be considered.

Finally, there is the issue of scalability. Using Alloy as a
constraint solver entails scalability constraints. We can han-
dle object models with tens of classes. Industrial databases
often involve thousands of classes. It is unlikely that our
current implementation technology will work at that scale.
For now, it does have real potential as an aid to smaller-
scale system development. That we can present an object
model for a realistic web service, synthesize a broad space of
ORM strategies, select one based on tradeoff analysis, au-
tomatically obtain an SQL-database setup script, provide it
Java EE, and have much of an enterprise-type application
up and running with little effort is exciting, even if it does
not address (yet) the most demanding needs of industry.

7. RELATED WORK
Much work is related to this research. Numerous tech-

niques have been developed for database test generation [8,
9,22,26], including the generation of realistic loads for TPC
benchmarks [1]. While some use constraint solvers [22, 26],
none generate common loads over spaces of alternative schemas.
Doing this requires enforcement of abstract design constraints
as well as constraints implied by concretization mappings for
each alternative. Trademaker, to our knowledge, is the first
tool with this capability.

Others have derived databases from specifications. Krish-
namurthi et al. [23] mapped Alloy specifications into Scheme
implementations with a focus on databases. Cunha and
Pacheco [12] translated a subset of Alloy into corresponding
relational operations. These research efforts share with ours
the emphasis on using formal methods. Our work differs
fundamentally in its emphasis on the generation of spaces of
implementation alternatives, not just point solutions.

Much work has focused on object-relational mapping ap-
proaches to the object-relational impedance mismatch prob-
lem [10, 19, 21, 25]. Philippi [25] categorized the mapping
strategies in a set of pre-defined quality trade-off levels,
which are used to develop a model driven approach for the
generation of OR mappings. Cabibbo and Carosi [10] dis-
cussed more complex mapping strategies for inheritance hi-
erarchies, in which various strategies can be applied inde-

pendently to parts of a multi-level hierarchy. Our approach
is novel in having formalized ORM strategies previously in-
formally described in some of these research efforts, thereby
enabling automatic generation of OR mappings for each ap-
plication object model.

Drago et al. [14] considered OR mapping strategies as
a variation points in their work on feedback provisioning.
They extended the QVT-relations language with annota-
tions for describing design variation points, and provided
a feedback-driven backtracking capability to enable engi-
neers to explore the design space. While this work is con-
cerned with the performance implications of choices of per-
inheritance-hierarchy OR mapping strategies, it does not
attack the problem that we address, the automation of dy-
namic analysis through synthesis of design spaces and fair
loads for comparative dynamic analysis.

The other relevant thrust of research has focused on map-
ping UML models enriched with OCL invariants into rela-
tional structures and constraints. Heidenreich et al. [17] de-
veloped a model-driven transformation framework to map
object models represented in UML/OCL into declarative
query languages, such as SQL and XQuery. Badawy and
Richta [2] provided some rules guiding derivation of declar-
ative constraints and triggers from OCL specifications. Ex-
tending the same line, Al-Jumaily et al. [16] developed a
model-driven tool transforming the OCL constraints into
SQL triggers. Demuth et al. [13] also discussed a number of
different approaches to implement OCL-to-SQL mapping,
and developed a tool that transforms each OCL invariant
into a separate SQL view definition. Different from these
research efforts transforming an object model to a single
counterpart in relational structures, Trademaker generates
tradeoff spaces of object-relational mappings with focus on
structural mapping alternatives, rather than transformation
of integrity constraints.

8. CONCLUSION
This paper makes several contributions to the science and

engineering of software-intensive systems: a mathematical
and implementation architecture for formal, automated dy-
namic analysis of tradeoff spaces; a principled approach to
load concretization for specializing common loads to large
numbers of variant implementations; experimental valida-
tion of (simple derivatives of) published ORM metrics—to
our knowledge the first experimental evaluation of ORM
metrics; and TradeMaker-ORM, an accessible and functional
tool enabling tradeoff analysis in large design spaces for
the particular domain of object-relational mapping, and a
testbed for ongoing research of the kind reported in this pa-
per. This paper also contributes to our broader research
program, which is increasingly focused on specifying, vali-
dating, realizing, and certifying acceptable tradeoffs among
non-functional properties, which remains a research chal-
lenge of the first order.

Acknowledgements
We thank Michele Claibourn and Clay Ford of UVa StatLab
for their consulting and statistical assistance. Kevin Sulli-
van gratefully acknowledges support from the Systems En-
gineering Research Center (SERC) under Contract H98230-
08-D-0171. SERC is a federally funded University Affiliated
Research Center managed by Stevens Institute of Technol-
ogy.



9. REFERENCES
[1] TPC benchmarks. http://www.tpc.org.

[2] M. Badawy and K. Richta. Deriving triggers from
UML/OCL specification. In Information Systems
Development, pages 305–315. Springer US, Jan. 2002.

[3] H. Bagheri and K. Sullivan. Monarch: Model-based
development of software architectures. In Proceedings
of the 13th ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems
(MODELS’10), pages 376–390, 2010.

[4] H. Bagheri and K. Sullivan. Pol: Specification-driven
synthesis of architectural code frameworks for
platform-based applications. In Proceedings of the 11th
ACM International Conference on Generative
Programming and Component Engineering
(GPCE’12), pages 93–102, Dresden, Germany, 2012.

[5] H. Bagheri and K. Sullivan. Bottom-up model-driven
development. In Proceedings of the International
Conference on Software Engineering (ICSE’13), pages
1237–1240, 2013.

[6] H. Bagheri, K. Sullivan, and S. Son. Spacemaker:
Practical formal synthesis of tradeoff spaces for
object-relational mapping. In Proceedings of the 24th
International Conference on Software Engineering and
Knowledge Engineering, pages 688–693, San Francisco
Bay, USA, 2012.

[7] A. L. Baroni, C. Calero, M. Piattini, and O. B. E.
Abreu. A formal definition for object-relational
database metrics. In Proceedings of the 7th
International Conference on Enterprise Information
System, pages 334–339, 2005.

[8] C. Binnig, D. Kossmann, E. Lo, and M. T. Özsu.
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