
Bottom-Up Model-Driven Development
Hamid Bagheri

University of Virginia,
151 Engineer’s Way,

Charlottesville, VA 22903 USA
hb2j@virginia.edu

Kevin Sullivan
University of Virginia,
151 Engineer’s Way,

Charlottesville, VA 22903 USA
sullivan@virginia.edu

Abstract—Prominent researchers and leading practitioners are
questioning the long-term viability of model-driven develop-
ment (MDD). Finkelstein recently ranked MDD as a bottom-
ten research area, arguing that an approach based entirely
on development and refinement of abstract representations is
untenable. His view is that working with concrete artifacts is
necessary for learning what to build and how to build it. What if
this view is correct? Could MDD be rescued from such a critique?
We suggest the answer is yes, but that it requires an inversion of
traditional views of transformational MDD. Rather than develop
complete, abstract system models, in ad-hoc modeling languages,
followed by top-down synthesis of hidden concrete artifacts, we
envision that engineers will continue to develop concrete artifacts,
but over time will recognize patterns and concerns that can
profitably be lifted, from the bottom-up, to the level of partial
models, in general-purpose specification languages, from which
visible concrete artifacts are generated, becoming part of the
base of both concrete and abstract artifacts for subsequent
rounds of development. This paper reports on recent work that
suggests this approach is viable, and explores ramifications of
such a rethinking of MDD. Early validation flows from experience
applying these ideas to a healthcare-related experimental system
in our lab.

Index Terms—Model-driven development, Bottom-up, Partial
synthesis.

I. INTRODUCTION

The idealized transformational view of model-driven de-
velopment (MDD) combines (1) technologies for top-down
synthesis of hidden concrete implementations from com-
plete, abstract systems models in domain-specific or full-
spectrum languages, with (2) a rationalist stance, holding
that people should develop abstract models only, with con-
crete artifacts hidden from view. Prominent researchers have
joined notable practitioners in questioning the viability of
this style of MDD. Among practitioners, Ambler says, “I’m
concerned about the viability of the [Model Driven Architec-
ture] MDA.. . . [A]lthough the MDA is a very wonderful idea I
suspect that it will succeed in only a very small percentage of
organizations [15].” He argues that current modeling languages
do not support the real-world needs of most projects (e.g., the
user interface and database components needed in many sys-
tems); developers lack adequate modeling skills; and tooling
is inadequate. Fowler says, “Although I’ve been involved, to
some extent, in . . . [model driven development] for most of my
career, I’m rather skeptical of its future. Most fans . . . base
their enthusiasm on the basis that models are ipso facto a
higher level abstraction than programming languages. I don’t
agree with that argument - sometimes graphical notations can

be a better abstraction, but not always. . . [13].” McNeily says
that unless executability and translatability can be brought to
the kinds of models that business, as opposed to real time
embedded systems, developers use, that modeling will remain
subject to criticism as “tool-centric busy work of dubious
value, and that we should go back to using a whiteboard [14].”

Among researchers, Finkelstein is a notable critic. In a
recent blog post on the Bottom 10 Challenges in Software
Engineering Research [2], he said, “...the idea that changes
could be made in a high-level specification and then some-
how ‘replayed’ is appealing but ignores the ways in which
. . . learning arises, in the context of specific representations
and through verification or testing tied to that representation.”
Finkelstein’s concern is consistent with that of Ambler (people
are generally poor at working only at an abstract level),
Fowler (who questions whether available abstract modeling
formalisms are useful in general practice), and McNeily (who
makes much the same point).

In this paper, we address the question, what if Finkelstein
is right? That is, we will assume his premise and derive a set
of consequences. At the heart of this paper we offer the idea
that Finkelstein’s position does not require that we abandon
the technologies of synthesis from abstract models, but that it
does demand that we replace the rationalistic, top-down view
of transformational MDD with an empirical approach rooted
in the proposition that essential learning happens when people
deal with the concrete artifacts of ordinary code-, design-, and
verification-based software development.1 We thus discard the
rational stance and its associated complete, abstract system
models, in ad-hoc modeling languages, followed by top-down
synthesis of hidden concrete artifacts, in favor of an empirical
stance and the idea that one learns “at the bottom” and,
having learned, abstracts bottom up, to the level of partial
abstract models, in general-purpose specification languages,
from which one can then synthesize visible parts of the base
of concrete artifacts making up a project.

The technical key to the viability of this position is found
in our recent work on partial synthesis [5], which provides a
key enabling technology for a bottom-up approach to MDD, by
supporting modeling of selected aspects of systems, refinement
from such models to support partial synthesis, and a clean

1We note that our use of the term “empirical” differs from that common in
software engineering. We do not mean to focus on the validation of research
results in industrial settings, but rather on the idea that one must learn from
grounded experience, and not just deal in high-level abstractions.

978-1-4673-3076-3/13 c© 2013 IEEE ICSE 2013, San Francisco, CA, USA
New Ideas and Emerging Results

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

1221



separation and integration of model-driven and hand-crafted
code artifacts. Our conjecture is that we are able to reap
the benefits of MDD, including improved abstraction and
productivity, in a manner consistent with iterative, bottom-up
development practices.

The rest of this paper introduces the working scheme of our
approach, reports and discusses our experience on applying the
approach in an evolutionary development of a laboratory-scale
operational model of nation-wide health information systems,
surveys related work, and concludes.

II. BOTTOM-UP PARTIAL FORMAL SYNTHESIS

The essence of our approach is based on a set of principles
different from those typically held in traditional model-driven
development (MDD) approaches. In this section, we present
our approach based on those principles.

- Bottom-up. Our approach is bottom-up. In this view,
models follow from code and other concrete artifacts, rather
than the other way around. Specifically, we posit that software
engineers, having worked diligently in the concrete, empirical
world of code, can find it profitable to derive and validate
abstract models of selected aspects of code, which then
support analysis and synthesis. The benefits are not in hiding
the code behind abstract models, but rather in leveraging the
technologies of MDD for improved abstraction, productivity
and reliability going forward.

- Partial Models. Software development, in traditional
MDD, is centered around model specifications of the system,
and everything is then derived from those model specifications.
Our second principle, by contrast, states that it is often not
practical to develop abstract models for an entire system.
Rather, it is often better to extract models for certain stabilized
aspects of the system. Indeed, we split the code-base for a
system into two parts: (1) a part that is synthesized from partial
models, and (2) a part that continues to be developed manually.
The artifacts that software engineers develop thus include both
code and models from which additional code is synthesized.

A criterion for making a decision to lift some idiomatic
aspect of the code to the model level is that the aspect
has become sufficiently well understood and stabilized. In
some sense, for those concerns we expect that the learning
is over. As a concrete example, architectural styles are among
such aspects of the system, representing recurrent architectural
situations [16]. They are expressive abstractions for software
understanding. We thus learn architectural styles of systems
and use them in documenting application architecture. Techni-
cally speaking, we consider architectural styles as metamodels
to which abstracted architectural models conform.

- Partial Synthesis. Our abstracted models are partial with
respect to the underlying empirical domain. They thus support
only selective system analysis and synthesis. We use the
term partial synthesis to refer to an approach in which part
of the code base is synthesized from partial models [5].
In fact, partial synthesis technologies give us the ability to
decide which aspects of the system are dealt with formally
in terms of model representations—from which code will be
synthesized—and which aspects of the system are dealt with

in terms of code. Partial synthesis techniques required for
this approach thus should provide a basis for separation of
generated and non-generated code with support for merging
that limits the impacts on hand-written code modifications
required when the synthesized parts are regenerated.

Different from traditional MDD, where developers produce
domain specific languages for use by non-programmer domain
experts, in our approach developers both produce and consume
concern-specific modeling notations within the scope of the
application under development. Specifically, given that a new
requirement can be modeled in terms of the already identified
and captured model elements, development starts from the
model-level. Otherwise, it starts at the code-level.

III. EVALUATION

A. Implementation
In this section, we show that our ideas can be reduced to

practice. There are many possible approaches to realizing it.
The novel concept in this work encompasses any technology
that takes partial models and generates partial code base,
and that provides an appropriate level of support to limit
the amount of developers’ code modifications required when
the synthesized parts are regenerated. Here we describe one
approach, in which we use the Pol framework [5] for partial
code synthesis.

Pol is an approach and tool-suite for specification-driven
synthesis of object-oriented frameworks for platform-based
applications. The choice of object-oriented frameworks as
synthesis outputs facilitates evolutionary software develop-
ment process. Specifically, it helps to limit the impacts of
changes in input models on hand-crafted code. We developed
Pol in part based on Alloy [11], a declarative specification
language based on first-order logic with transitive closure
that has been optimized for automated analysis. Synthesis
is based on constraint solvers, and driven by formal, partial
specifications of target platforms and application architectures,
expressed in modeling languages embedded in Alloy, and by
code fragments encoding framework usage patterns.

B. Case Study
In this paper, we evaluate our previous experience in de-

veloping a healthcare-related experimental system as reported
on [5], as a case study in bottom-up MDD. We follow the case
study method guidelines proposed by Kitchenham, Pickard and
Pfleeger [12].

Hypotheses. The claim we make in this paper is that the
proposed approach has meaningful potential to provide the key
benefits of MDD technologies, including improved abstraction
and productivity, while it is still consistent with iterative,
bottom-up development practices.

Subject system. The project that we selected as a basis for
the evaluation is called CyberHealth, a laboratory-scale, oper-
ational model of a national-scale health information exchange
among diverse institutions that produce and use such infor-
mation. The system models numerous institutions, including
hospitals, health record banks, public health agencies, and the
flow of information among these systems.

1222



Planning and Execution. The basic procedure that we used
for this study was to iteratively evolve this system through
several stages following the approach as we sought to satisfy
increasingly demanding requirement. We developed the initial
version of our architectural model for the system by reverse
engineering of the hand-crafted version, focusing on abstrac-
tion of the major entities and interconnections.

To test the improved abstraction hypothesis we measured,
throughout the project development lifecycle, the size of
specifications captured to realize partial model-driven code
synthesis. To test the improved productivity hypothesis we
conducted several evolutionary experiments, and through each
experiment we measured the portion of code modifications
automatically generated.

Results and Interpretation. In this section we report and
interpret data we gathered through executing our case study.

1) Abstractive Support. The models we captured include:
application architecture, platforms models, and mapping spec-
ifications. We also captured recurrent code patterns as design
fragments [9].

We recovered architecture specifications of the original
version of the CyberHealth system—implemented in over 12
thousands lines of code—and formally modeled it in the Alloy
language such that it can be used in our synthesis technique.
The architecture specification contains more than 300 lines
of Alloy code and involved more than 50 Alloy signatures,
several of which extend other signatures. We modeled the
application architecture based on published architectural style
specifications. The architectural style specifications accounted
for about 400 lines of Alloy.

We then developed platform models for some of the plat-
forms being used in this system that we want to synthesize
code for them. A platform model is a partial formal model
oriented towards the ways in which the platform is to be used
in a given application [5]. These captured specifications are
partial and do not attempt to capture the complete structure
or semantics of a platform or application, but are contrived
to enable a desired level of partial code synthesis. During the
development of the CyberHealth project, we formally specified
four widely-used industrial platforms, namely Restlet, OAuth,
CometD and HornetQ platforms, in about 90, 80, 50, and 80
lines of Alloy code, respectively.

We captured architecture-to-platform mappings to produce
platform-based implementation model with respect to the
architectural models. Mapping predicates explain how archi-
tectural style elements map to underlying platform constructs.
Details of these studies including the complete versions of
Alloy models are available for download [1].

The other significant aspect of the code that we want to
generate from more concise model specifications are recur-
rent code patterns. Platform usage patterns are instances of
recurrent code. Using Pol, we document them as design frag-
ments [9]. In particular, a design fragment is a specification of
how other applications can use platform resources to achieve a
specific goal [9]. It defines a pattern of platform use in the form
of a parameterized code template. Overall, we documented 51

design fragments for 4 platforms involved in this project.
2) Generative Support. To assess the extent to which

this approach can improve the development productivity, we
conducted several evolutionary experiments. Here, we briefly
discuss the data we obtained through two such experiments.

Experiment 1. In this experiment we wanted to evolve the
CyberHealth system developed initially using the pure style
of REST [10], such that to use server push technology for
eager updating of client views. There were several situations in
which we wanted the client views to get updated dynamically.
This means that we needed implementation of this technology
in different components of the system.

The first step was to decide from where (model-level or
code) we would better to start developing the new requirement.
As we did not have the elements necessary for modeling the
concepts involved in the development of the requirement under
consideration, we had better to start from the code-level.

After developing this requirement for only one component
based on the CometD platform as a widely used implementa-
tion of the server-push technology, we studied the code base
and abstracted models to facilitate use of the synthesis tech-
nique for implementing this requirement in other components.

Now we can leverage the partial synthesis technique to
generate substantial part of the required code for this scenario.
The new synthesized code framework providing support for
the server-push mechanism encompasses 450 new lines of gen-
erated code. To merge the code-base with the new framework,
we then modified about 100 lines of hand written code to push
specific messages to CometD service channels.

Experiment 2. This experiment is about an evolutionary
requirement change where part of the system’s data flow
protocol should be modified. The system needed to be changed
such that data channels are dynamically created only by user
request through the principal control system (PCS) compo-
nent. In that way, components never publish/receive to/from a
given channel except when a user establishes the appropriate
connections through the PCS.

Implementing this requirement could be started from the
model-level, as the elements necessary for modeling the con-
cepts involved in its development were available. In fact, a
high-level architectural change was required. After we modi-
fied the system architectural model, resynthesis of the archi-
tectural code framework provides support for the protected
data flow protocol, which accounts for about 700 lines of
code scattered in several framework classes. The developer
then modified around 570 lines of code to develop details of
the application logic.

It is also worth noting that using analyzable specification
languages, we can immediately check the correctness of even
partial specifications. Precisely, during the modeling process,
we iteratively checked the conformance of the partial system
architectural model to its architectural style [4]. It also helps
us to explore whether there exist implementation models that
satisfy constraints implied by target platforms and simultane-
ously conforms to the structures specified in the architectural
model, albeit within the limits of the finite scope.

1223



Overall, our experiments have provided evidence in support
of the hypotheses that a pragmatic bottom-up approach based
on a partial model-driven synthesis technique improves intel-
lectual control through abstraction and productivity through
automation under certain circumstances. We envisage that in
an ultimate implementation, one uses several specification
languages and corresponding synthesis technologies handling
different aspects of the system. This calls for a modularization
mechanism so that different models can be changed indepen-
dently within certain constraints without breaking the whole
system, which is an interesting research avenue for future
work.

IV. RELATED WORK

This section puts our work in context with related efforts.
Inferring Partial Specifications. A large body of research

focuses on inferring partial specifications from code, albeit
more for property checking than for synthesis. Among others,
Daikon [8] discovers likely program invariants by detecting
patterns and relationships among values taken by variables
during program executions. SLAM [6] automatically and in-
crementally abstracts a given program based on a set of user-
provided predicates. The abstraction is captured in terms of
a boolean program, which exhibits an identical control-flow
structure to the program, but contains only boolean variables,
each of which represents a given predicate. The important
concept these research efforts have in common with ours is
the emphasis on selective specification recovery rather than
extracting complete specifications. In our work, developers
progressively select aspects of the system to be captured by
formal specifications to enable, among other things, model-
driven synthesis and formal analysis.

Model-driven Modernization. Model-driven moderniza-
tion [3] is about migrating from heterogenous implementation
technologies to the homogenous world of models, from which
everything is generated. The initial step though would be to
obtain representative models of the legacy systems. While our
approach is built upon reverse engineering techniques used in
this area, it is different in several ways. First, they rely on after-
the-fact model extraction from an already developed applica-
tion. In contrast, our work is geared towards the application of
an iterative model abstraction during the software development
lifecycle, as opposed to a one-time reverse engineering for
software modernization of legacy systems. Second, model is
the only first class citizen in theirs, while in our approach code
base is the main place for learning and modeling is a means
to capture obtained knowledge from code.

Partial Code Synthesis. Recent research [17], [7], [5] rec-
ognize the potential benefits of the emerging class of partial
code synthesis in different domains, where partial models
generate partial code frameworks which are then combined
with hand-written code to constitute the application. Among
others, Zheng and Taylor [17] proposed 1.x-way mapping
approach for partial synthesis from architectural models, which
supports synthesis from both structural and specific type of
behavioral specifications. It also provides a deep separation

model that puts synthesized code in classes separate from
hand-written code. This paper, however, shows that partial
synthesis techniques can provide a way of addressing the
empirical challenge that developers face when attempting to
realize the MDD [2].

V. CONCLUSION

This paper contributes a philosophical, technological, and
methodological attempt to address the empirical critique
of model-driven development. Philosophically we offer a
scientific-empirical stance: as with scientific theories, use-
ful models emerge bottom-up as partial abstractions from
knowledge of the empirical domain. Technologically we offer
partial synthesis as a key to using partial models for synthesis.
Methodologically we propose an iterative approach in which a
combination of hand-crafted and synthesized artifacts evolves
under two-way refactoring. Early validation through experi-
ence of applying these ideas to a healthcare-related experi-
mental system in our lab supports the claim that it promises
many benefits of MDD, in intellectual control, reliability, and
productivity, while escaping the rationalist trap.

ACKNOWLEDGMENTS

We thank Anthony Finkelstein for discussing his position
with us. All positions we take in this paper, including any
errors, are ours. This work was supported in part by the
National Science Foundation under grant #1052874.

REFERENCES

[1] Pol tool suite. http://www.cs.virginia.edu/∼hb2j/Downloads/Pol.zip.
[2] Anthony Finkelstein. Bottom 10 software engineering challenges.

http://blog.prof.so/2012/06/bottom-10-software-engineering.html, 2012.
[3] Architecture-Driven Modernization Task Force. Architecture-driven

modernization (adm). http://adm.omg.org/, 2006.
[4] H. Bagheri and K. Sullivan. Monarch: Model-based development of

software architectures. In Proc. of MODELS’10, pages 376–390, 2010.
[5] H. Bagheri and K. Sullivan. Pol: Specification-driven synthesis of

architectural code frameworks for platform-based applications. In Proc.
of GPCE’12, pages 93–102, 2012.

[6] T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Automatic
predicate abstraction of c programs. In Proc. of PLDI, 2001.

[7] Damien Cassou, Emilie Balland, Charles Consel, and Julia Lawall.
Leveraging software architectures to guide and verify the development
of Sense/Compute/Control applications. In Proc. of the ICSE, 2011.

[8] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically
discovering likely program invariants to support program evolution.
IEEE Transactions on Software Engineering, 27:213–224, 2001.

[9] G. Fairbanks, D. Garlan, and W. Scherlis. Design fragments make using
frameworks easier. In Proc. of OOPSLA’06. 2006.

[10] R. T. Fielding and R. N. Taylor. Principled design of the modern web
architecture. In Proc. of ICSE, 2000.

[11] D. Jackson. Alloy: a lightweight object modelling notation. TOSEM,
11(2):256–290, 2002.

[12] B. Kitchenham, L. Pickard, and S. L. Pfleeger. Case studies for method
and tool evaluation. IEEE Softw., 12(4):52–62, 1995.

[13] Martin Fowler. Model driven software development.
http://martinfowler.com/bliki/ModelDrivenSoftwareDevelopment.html,
July 2008.

[14] A. McNeile. MDA: the vision with the hole?, 2003.
[15] Scott Ambler. Examining the MDA.

http://www.agilemodeling.com/essays/mda.htm.
[16] R. N. Taylor, N. Medvidovic, and E. Dashofy. Software Architecture:

Foundations, Theory, and Practice. Wiley, 2009.
[17] Y. Zheng and R. N. Taylor. Enhancing architecture-implementation

conformance with change management and support for behavioral
mapping. In Proc. of ICSE, pages 628–638, 2012.

1224


