Multi-Layer Perceptron (MLP)
Training: Backpropagation Algorithm I

M. R. Hasan
Deep Learning
Readings

• Bishop: 5.1, 5.3, 5.5
• Murphy: 16.5, 16.5.4
• Alpaydin: 11
• Geron: 10
What We Will Cover

- Training MLP
- Backprop algorithm
- Forward propagation
- Backward propagation
- Activation function: hidden layer
- Activation function: final layer
Training MLP
Multi-Layer Perceptron

- Consider a MLP, which is a dense feedforward network.
- The process of evaluating its output y_k can be interpreted as a forward propagation of information through the network.

$$y_k(x, w) = g \left(\sum_{i=0}^{m} W_{ji}^{(2)} g \left(\sum_{i=0}^{d} W_{ji}^{(1)} x_i \right) \right)$$

$$z_j^{(3)} = \sum_{i=0}^{m} W_{ji}^{(2)} a_j^{(2)}$$

$$y_k = g(z_j^{(3)})$$

$$z_j^{(2)} = \sum_{i=0}^{d} W_{ji}^{(1)} x_i$$

$$a_j^{(2)} = g(z_j^{(2)})$$
Multi-Layer Perceptron

• We will discuss how to **train** a MLP for learning its **parameters** (weights of the neurons).
• Assume a **fixed architecture for the MLP** (k-layer)
• There are N training samples: \{ (x_1, y_1), \ldots, (x_N, y_N) \}
• The general **objective/loss function** is defined as (for batch GD):

\[
L(\vec{w}) = \frac{1}{N} \sum_{i=1}^{N} [\text{Loss}(y_i, \hat{y}(\vec{w}))] + \text{Regularizer}(\vec{w})
\]
Multi-Layer Perceptron

- Recall the **linear regression loss function** (l_2 regularization):

\[
L(\vec{w}) = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{2} (y_i - \vec{w}^T \vec{x}_i)^2 + \frac{\lambda}{2} \|\vec{w}\|^2
\]

Logistic regression (classification) loss function (l_2 regularization):

\[
L(\vec{w}) = -\frac{1}{N} \sum_{i=1}^{N} \left[y_i \log \sigma(\vec{w}^T \vec{x}_i) + (1 - y_i) \log (1 - \sigma(\vec{w}^T \vec{x}_i)) \right] + \frac{\lambda}{2} \|\vec{w}\|^2
\]

\[
L(\vec{w}) = \frac{1}{N} \sum_{i=1}^{N} \left[\text{Loss}(y_i, \hat{y}(\vec{w})) + \text{Regularizer}(\vec{w}) \right]
\]
Multi-Layer Perceptron

- Both in **regression and classification** our goal was to learn weight parameter w.

- Because of the **convexity** of the **loss function**, we were able to find the **globally optimum** solution.

$$L(\overline{w}) = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{2} (y_i - \overline{w}^T \hat{x}_i)^2 + \frac{\lambda}{2} \|\overline{w}\|_2^2$$

$$L(\overline{w}) = -\frac{1}{N} \sum_{i=1}^{N} \left[y_i \log \sigma(\overline{w}^T \hat{x}_i) + (1 - y_i) \log (1 - \sigma(\overline{w}^T \hat{x}_i)) \right] + \frac{\lambda}{2} \|\overline{w}\|_2^2$$
Multi-Layer Perceptron

• However, in a MLP the output function is a **nonlinear combination of input units** (neurons).

• As a consequence, the MLP loss function is **non-convex**.

\[
L(\vec{w}) = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{2} (y_i - \vec{w}^T \vec{x}_i)^2 + \frac{\lambda}{N} \|\vec{w}\|^2
\]

\[
L(\vec{w}) = \frac{1}{N} \sum_{i=1}^{N} [y_i \log_a(\vec{w}^T \vec{x}_i) + (1 - y_i) \log_2(1 - \sigma(\vec{w}^T \vec{x}_i))] + \frac{\lambda}{2N} \|\vec{w}\|^2
\]
Multi-Layer Perceptron

• Because of the non-convexity of the MLP loss function, we are unable to find any closed form solution.
• Hence, we use gradient descent to find an optimal solution.

\[
y_k(\vec{x}, \vec{w}) = g\left(\sum_{i=0}^{m} W_{ji}^{(2)} g\left(\sum_{i=0}^{d} W_{ji}^{(1)} x_i \right) \right)
\]

\[
L(\vec{w}) = \frac{1}{N} \sum_{i=1}^{N} \left[\text{Loss}(y_i, \hat{y}(\vec{w})) \right] + \text{Regularizer}(\vec{w})
\]
Multi-Layer Perceptron

\[y_k(\hat{x}, \overline{w}) = g \left(\sum_{i=0}^{m} W_{ji}^{(2)} g \left(\sum_{i=0}^{d} W_{ji}^{(1)} x_i \right) \right) \]

- Another consequence of the non-convex loss function is that multiple local minima may exist.
Multi-Layer Perceptron

Finding the **global minimum is infeasible!**
Multi-Layer Perceptron

• How do we **implement** the gradient descent algorithm for a MLP?

• Our goal is to find an **efficient technique** for **evaluating the gradient of a loss function** $L(w)$ for a feedforward neural network.

$$\vec{w}(t+1) = \vec{w}(t) - \eta \frac{\partial L}{\partial \vec{w}}$$
Multi-Layer Perceptron

- This can be achieved using a **local message passing scheme** in which information is sent **alternately forwards and backwards** through the network.
- It is known as **error backpropagation** algorithm, or sometimes simply as **backprop**.

Learning representations by back-propagating errors

David E. Rumelhart, Geoffrey E. Hinton & Ronald J. Williams

Nature 323, 533–536 (09 October 1986) | Download Citation ↓
Learning representations by back-propagating errors

David E. Rumelhart, Geoffrey E. Hinton & Ronald J. Williams

Nature **323**, 533–536 (09 October 1986) | Download Citation
Learning representations by backpropagating errors

David E. Rumelhart, Geoffrey E. Hinton & Ronald J. Williams

Nature **323**, 533–536 (09 October 1986) | Download Citation ↓
Multi-Layer Perceptron

• To present the backprop algorithm, first we will use a simple case.
• Consider a MLP that has just 1 hidden layer.
• In each layer we have only one neuron (excluding bias).
• Note that the neurons represent the features (either sample feature or extracted features in the hidden layer).
Multi-Layer Perceptron

- For simplicity, we will consider a regression problem and ignore regularization.
Multi-Layer Perceptron

- The loss function parameters are (for a 3-layer MLP):
- \(L(w) = L(w_1, w_2) \) where \(w_2 \) is weight of the connection from the hidden layer to the **final layer**.
- In general, for a \(k \)-layer MLP we have:
- \(L(w) = L(w_1, \ldots, w_{(k-1)}) \)

\[
\overrightarrow{w}(t+1) = \overrightarrow{w}(t) - \eta \frac{\partial L}{\partial \overrightarrow{w}}
\]
Multi-Layer Perceptron

- Our goal is to **learn the gradient of loss function** w.r.t. weights from all layers.

\[
\frac{\partial L}{\partial \mathbf{w}_{(k-1)}}, \left\{ \frac{\partial L}{\partial \mathbf{w}_k} \right\}_{k=1}^{(k-2)}
\]

\[
\mathbf{w}(t+1) = \mathbf{w}(t) - \eta \frac{\partial L}{\partial \mathbf{w}}
\]

The **last layer (k-1) weight** is computed *slightly differently* (depending on the implementation).
Multi-Layer Perceptron

• Now let’s work on this **single hidden layer MLP**.

• The **input** variable “x” is denoted by “a₁” (for consistency).
Multi-Layer Perceptron

- We make some changes to **simplify** the calculation.
- **Bias features are consumed** in input vectors, so we don’t show them separately.
- Similarly the bias weights are also consumed in w.

\[
\hat{x} = \{x_0, x_1\} := \hat{a}_1
\]

\[
\hat{z}_2 := \text{Bias} + \hat{z}_2
\]

\[
\hat{w}_1 := \text{Bias} + \hat{w}_1
\]

\[
\hat{w}_2 := \text{Bias} + \hat{w}_2
\]
Forward Propagation

(a) Forward propagation
Multi-Layer Perceptron

- Let’s understand the **forward propagation phase**.
- Input a_1 (or x) produces the **weighted signal input** for the hidden layer neuron z_2.
- The neuron z_2 is the **activation neuron**.

$$
\begin{align*}
\tilde{z}_2 &= \bar{w}_1^T \tilde{a}_1 \\
\tilde{a}_2 &= g(\tilde{z}_2) \\
\tilde{z}_3 &= \bar{w}_2^T \tilde{a}_2 \\
\tilde{a}_3 &= g(\tilde{z}_3)
\end{align*}
$$
Multi-Layer Perceptron

• The input to z_2 is transformed by a nonlinear activation function $g(\cdot)$ to give the activation to z_2.
• Then, the activated signal a_2 from the hidden layer produces input for the final layer neuron z_3.

\[\hat{z}_2 = \Hat{\mathbf{w}}_1^T \hat{a}_1 \]
\[\hat{a}_2 = g(\hat{z}_2) \]
\[\hat{z}_3 = \Hat{\mathbf{w}}_2^T \hat{a}_2 \]
\[\hat{a}_3 = g(\hat{z}_3) \]
Multi-Layer Perceptron

• The final layer input is **transformed by a nonlinear activation function** $g(\cdot)$ to give the activation to z_3.
• Finally, the activated signal a_3 gives the predicted output.
• For simple **regression** problem, $a_3 = z_3$ (g is an **identity function**).
Backward Propagation

(b) Backward propagation
Multi-Layer Perceptron

• During the backward propagation, our goal is to update the weights w_2 and w_1 by using the Gradient Descent algorithm.

• For this, we need to propagate the prediction error/loss backward for computing the loss gradients.

$$ w_2^{(t+1)} = w_2^{(t)} - \eta \frac{\partial L}{\partial w_2} $$

$$ w_1^{(t+1)} = w_1^{(t)} - \eta \frac{\partial L}{\partial w_1} $$

\[\hat{z}_2 = w_1^T \hat{a}_1 \]
\[\hat{a}_2 = g(\hat{z}_2) \]
\[\hat{z}_3 = w_2^T \hat{a}_2 \]
\[\hat{a}_3 = g(\hat{z}_3) \]
Multi-Layer Perceptron

- In other words, for updating weights, we want to **find the variation in the loss caused by** w_2 **and** w_1.
- Then, this **variation is used** in the update rule.

\[\vec{w}_2^{(t+1)} = \vec{w}_2^{(t)} - \eta \frac{\partial L}{\partial \vec{w}_2} \]
\[\vec{w}_1^{(t+1)} = \vec{w}_1^{(t)} - \eta \frac{\partial L}{\partial \vec{w}_1} \]

- $x = a_1$
- $z_2 \sim a_2$
- $z_3 \sim a_3$
- Layer: $k = 1$
- Layer: $k = 2$
- Layer: $k = 3$

- $\hat{z}_2 = \vec{w}_1^T \hat{a}_1$
- $\hat{a}_2 = g(\hat{z}_2)$
- $\hat{z}_3 = \vec{w}_2^T \hat{a}_2$
- $\hat{a}_3 = g(\hat{z}_3)$

- η is the learning rate.
Multi-Layer Perceptron

- First, we will calculate the variation in the **loss** caused by the **last layer weight** \(w_2 \): \(\frac{\partial L}{\partial w_2} \)
- Observe that the variation in \(L \) that is caused by \(w_2 \) is **propagated via the activation neuron** \(z_3 \).

In other words, \(w_2 \) influences \(z_3 \), and consequently \(z_3 \) influences \(L \).
Multi-Layer Perceptron

- To capture this variation of w_2 via z_3, we use the chain rule of partial derivative.

$$\frac{\partial L}{\partial \vec{w}_2} = \frac{\partial L}{\partial \vec{z}_3} \cdot \frac{\partial \vec{z}_3}{\partial \vec{w}_2}$$

It is the product of two variations: variation in L caused by final layer input z_3 and the variation in z_3 due to w_2
Multi-Layer Perceptron

- The variation in L caused by z_3 is denoted as the error (δ) of the final layer neuron.

$$\frac{\partial L}{\partial \vec{w}_2} = \frac{\partial L}{\partial \hat{z}_3} \cdot \frac{\partial \hat{z}_3}{\partial \vec{w}_2}$$

$$\frac{\partial L}{\partial \hat{z}_3} \equiv \delta_3$$

The 2^{nd} term:

$$\frac{\partial \hat{z}_3}{\partial \vec{w}_2} = \hat{a}_2$$

- $\hat{z}_2 = \vec{w}_1^T \hat{a}_1$
- $\hat{a}_2 = g(\hat{z}_2)$
- $\hat{z}_3 = \vec{w}_2^T \hat{a}_2$
- $\hat{a}_3 = g(\hat{z}_3)$

It’s the error of the final layer caused by incorrect input z_3.
Multi-Layer Perceptron

• We express $\frac{\partial L}{\partial w_2}$ as follows:

$$
\frac{\partial L}{\partial \vec{w}_2} = \frac{\partial L}{\partial \vec{z}_3} \cdot \frac{\partial \vec{z}_3}{\partial \vec{w}_2}$$

$$
\frac{\partial L}{\partial \vec{z}_3} \equiv \delta_3
$$

$$
\frac{\partial \vec{z}_3}{\partial \vec{w}_2} = \vec{a}_2
$$

We need to calculate the error term δ_3.

$$
\hat{z}_2 = \overrightarrow{w}_1^T \hat{a}_1
$$

$$
\hat{a}_2 = g(\hat{z}_2)
$$

$$
\hat{z}_3 = \overrightarrow{w}_2^T \hat{a}_2
$$

$$
\hat{a}_3 = g(\hat{z}_3)
$$
Multi-Layer Perceptron

- Again observe the error δ_3 at the final layer neuron is caused by z_3 via the activation function a_3.
- We capture this cascaded influence by the chain rule.

$$\frac{\partial L}{\partial \vec{w}_2} = \delta_3 \cdot \hat{a}_2$$

$$\delta_3 = \frac{\partial L}{\partial z_3} = \frac{\partial L}{\partial \hat{a}_3} \cdot \frac{\partial \hat{a}_3}{\partial z_3}$$

Using the squared error loss function

$$L(\vec{w}_2) = \frac{1}{2} (y - \hat{a}_3)^2$$

$$\frac{\partial L}{\partial \hat{a}_3} = 2 \cdot \frac{1}{2} \cdot (y - \hat{a}_3)(-1) = -(y - \hat{a}_3)$$

$$\frac{\partial L}{\partial \hat{a}_3} = (\hat{a}_3 - y)$$
Multi-Layer Perceptron

- Now the last part of δ_3.
- It is the derivative of the activation function.

\[
\frac{\partial L}{\partial \tilde{a}_3} = (\tilde{a}_3 - y)
\]
\[
\frac{\partial L}{\partial \tilde{w}_2} = \delta_3 \cdot \tilde{a}_2
\]

\[
\delta_3 = \frac{\partial L}{\partial \tilde{z}_3} = \frac{\partial L}{\partial \tilde{a}_3} \cdot \frac{\partial \tilde{a}_3}{\partial \tilde{z}_3}
\]

\[
\frac{\partial \tilde{a}_3}{\partial \tilde{z}_3} = g'(\tilde{z}_3)
\]

\[
\tilde{a}_3 = g(\tilde{z}_3)
\]

\[
\delta_3 = \frac{\partial L}{\partial \tilde{z}_3} = (\tilde{a}_3 - y)g'(\tilde{z}_3)
\]
Multi-Layer Perceptron

- Finally, we derived an expression for the variation in the loss caused by w_2: $\frac{\partial L}{\partial w_2}$

$$\frac{\partial L}{\partial w_2} = \delta_3 \cdot \tilde{a}_2 = (\tilde{a}_3 - y)g'(\tilde{z}_3)\tilde{a}_2$$

\[\delta_3 = \frac{\partial L}{\partial \tilde{z}_3} = (\tilde{a}_3 - y)g'(\tilde{z}_3)\]

\[\frac{\partial L}{\partial \tilde{w}_2} = \delta_3 \cdot \tilde{a}_2\]
Now, we **derive the expression** for the variation in the loss caused by w_1: $\frac{\partial L}{\partial w_1}$

It is the product of: variation in L caused by hidden layer input z_2 and the variation in z_2 due to w_1.

\[
\frac{\partial L}{\partial \hat{w}_1} = \frac{\partial L}{\partial \hat{z}_2} \cdot \frac{\partial \hat{z}_2}{\partial \hat{w}_1}
\]
Multi-Layer Perceptron

- Let’s calculate the error term δ_2.
- Again we use the chain rule (blue).

\[
\delta_2 \equiv \frac{\partial L}{\partial \hat{z}_2} = \frac{\partial L}{\partial \hat{z}_3} \cdot \frac{\partial \hat{z}_3}{\partial \hat{a}_2} \cdot \frac{\partial \hat{a}_2}{\partial \hat{z}_2}
\]

We calculate these 3 terms separately

\[
\delta_3 = \frac{\partial L}{\partial \hat{z}_3} = (\hat{a}_3 - y)g'(\hat{z}_3)
\]

\[
\begin{align*}
\hat{z}_2 &= \vec{w}_1^T \hat{a}_1 \\
\hat{a}_2 &= g(\hat{z}_2) \\
\hat{z}_3 &= \vec{w}_2^T \hat{a}_2 \\
\hat{a}_3 &= g(\hat{z}_3)
\end{align*}
\]
Finally, we have the expression for δ_2.

\[
\delta_2 = \frac{\partial L}{\partial \hat{z}_2} = \delta_3 \vec{w}_2 g' (\hat{z}_2)
\]

Observe that the 2nd layer error is given by the 3rd layer neuron.

There could be multiple neurons in the 3rd layer that contribute to the error of each neuron in the 2nd layer.
Error of each neuron in the 2nd layer is δ_2:

$$\delta_2 = \frac{\partial L}{\partial \hat{z}_2} = \delta_3 \hat{w}_2 g'(\hat{z}_2)$$

Note that the 3rd layer errors from multiple neurons contribute to the single 2nd layer neuron.
Multi-Layer Perceptron

• The error of the single neuron z_2 (δ_2) is expressed as the weighted sum of the 3rd layer errors propagated backwards.

• Observe that the errors propagate backwards.

\[\delta_2 = \frac{\partial L}{\partial \hat{z}_2} = g'(\hat{z}_2) \sum_{\text{units}} \vec{w}_2 \delta_3 \]

Hence, the name backpropagation!
Finally, we derived an expression for the variation in the loss caused by w_1: $\partial L / (\partial w_1)$

$$\frac{\partial L}{\partial \tilde{w}_1} = \delta_2 \cdot \tilde{a}_1 = \left[g' (\tilde{z}_2) \sum_{\text{layer 3 units}} \tilde{w}_2 \delta_3 \right] \cdot \tilde{a}_1$$

$$\delta_2 = \frac{\partial L}{\partial \tilde{z}_2} = g' (\tilde{z}_2) \sum_{\text{layer 3 units}} \tilde{w}_2 \delta_3$$
Now we are ready to **state the update rules** for the gradient descent algorithm.

\[
\frac{\partial L}{\partial \vec{w}_2} = \delta_3. \hat{a}_2 = (\hat{a}_3 - y) g'(\hat{z}_3) \hat{a}_2
\]

\[
\frac{\partial L}{\partial \vec{w}_1} = \delta_2. \hat{a}_1 = \left[g'(\hat{z}_2) \sum_{\text{layer 3 units}} \vec{w}_2 \delta_3 \right] \hat{a}_1
\]

\[
\vec{w}_2^{(t+1)} = \vec{w}_2^{(t)} - \eta (\hat{a}_3 - y) g'(\hat{z}_3) \hat{a}_2
\]

\[
\vec{w}_1^{(t+1)} = \vec{w}_1^{(t)} - \eta \left[g'(\hat{z}_2) \sum_{\text{layer 3 units}} \vec{w}_2 \delta_3 \right] \hat{a}_1
\]
Multi-Layer Perceptron

• Carefully note the following **general rule** for computing the loss derivative.

General rule: Loss caused by $W^{(p-1)}$ of the layer (p):

- **Error** $\delta^{(p)}$ of the layer (p) *output* $a^{(p-1)}$ of layer $(p - 1)$

$$\frac{\partial L}{\partial \vec{w}_1} = \delta_2 \cdot \hat{a}_1$$

$$\frac{\partial L}{\partial \vec{w}_2} = \delta_3 \cdot \hat{a}_2$$

Layer k = 1
Layer k = 2
Layer k = 3

$$\vec{w}_2^{(t+1)} = \vec{w}_2^{(t)} - \eta \frac{\partial L}{\partial \vec{w}_2}$$

$$\vec{w}_1^{(t+1)} = \vec{w}_1^{(t)} - \eta \frac{\partial L}{\partial \vec{w}_1}$$
General rule: Loss caused by $W^{(p-1)}$ of the layer (p): Error $\delta^{(p)}$ of the layer (p) * output $a^{(p-1)}$ of layer $(p - 1)$

First, we calculate the error $\delta_{j}^{(K)}$ due to the last/output layer weight w_2, using the error to compute the loss gradient.

$$\frac{\partial L}{\partial w_2} = \delta_3 \cdot \tilde{a}_2$$

Then, we calculate the error $\delta_{j}^{(K-1)}$ due to the the hidden layer weights (e.g., w_1) recursively using $\delta_{j}^{(K)}$. Finally, compute loss gradient.

$$\delta_2 = \frac{\partial L}{\partial \tilde{z}_2} = g'(\tilde{z}_2) \sum_{l=3}^{layer 3 \ units} \overrightarrow{w}_2 \delta_3$$

$$\frac{\partial L}{\partial w_1} = \delta_2 \cdot \tilde{a}_1$$
Multi-Layer Perceptron

- The activation function $g(.)$ in the hidden layers must be differentiable nonlinear.
- E.g., sigmoid/tanh/ReLU.

Why $g(.)$ needs to be differentiable?

Limitation of the Perceptron step activation function!

$$
\overrightarrow{w}_2^{(t+1)} = \overrightarrow{w}_2^{(t)} - \eta (\overrightarrow{a}_3 - y) g' (\overrightarrow{z}_3) \overrightarrow{a}_2
$$

$$
\overrightarrow{w}_1^{(t+1)} = \overrightarrow{w}_1^{(t)} - \eta \left[g' (\overrightarrow{z}_2) \sum_{\text{layer 3 units}} \overrightarrow{w}_2 \delta_3 \right] \cdot \overrightarrow{a}_1
$$
Now let’s see how to **generalize** the Gradient Descent algorithm for an arbitrary size (k-layer) MLP.