Hidden Markov Models-5
Parameter Learning

M. R. Hasan
Readings

• Alpaydin: 15
• Russell & Norvig: 15
What We Will Cover

- Problem: Parameter Learning
- Baum-Welch Algorithm
Background Assumed

- Recursion & Dynamic Programming
- Complexity Theory
- Graphical Models
- d-separation
HMM: Four Inference Problems

- Given a number of sequences of observations, we are interested in four inference problems:

Problem 1 (Evaluation): Given a model λ, we would like to evaluate the probability of any given observation sequence $O = \{O_1 O_2 \ldots O_T\}$: $P(O \mid \lambda)$

As part of the evaluation problem, we solve two sub-problems:

Filtering: Compute the posterior distribution over the most recent state given all evidence (observation) to date.

Prediction: Compute the posterior distribution over the future state given all evidence (observation) to date.
HMM: Four Inference Problems

Problem 2 (Smoothing): Given a model λ, we would like to compute the posterior distribution over a past state given all evidence up to the present $O = \{O_1 O_2 \ldots O_T\}$: $P(q_t = S_i \mid O_{1:T}, \lambda)$

Problem 3 (Most likely Explanation): Given a model λ and an observation sequence O, we would like to find out the state sequence $Q = \{q_1 q_2 \ldots q_T\}$, which has the highest probability of generating O; namely, we want to find Q^* that maximizes $P(Q \mid O, \lambda)$.

Problem 4 (Learning): Given a training set of observation sequences, $X = \{O^k\}_{k}$, we would like to learn the model that maximizes the probability of generating X; namely, we want to find λ^* that maximizes $P(X \mid \lambda)$.
Problem 1 (Evaluation): Given a model λ, we would like to evaluate the probability of any given observation sequence $O = \{O_1 O_2 \ldots O_T\}$: $P(O \mid \lambda)$

As part of the evaluation problem, we solve two sub-problems:

Filtering: Compute the posterior distribution over the most recent state given all evidence (observation) to date.

Prediction: Compute the posterior distribution over the future state given all evidence (observation) to date.

Problem 2 (Smoothing): Given a model λ, we would like to compute the posterior distribution over a past state given all evidence up to the present $O = \{O_1 O_2 \ldots O_T\}$: $P(q_t = S_i \mid O_{1:T}, \lambda)$

Problem 3 (Most likely Explanation): Given a model λ and an observation sequence O, we would like to find out the state sequence $Q = \{q_1 q_2 \ldots q_T\}$, which has the highest probability of generating O; namely, we want to find Q^* that maximizes $P(Q \mid O, \lambda)$.

Problem 4 (Learning): Given a training set of observation sequences, $X = \{O^k\}_k$, we would like to learn the model that maximizes the probability of generating X; namely, we want to find λ^* that maximizes $P(X \mid \lambda)$.
Problem 4 (Learning): Given a training set of observation sequences, \(X = \{O^k\}_k \), we would like to learn the model that maximizes the probability of generating \(X \); namely, we want to find \(\lambda^* \) that maximizes \(P(X \mid \lambda) \).

- **Setup for HMM:**
 - \(N \): Number of states in the model: \(S = \{S_1, S_2, \ldots, S_N\} \)
 - \(M \): Number of observation symbols in the alphabet: \(V = \{v_1, v_2, \ldots, v_m\} \)
 - State transition probabilities: \(A = [a_{ij}] \)

 Where \(a_{ij} \equiv P(q_{t+1} = S_j \mid q_t = S_i) \)
 - Observation probabilities: \(B = [b_j(m)] \)

 Where \(b_j(m) \equiv P(O_t = v_m \mid q_t = S_j) \)
 - Initial state probabilities: \(\Pi = [\pi_i] \)

 Where \(\pi_i \equiv P(q_1 = S_i) \)
 - Parameter set of an HMM: \(\lambda = (A, B, \Pi) \)
Problem 4 (Learning): Given a training set of observation sequences, $X = \{O^k\}_k$, we would like to learn the model that maximizes the probability of generating X; namely, we want to find λ^* that maximizes $P(X | \lambda)$.

- Given an observation sequence O and the dimensions N and M, find the model $\lambda = (A, B, \Pi)$ that maximizes the probability of O.
- This can be viewed as training a model to best fit the observed data.
- Alternatively, we can view this as a (discrete) hill climb on the parameter space represented by $A, B, \text{and } \Pi$.

N: Number of states in the model: $S = \{S_1, S_2, \ldots, S_N\}$
M: Number of observation symbols in the alphabet: $V = \{v_1, v_2, \ldots, v_m\}$
Problem 4: Learning

• Here we want to **adjust the model parameters to best fit** the observations.

• The sizes of the matrices (N and M) are fixed but the elements of \(\mathbf{A}, \mathbf{B} \) and \(\Pi \) are to be determined, subject to the row stochastic condition (i.e., each row values sum to 1).

• The fact that we can **efficiently re-estimate the model itself** is one of the most amazing aspects of HMMs.

\[
N: \text{Number of states in the model: } S = \{S_1, S_2, \ldots, S_N\}
\]

\[
M: \text{Number of observation symbols in the alphabet: } V = \{v_1, v_2, \ldots, v_m\}
\]
Problem 4: Learning

• Let’s provide the intuition for estimating the transition probability a_{ij} and emission probability $b_j(m)$.
• Given the whole observation O, the estimated transition probability \hat{a}_{ij}:

\[
\hat{a}_{ij} = \frac{\text{Expected number of Transitions from } S_i \text{ at } t \text{ to } S_j \text{ at } t + 1}{\text{Total number of transitions from } S_i \text{ at } t}
\]
Problem 4: Learning

- To **mathematically represent** the estimated transition probability \hat{a}_{ij}, we define two parameters: $\xi_t(i, j)$ & $\gamma_t(i)$

- $\xi_t(i, j)$: the probability of being in S_i at time t and transitioning to state S_j at time $t+1$, given the whole observation O and λ.

$$\xi_t(i, j) \equiv P(q_t = S_i, q_{t+1} = S_j \mid O, \lambda)$$

- $\gamma_t(i)$: the probability of being in state S_i at time t

$\gamma_t(i)$ provides the **total number of transitions** from state S_i at time t
Problem 4: Learning

$\gamma_t(i)$: the probability of being in state S_i at time t

$\gamma_t(i)$ provides the total number of transitions from state S_i at time t

$\gamma_t(i)$ is calculated by marginalizing over the arc of all probabilities for all possible next states (S_j at time $t+1$).

$$\gamma_t(i) \equiv \sum_{j=1}^{N} \xi_t(i, j)$$

$\xi_t(i, j) \equiv P(q_t = S_i, q_{t+1} = S_j | O, \lambda)$
Problem 4: Learning

\[\gamma_t(i) \equiv \sum_{j=1}^{N} \xi_t(i, j) \]

\[\xi_t(i, j) \equiv P(q_t = S_i, q_{t+1} = S_j | O, \lambda) \]

Based on the two parameters \(\xi_t(i, j) \) and \(\gamma_t(i) \), we **mathematically represent** the estimated transition probability \(\hat{a}_{ij} \) as follows:

\[\hat{a}_{ij} = \frac{\text{Expected number of Transitions from } S_i \text{ at } t \text{ to } S_j \text{ at } t + 1}{\text{Total number of transitions from } S_i \text{ at } t} \]

\[\hat{a}_{ij} = \frac{\sum_{t=1}^{T-1} \xi_t(i, j)}{\sum_{t=1}^{T-1} \gamma_t(i)} \]
Problem 4: Learning

- The **estimated emission probability** $\hat{b}_j(m)$ is defined as follows.
- $\hat{b}_j(m)$: is the **probability of observing** ν_m when the system is in state S_j

$$
\hat{b}_j(m) = \frac{\text{Expected number of times } \nu_m \text{ is observed when the system is in state } S_j}{\text{Total number of times the system is in state } S_j}
$$

$$
\hat{b}_j(m) = \frac{\sum_{t=1}^{T} \gamma_t(j) 1(O_t = \nu_m)}{\sum_{t=1}^{T} \gamma_t(j)}
$$
\[h_j(m) = \frac{\text{Expected number of times } v_m \text{ is observed when the system is in state } S_j}{\text{Total number of times the system is in state } S_j} \]

Numerator: consider the following figure.

All hidden states \{S_1, \ldots, S_j, \ldots, S_N\} at time \(t \) generate observations.

We count how many such observations are equal to \(v_m \) (\(O_t = v_m \)).

Then, we divide the observation count of \(v_m \) by the total number of observations.

It is equal to the number of times the system is in state \(S_j \) at time \(t \).
Let us now discuss how to adjust the model parameters to best fit the observations.

In other words, given an observation sequence O and the dimensions N and M, find the model $\lambda = (A, B, \Pi)$ that maximizes the probability of O.

This is done by iteratively re-estimating the model parameters $\lambda = (A, B, \Pi)$.
Problem 4: Learning

- The model can be re-estimated as follows.

1. For $i = 1, 2, \ldots, N$, let

 \[\pi_i = \gamma_1(i) \]

2. For $i = 1, 2, \ldots, N$, and $j = 1, 2, \ldots, N$, compute

 \[\hat{a}_{ij} = \frac{\sum_{t=1}^{T-1} \xi_t(i,j)}{\sum_{t=1}^{T-1} \gamma_t(i)} \]

3. For $j = 1, 2, \ldots, N$, and $m = 1, 2, \ldots, M$, compute

 \[\hat{b}_j(m) = \frac{\sum_{t=1}^{T} \gamma_t(j) 1(O_t = v_m)}{\sum_{t=1}^{T} \gamma_t(j)} \]

This iterative re-estimation is given by the Baum-Welch algorithm.
Problem 4: Learning

- Baum-Welch algorithm is executed in **two steps**.

Step 1: Compute the expected values (parameters $\xi_t(i, j)$ and $\gamma_t(i)$) for the model parameters based on the current model parameters $\lambda = (A, B, \Pi)$.

Step 2: Re-estimate the model parameters $\lambda = (A, B, \Pi)$ to maximize the probability of the observation sequence $P(O | \lambda)$.

We iterate the EM steps as long as the observation sequence probability $P(O | \lambda)$ increases.

1. For $i = 1, 2, \ldots, N$, let $\pi_i = \gamma_1(i)$

2. For $i = 1, 2, \ldots, N$, and $j = 1, 2, \ldots, N$, compute $\hat{a}_{ij} = \frac{\sum_{t=1}^{T-1} \xi_t(i, j)}{\sum_{t=1}^{T-1} \gamma_t(i)}$

3. For $j = 1, 2, \ldots, N$, and $m = 1, 2, \ldots, M$, compute $b_j(m) = \frac{\sum_{t=1}^{T} \gamma_t(j) \mathbb{1}(O_t = o_m)}{\sum_{t=1}^{T} \gamma_t(j)}$
Problem 4: Learning

- The summary of the iterative steps of the Baum-Welch algorithm is given below.

E-step:

1. Initialize the model $\lambda = (A, B, \Pi)$.
2. Compute $\xi_t(i, j)$ and $\gamma_t(i)$.

M-step:

3. Re-estimate the model $\lambda = (A, B, \Pi)$.
4. If $P(O | \lambda)$ increases, go to step 2 (or quit after a max number of iterations)

\begin{align*}
\pi_i &= \gamma_t(i) \\
\hat{a}_{ij} &= \frac{\sum_{t=1}^{T-1} \xi_t(i, j)}{\sum_{t=1}^{T-1} \gamma_t(i)} \\
\hat{b}_j(m) &= \frac{\sum_{t=1}^{T} \gamma_t(j) \mathbf{1}(O_t = v_m)}{\sum_{t=1}^{T} \gamma_t(j)}
\end{align*}
Problem 4: Learning

• Note on Initialization:
• Initialize the model parameters $\lambda = (A, B, \Pi)$ with a best guess.
• If no reasonable guess is available, choose random values, as follows:

$$\pi_i \approx \frac{1}{N} \quad a_{ij} \approx \frac{1}{N} \quad b_j(m) \approx \frac{1}{M}$$

It’s critically important that A, B and Π be randomized.

Otherwise exactly uniform values will result in a local maximum from which the model cannot climb.

Also, ensure that A, B and Π are row-stochastic.

E-step:
1. Initialize the model $\lambda = (A, B, \Pi)$.
2. Compute $\xi_t(i, j)$ and $\gamma_t(i)$.

M-step:
3. Re-estimate the model $\lambda = (A, B, \Pi)$.
4. If $P(\theta | \lambda)$ increases, go to step 2 (or quit after a max number of iterations)
Problem 4: Learning

• Now given the summary of the Baum-Welch algorithm, let’s discuss **how to compute** $\xi_t(i, j)$ and $\gamma_t(i)$.

• Recall, for $t = 1, 2, \ldots, T-1$ and $i, j \in \{1, 2, \ldots, N\}$, we define $\xi_t(i, j)$ as the probability of being in S_i at time t and transitioning to state S_j at time $t+1$, given the whole observation O and λ:

$$\xi_t(i, j) \equiv P(q_t = S_i, q_{t+1} = S_j \mid O, \lambda)$$

$$\xi_t(i, j) = \frac{P(O \mid q_t = S_i, q_{t+1} = S_j, \lambda)P(q_t = S_i, q_{t+1} = S_j \mid \lambda)}{P(O \mid \lambda)}$$

Using the following observation:

$$P(a, b \mid c, d) = \frac{P(c \mid a, b, d)P(a, b \mid d)}{P(c \mid d)}$$
Problem 4: Learning

• Derivation of:

\[
P(a, b \mid c, d) = \frac{P(c \mid a, b, d)P(a, b \mid d)}{P(c \mid d)}
\]

\[
P(a, b, c, d) = P(a, b \mid c, d)P(c, d)
\]
\[
= P(a, b \mid c, d)P(c \mid d)P(d)
\]

\[
P(a, b, c, d) = P(c \mid a, b, d)P(a, b, d)
\]
\[
= P(c \mid a, b, d)P(a, b \mid d)P(d)
\]

\[
P(a, b \mid c, d)P(c \mid d)P(d) = P(c \mid a, b, d)P(a, b \mid d)P(d)
\]

\[
P(a, b \mid c, d)P(c \mid d) = P(c \mid a, b, d)P(a, b \mid d)
\]

\[
P(a, b \mid c, d) = \frac{P(c \mid a, b, d)P(a, b \mid d)}{P(c \mid d)}
\]

\[
\xi_t(i, j) \equiv P(q_t = S_i, q_{t+1} = S_j \mid O, \lambda)
\]

\[
\xi_t(i, j) = \frac{P(O \mid q_t = S_i, q_{t+1} = S_j, \lambda)P(q_t = S_i, q_{t+1} = S_j \mid \lambda)}{P(O \mid \lambda)}
\]
Problem 4: Learning

\[\xi_t(i, j) = \frac{P(O \mid q_t = S_i, q_{t+1} = S_j, \lambda)P(q_t = S_i, q_{t+1} = S_j \mid \lambda)}{P(O \mid \lambda)} \]

Numerator: we factor the 2nd term using following observation:

\[P(a, b \mid c) = P(b \mid a, c)P(a \mid c) \]

Justification:

\[P(a, b, c) = P(a, b \mid c)P(c) \]

\[P(a, b, c) = P(b \mid a, c)P(a, c) \]

\[= P(b \mid a, c)P(a \mid c)P(c) \]

\[P(a, b \mid c)P(c) = P(b \mid a, c)P(a \mid c)P(c) \]

\[P(a, b \mid c) = P(b \mid a, c)P(a \mid c) \]
Problem 4: Learning

\[\xi_t(i,j) = \frac{P(O \mid q_t = S_i, q_{t+1} = S_j, \lambda)P(q_{t+1} = S_j \mid q_t = S_i, \lambda)P(q_t = S_i \mid \lambda)}{P(O \mid \lambda)} \]

Observe: \(O = \{O_1 \; O_2 \; \ldots \; O_t \; O_{t+1} \; O_{t+2} \; \ldots \; O_T\} \)

\[\xi_t(i,j) = \frac{P(O_1 \; O_2 \; \ldots \; O_t \; O_{t+1} \; O_{t+2} \; \ldots \; O_T \mid q_t = S_i, q_{t+1} = S_j, \lambda)P(q_{t+1} = S_j \mid q_t = S_i, \lambda)P(q_t = S_i \mid \lambda)}{P(O \mid \lambda)} \]

Numerator: 1st term is factorized using d-separation

\[\xi_t(i,j) = \frac{[P(O_1 \; O_2 \; \ldots \; O_t \mid q_t = S_i, \lambda)P(O_{t+1} \mid q_{t+1} = S_j, \lambda)P(O_{t+2} \; \ldots \; O_T \mid q_{t+1} = S_j, \lambda)]a_{ij}P(q_t = S_i \mid \lambda)}{P(O \mid \lambda)} \]
Problem 4: Learning

\[\xi_t(i,j) = \frac{P(O_1 O_2 \ldots O_t \mid q_t = S_i, \lambda) P(O_{t+1} \mid q_{t+1} = S_j, \lambda) P(O_{t+2} \ldots O_T \mid q_{t+1} = S_j, \lambda)}{P(O \mid \lambda)} a_{ij} P(q_t = S_i \mid \lambda) \]

Numerator: Combine the 1st and the last term

\[\xi_t(i,j) = \frac{P(O_1 O_2 \ldots O_t \mid q_t = S_i, \lambda) P(q_t = S_i \mid \lambda) P(O_{t+1} \mid q_{t+1} = S_j, \lambda) P(O_{t+2} \ldots O_T \mid q_{t+1} = S_j, \lambda)}{P(O \mid \lambda)} a_{ij} \]

\[\xi_t(i,j) = \frac{P(O_1 O_2 \ldots O_t, q_t = S_i \mid \lambda) P(O_{t+1} \mid q_{t+1} = S_j, \lambda) P(O_{t+2} \ldots O_T \mid q_{t+1} = S_j, \lambda)}{P(O \mid \lambda)} a_{ij} \]
Problem 4: Learning

\[\xi_t(i, j) = \frac{P(O_1 O_2 \ldots O_t, q_t = S_i | \lambda) P(O_{t+1} | q_{t+1} = S_j, \lambda) P(O_{t+2} \ldots O_T | q_{t+1} = S_j, \lambda) a_{ij}}{P(O | \lambda)} \]

\[\xi_t(i, j) = \frac{\alpha_t(i) b_j(O_{t+1}) \beta_{t+1}(j) a_{ij}}{P(O | \lambda)} \]

\[\xi_t(i, j) = \frac{\alpha_t(i) a_{ij} b_j(O_{t+1}) \beta_{t+1}(j)}{\sum_k \sum_l \alpha_t(k) a_{kl} b_l(O_{t+1}) \beta_{t+1}(j)} \]

The denominator is \textbf{marginalized} over all states \(k \) at time \(t \) and all states \(l \) at time \(t+1 \)
Problem 4: Learning

\[\xi_t(i, j) = \frac{\alpha_t(i) a_{ij} b_j(O_{t+1}) \beta_{t+1}(j)}{\sum_k \sum_l \alpha_t(k) a_{kl} b_l(O_{t+1}) \beta_{t+1}(j)} \]

- \(\alpha_t(i) \): it explains the first \(t \) observations and ends in state \(S_i \) at time \(t \) (green).
- \(a_{ij} \): it explains the probability of transitioning from \(S_i \) at time \(t \) to state \(S_j \) at time \(t+1 \)
- \(b_j(O_{t+1}) \): it generates the probability of observation from state \(S_j \) at time \(t+1 \) (red)
- \(\beta_{t+1}(j) \): it explains the probability of generating the rest of the observations \((O_{t+2}, \ldots, O_1) \) from state \(S_j \) at time \(t+1 \) (blue)

Normalization is done by dividing for all such possible pairs that can be visited at times \(t \) and \(t+1 \).
Problem 4: Learning

- Now based on the derived expression for $\xi_t(i,j)$, we summarize the EM steps of the Baum-Welch algorithm:

\[
\xi_t(i,j) = \frac{\alpha_t(i) a_{ij} b_j(O_{t+1}) \beta_{t+1}(j)}{\sum_k \sum_l \alpha_t(k) a_{kl} b_l(O_{t+1}) \beta_{t+1}(j)}
\]

\[
\gamma_t(i) \equiv \sum_{j=1}^{N} \xi_t(i,j)
\]

E-step:
1. Initialize the model $\lambda = (A, B, \Pi)$.
2. Compute $\xi_t(i,j)$ and $\gamma_t(i)$.

M-step:
3. Re-estimate the model $\lambda = (A, B, \Pi)$.
4. If $P(O | \lambda)$ increases, go to step 2 (or quit after a max number of iterations)