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ABSTRACT
Regression testing is an important but expensive activity, and a
great deal of research on regression testing methodologies has been
performed. In recent years, much of this research has emphasized
empirical studies, including evaluations of the effectiveness and ef-
ficiency of regression testing techniques. To date, however, most
studies have been limited in terms of their consideration of test-
ing context and system lifetime, and have used cost-benefit models
that omit important factors and render some types of comparisons
between techniques impossible. These limitations can cause stud-
ies to improperly assess the costs and benefits of regression testing
techniques in practical settings. In this paper, we provide improved
cost-benefit models for use in assessing regression testing method-
ologies, that incorporate context and lifetime factors not consid-
ered in prior studies, and we use these models to compare several
common methodologies. Our results show that the factors we con-
sider (in particular, time constraints and incremental resource avail-
ability) can affect assessments of the relative benefits of regression
testing techniques, and suggest that particular classes of techniques
may compare differently across different types of test suites.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing & Debugging—testing tools

General Terms
Experimentation, Measurement, Verification

Keywords
Regression testing, regression test selection, test case prioritization,
evaluation schemes, economic models, empirical studies

1. INTRODUCTION
As software evolves, engineers use various approaches to assess

its quality. One common approach, regression testing, involves
saving and reusing (and as necessary, incrementally updating) test
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suites created for earlier versions of the software [2, 4, 21, 24].
By reusing test cases, this approach amortizes the costs of design-
ing and creating test cases across a system’s lifetime. Even so,
reusing and maintaining test suites can be expensive, so numerous
approaches to reducing or prioritizing regression testing activities
have been proposed (e.g., [5, 11, 30, 32, 34]). Initially, research
on regression testing — similar to research on testing in general
— relied primarily on analytical approaches to assess and compare
techniques (e.g. [21, 29]). Testing techniques are heuristics, how-
ever, and to properly evaluate their cost-effectiveness in practice,
empirical studies are essential.

More recent research on regression testing, therefore [3, 10, 12,
14, 18, 19, 23, 25, 28, 33], has employed empirical studies. A com-
mon way to conduct such studies has been to collect one or more
software systems with multiple versions, and for each system, find
or create a test suite for, and locate or seed faults in, each version.
Next, the techniques being studied are applied to each version and
its test suite, and the results are assessed using measures of test-
ing effort (numbers of test cases or time required) and effectiveness
(rate of fault detection or numbers of faults revealed).

Empirical studies such as these have allowed researchers to com-
pare regression testing techniques in terms of costs and benefits.
However, studies to date suffer from several limitations in their
abilities to assess cost-benefit tradeoffs relative to practical testing
situations. These limitations involve context factors, lifetime fac-
tors, and cost-benefit models, and can be summarized as follows.

Context factors. Previous studies have considered only a few con-
text factors when assessing techniques. Most studies have consid-
ered differences in programs and regression testing techniques, but
none have considered costs of other essential testing activities such
as test setup and obsolete test identification, or collection and main-
tenance of resources (e.g. test coverage information) needed for
retesting. And only a few studies have considered the effects of
time constraints on testing cost-effectiveness.

Lifetime factors. Previous studies have calculated costs and ben-
efits independently per system version. This “snapshot” view of
costs and benefits masks the fact that regression testing techniques
are applied repeatedly across system lifetimes. The cost-benefit
tradeoffs for techniques across entire lifetimes may be more rele-
vant for choosing a technique than the tradeoffs on single releases.

Cost-benefit models. Previous studies have relied on limited cost-
benefit models. Costs are often ignored, or calculated solely in
terms of time or numbers of faults missed. Benefits are often cal-
culated solely in terms of reduced test suite size or increased rate of
fault detection. Costs of missed faults and human time, and trade-



offs involving product revenue, have not been considered. More-
over, often different techniques are evaluated using different met-
rics, rendering their relative performance incomparable.

Limitations such as these can make it difficult to empirically
compare regression testing techniques, or can lead evaluations to
improperly assess the costs and benefits of techniques in practi-
cal contexts. Ultimately, this can lead to inaccurate conclusions
about the relative cost-effectiveness of techniques, and inappropri-
ate decisions by engineers relying on such conclusions to select
techniques for particular situations.

It follows that researchers who empirically investigate regression
testing techniques, and practitioners who might act on the results
of those investigations, would be better served by empirical inves-
tigations founded on more comprehensive cost-benefit models for
those techniques, that incorporate richer context and lifetime fac-
tors. In this paper, therefore, we provide such a model, and we
conduct an empirical study comparing several common regression
testing techniques using that model.

The results of our study show that the factors we consider can af-
fect assessments of the relative benefits of regression testing tech-
niques. In particular, the effects of time constraints in assessing
techniques are large, and incremental resource availability, though
less pronounced in its effects, can also effect assessments of the
relative benefits of regression testing techniques. Our results also
provide insights into the relative strengths and weaknesses of tech-
niques, with consequences for their application in practice.

Overall, this work makes the following contributions. First, by
providing a cost-benefit model that better captures the context and
lifetime factors that affect technique cost-effectiveness, we facili-
tate more accurate interpretation of empirical results by practition-
ers and researchers. Second, by providing a mechanism for assess-
ing the costs and benefits of various regression testing techniques
in terms of a single model using shared units of comparison, we
enable researchers to directly compare the cost-benefits tradeoffs
between previously incomparable techniques. Third, our particular
empirical results add to the growing body of knowledge about the
tradeoffs between regression testing techniques, with implications
for practitioners who might want to use the techniques studied.

In the next section of this paper, we review relevant previous
work. Section 3 presents our cost-benefit model. Section 4 presents
our study design, results, and analysis. Section 5 discusses our
results, and Section 6 presents conclusions.

2. BACKGROUND AND RELATED WORK
We focus on three regression testing methodologies: retest-all,

regression test selection, and test case prioritization.
Let P be a program, let P ′ be a modified version of P , and let

T be a test suite for P . Regression testing attempts to validate P ′.
As a typical common practice [24], often engineers simply reuse
all non-obsolete1 test cases in T to test P ′ – this is known as the
retest-all technique. Rerunning all of these test cases, however, can
be very expensive; for example, Srivastava et al. [32] cite a case in
which an office productivity application of 1.8 million lines of code
has a test suite of 3128 test cases that require over four days to run.

When only small portions of P have been modified, a retest-all
technique can involve unnecessary work. Regression test selection
techniques (e.g., [5, 25, 28, 30], for a survey and additional ref-

1A test case is obsolete for P if it can no longer be applied to P
(e.g. due to changes in inputs), is no longer needed to test P (e.g.
due to being designed solely for code coverage of P , and now on
P ′ redundant in coverage) or if its expected output on P ′ differs
(e.g. due to specification changes) from its expected output on P .

erences see [29]) reduce testing costs by selecting test cases that
are necessary to test a modified program. Regression test selection
techniques use information about P , P ′, and T to select a sub-
set T ′ of T with which to test P ′. Safe regression test selection
techniques are those that ensure (under certain conditions) that T ′

detects the same faults as T , whereas non-safe techniques provide
no such assurance, but rather, trade such assurances for further sav-
ings in testing cost (for an in-depth discussion of safety and classes
of regression testing techniques, see [29]).

While regression test selection techniques focus on reducing the
number of test cases that must be executed, test case prioritization
techniques (e.g., [11, 32, 34]) reorder test cases, scheduling test
cases with the highest priority according to some criterion earlier
in the testing process. Test case prioritization techniques can yield
benefits such as providing earlier feedback to testers and earlier
fault detection. To date, most research on prioritization has focused
on this latter goal, typically described as one of improving a test
suite’s rate of fault detection. Furthermore, when organizations cut
testing processes short, prioritization can decrease the possibility
that faults will have escaped into the released system.

Many regression test selection and test case prioritization tech-
niques, including those that we consider in this work, depend on
information about the coverage of code achieved by tests. Such in-
formation is obtained by inserting probes into (instrumenting) code,
and this activity, along with the activity associated with collecting
traces (coverage information) about test execution, are among the
costs incurred by these techniques.

Empirical evaluations of the foregoing regression testing method-
ologies to date (as cited in Section 1) have relied, implicitly or
explicitly, on relatively simple cost-benefit models. Leung and
White [22] present a model that considers some of the factors (test-
ing time, technique execution time) that affect regression testing
costs, but their model does not consider benefits. Harrold et al.
[15] present a coverage-based predictor of regression test selection
technique effectiveness, but this predictor focuses only on reduc-
tion in numbers of test cases. Malishevsky et al. [23] extend Leung
and White’s work with cost models for regression test selection and
test case prioritization that incorporate benefits related to omission
of faults and rate of fault detection. As discussed in Section 1, how-
ever, each of these models omits many context and lifetime factors
related to the costs and benefits of techniques in practice.

3. MODELLING COSTS AND BENEFITS
We now describe the cost-benefit model that we utilize. We begin

our discussion by outlining the regression testing process on which
our model is based. Section 3.2 describes the constituent costs of
regression testing techniques that we model, Section 3.3 presents
our model, and Section 3.4 describes how the model is utilized to
assess and compare techniques.

3.1 Regression Testing Process
Cost-benefit models capture costs and benefits of methodologies

relative to particular processes. In this work, we use a model of the
regression testing process that corresponds to the most commonly
used approach for regression testing at the system test level [24] —
a batch process model — and which, though simple, is sufficient to
allow us to investigate our research questions.

Figure 1 presents a timeline depicting the maintenance, regres-
sion testing, and post-release phases for a single release of a soft-
ware system following a batch process model. Time t1 represents
the time at which maintenance (including all planning, analysis, de-
sign, and implementation activities) of the release begins. At time
t2 the release is code-complete, and regression testing and fault
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Figure 1: Maintenance and regression testing cycle.

correction begin. (These activities may be repeated and may over-
lap within time interval t2-t3, as faults are found and corrected.)
When this phase ends, at time t3, product release can occur – at
this time, revenue associated with the release (together with asso-
ciated increases in the company’s market value) begin to accrue.
In a perfect world, actual product release coincides with scheduled
release time, following completion of testing and fault correction
activities, and this is the situation depicted in the figure.

This process model relates to the regression testing techniques
we wish to investigate as follows. Suppose the timeline shows the
situation in which the retest-all technique is employed. In this case,
regression test selection techniques attempt to reduce time inter-
val t2-t3 by reducing testing time, with, for non-safe techniques, a
possible increase in the number of faults that slip through testing
and are detected in the post-release phase. Test case prioritization
techniques attempt to reduce time interval t2-t3 by allowing greater
portions of the fault correction activities that occur in that period
to be performed in parallel with testing, rather than afterward. If
either of these techniques succeeds, the software can be released
prior to its scheduled release date, and overall revenue can increase.
If prioritization is unsuccessful and fault correction activities cause
time interval t2-t3 to increase, then the release will be delayed and
revenue can decrease.

We also use this model to explore one further dimension of re-
gression testing that occurs commonly in practice, involving the
interaction between resource availability and process decisions re-
lated to product release and revenue. Organizations that create
software for sale regression test it with the goal of improving its
dependability and attracting greater revenue by reducing the costs
of post-release fault correction and increasing the perceived value
of the released software and the market value of the company [6].
The cost of this testing activity competes, however, with the desire
to field the software earlier, which itself can also result in greater
revenue and company market value. Releasing software at time t2
in the timeline can increase revenue due to the benefits of timeli-
ness, but potentially increases costs due to missed faults.

In practice, pressure to release software and preserve revenue
may cause organizations to terminate testing early. In this case,
also, revenue may increase but with potential for costs downstream
due to missed faults. An analogous situation occurs when the main-
tenance period runs long and the organization terminates testing
early in order to meet scheduled release dates, although in this case
the focus is on not losing revenue. Note that in such cases, test case
prioritization can decrease the degree to which such costs occur, by
increasing the likelihood that faults are detected prior to the termi-
nation of testing. In our empirical study we investigate the effects
of “early” regression testing termination.

The process model we have just described makes several as-
sumptions. For example, organizations may also create software
for reasons other than to create revenue. Organizations that com-
plete testing early could in theory spend additional time perform-
ing other forms of verification until the scheduled release date ar-
rives, and this could lead to increased revenue via reduced fault

cost downstream. Moreover, revenue itself is not the sole measure
of benefit, because market value is also important.

There are also many other regression testing process models that
could be considered. For example, some organizations use incre-
mental testing processes, in which test cases are run each night as
maintenance proceeds.

These differences noted, this process model does allow us to
investigate a cost-benefit model that is much more complex than
those used in research on regression testing to date. More impor-
tant, we believe that the cost-benefit model we present here can be
adjusted to accommodate relaxations in the foregoing assumptions,
as well as process differences.

3.2 Costs Modelled
We now describe the constituent costs of regression testing tech-

niques that we consider in this work. In this section we focus on
what these costs are, not on methods for measuring or estimating
them; discussion of measures is provided in Section 4.2.

To model the costs and benefits of regression testing, we consider
nine constituent cost components. Here we describe each compo-
nent and some of the factors that cause it to vary.

Test setup (CS ). CS includes the cost of activities required to pre-
pare to run tests, such as setting up the testing environment (hard-
ware and software) and arranging for the use of resources. Thus,
CS varies with characteristics of the system under test, such as
whether it exists standalone, in a distributed environment, or in an
environment involving special hardware or human interaction.

Identifying obsolete test cases (COi ). COi represents the cost of
determining which of the test cases in a test suite are still applicable
to a new system version to be tested. This cost varies with the type
of test cases (e.g., specification-based, code-based, system, unit),
the amount of change occurring between consecutive versions, and
the availability of documentation or engineer experience.

Repairing obsolete test cases (COr ). Often, obsolete test cases
are still potentially useful for the current system. For example,
when a class interface is changed by one parameter type, existing
test cases related to that class can not be used directly, but a sim-
ple change may repair them. Similarly, a test case for which inputs
remain the same but for which expected output has changed can re-
quire edits of oracle information. This cost varies with the number
of test cases needing repair, and the complexity of the repairs, test
cases, oracle procedures, and system.

Supporting analysis (CA). CA represents the cost of the analysis
needed to support a regression testing technique. For the techniques
being considered here, CA can include costs of instrumenting code,
analyzing changes between old and new versions, and collecting
test execution traces, and thus can vary widely with characteristics
of techniques, programs, tests, and executions.

Significantly, CA can also vary with the extent to which data
from previous testing sessions is reused or leveraged in the current
testing session. For example, suppose engineers previously instru-
mented and collected test execution traces for release r1 of program
P in order to apply a regression testing technique to a subsequent
release r2 of P . When r2 is regression tested, to prepare for the
next release, r3 , engineers must instrument and collect test execu-
tion traces for r2 . As a software system evolves, however, a large
percentage of its code may be shared between consecutive versions.
Thus, engineers can re-instrument a version incrementally by iden-
tifying code changes between consecutive versions, and using pre-
vious instrumentation in unchanged code. Similarly, engineers can
collect test execution traces for only the subset of test cases that are
affected by instrumentation changes, reusing prior traces for others.



If the costs of instrumentation and trace collection are sufficiently
high and the changes between versions are sufficiently small, then
we would expect lower costs to be associated with this approach.

Regression testing technique execution (CR). CR represents the
cost of applying a regression testing technique or tool (for regres-
sion test selection or test case prioritization), itself, after supporting
analyses have been completed. This cost also varies with charac-
teristics of techniques, programs, test suites, and changes [13].

Test execution (CE ). CE represents the cost of executing tests.
This cost varies with test execution processes (e.g., manual, au-
tomatic, or semi-automatic), as well as with characteristics of the
system under test and the particular test cases utilized. Many orga-
nizations attempt to run test cases automatically, but many others
continue to use manual or semi-automated testing approaches; for
example, in human/machine interface testing, test cases may pri-
marily involve human interaction [6].

Test result validation (CVd and CVi ). CVd and CVi represent
the cost of checking test results to determine whether or not test
cases reveal failures. These two variables represent two compo-
nents of the validation task: (1) CVd is the cost of using automated
differencing tools on test outputs to detect output differences with
respect to prior testing sessions, and (2) CVi is the (human time)
cost of inspecting test outputs flagged as different to determine
whether the difference in fact represents a failure. These costs vary
with the number of test cases and the complexity of test output, as
well as with the automated technique used to check outputs for dif-
ferences. A regression testing technique that reduces the number of
test cases to be executed also reduces CVd and CVi .

Missing faults (CF ). CF represents the cost of missing faults.
Regression test selection techniques can miss faults due to omission
of existing test cases that could, if executed, have revealed them. In
this work, we focus on the costs of missing faults that the regression
test suite could, if executed in full, have detected. (In addition, all
regression testing techniques can miss faults that are not detectable
by any of the test cases executed; however, these costs are incurred
similarly by all techniques so we do not consider them here.)

CF varies with regression testing technique; clearly, non-safe
techniques incur this cost to a greater extent than safe techniques.
As discussed in Section 3.1, CF also varies with the testing organi-
zation’s processes (e.g., with reduced testing time caused by early
test termination). Finally, CF varies with business and financial
characteristics such as market conditions, product sensitivity to the
market, and the severity of missed faults.

Delayed fault detection feedback (CD). CD captures the cost of
delayed fault detection feedback. When faults are detected late in
a regression testing cycle, efforts to correct them can delay prod-
uct release. Faults detected early in a cycle can potentially be ad-
dressed, prior to completion of the cycle. As a simple example,
suppose a fault requiring five days to correct is discovered on the
last day of a ten day regression testing cycle. In this case, product
delivery is delayed by the four days required to correct the fault,
and also by the time required to (again) regression test the cor-
rected program (another ten days under the retest-all approach). If
this fault is detected prior to the fifth day of the testing cycle, it
does not add any additional delay to product delivery time, beyond
the time required to retest the corrected program.

Other costs not considered. In addition to the costs we have de-
scribed, there are other testing costs, such as initial test case devel-
opment, initial automation costs, test tool development, test suite
maintenance, management overhead, database cost, and the cost of
developing new test cases. In this work we restrict our attention

to the costs just listed, but our cost-benefit model could easily be
extended to incorporate these other costs.

3.3 A Cost-Benefit Model
We use the preceding costs to formulate a cost-benefit model that

allows us to investigate the research questions we focus on in this
paper. We consider all of the costs just outlined, and for analysis
costs we consider two analyses on which the specific regression test
selection and test case prioritization techniques we study depend:
the cost of inserting instrumentation into the system, and the cost
of collecting test traces.

The model that we present is constructed based on the regression
testing process model discussed in Section 3.1, but the method we
have used to construct the model can be used to construct models
for other processes.

Before we describe our cost-benefit model, we define several
terms and coefficients that are used in the model, most of which
instantiate the general constituent costs outlined in Section 3.2. As-
sume that we are considering regression testing technique R, n re-
leases of software system S denoted S1 , S2 , . . . , Sn , and n versions
of test suite T (one per release of S) denoted T1 ,T2 , . . . ,Tn .

• i is an index denoting a particular release Si of S.
• u is a unit of time (e.g., hours or days).
• REV is an organization’s revenue in dollars per time unit u,

relative to S.
• ED(i) is the expected time-to-delivery in units u for release

Si when testing begins (in Figure 3.1, interval t2-t3).
• PS is a measure of the cost (average hourly salary) associ-

ated with employing a programmer per unit of time u.
• CS (i) is the setup cost for testing release Si .
• COi(i) is the cost of identifying obsolete tests for release Si .
• COr (i) is the cost of repairing obsolete tests for release Si .
• CAin (i) is the time needed to instrument all units in i.2

• CAtr (i) is the time required to collect traces for test cases in
Ti−1 for use in analyses needed to regression test release Si .

• CR(i) is the time required to execute R itself on release Si .
• CE (i) is the time required to execute test cases on release Si

(either all of the test cases in Ti or some subset of Ti ).
• CVd (i) is the cost of applying automated differencing tools

to the outputs of test cases run on release Si (all test cases in
Ti or some subset of Ti ).

• CVi (i) is the (human) cost of checking the results of test
cases determined to have produced different outputs when
run on release Si (all test cases in Ti or some subset of Ti ).

• CF (i) is the cost associated with a missed fault after the
delivery of release Si .

• CD(i) is the cost associated with delayed fault detection
feedback on release Si .

• ain (i) is a coefficient used to capture reductions in costs of
instrumentation required for release i following changes, in
terms of the ratio of the number of units instrumented in i to
total number of units in i:

ain(i) =
numberOfUnitsInstrumented

totalNumberOfUnits
(1)

When all units are instrumented, this ratio equals 1.
• atr (i) is a coefficient used to capture reductions in costs of

the trace collection required for i following changes, in terms

2Systems can be incrementally instrumented at various levels, such
as per file, per class, or per method. We use “unit” generically to
account for this; in our studies we consider instrumentation at the
level of class files.



of the ratio of the reduced number of traces collected when
focusing on changes in i to the total number of traces that
would need to have been collected otherwise.

atr(i) =
numberOfTracesCollected

totalNumberOfTraces
(2)

When all traces are collected, this ratio equals 1.
• b(i) is a coefficient used to capture reductions in costs of

executing and validating test cases for i, when only a subset
of T is rerun:

b(i) =
NumberOfTestsRerun

TotalNumberOfTestsInT
(3)

When all test cases are run, this ratio equals 1.
• c(i) is the number of faults that could be detected by T on

release i but that are missed due to execution of subsets of T.

To formulate a cost-benefit model incorporating the foregoing
costs, we must ensure that all costs are measured in identical units.
To do this, we initially record all costs for which the mnemonics
take the form CX using a time metric in some unit u. We then con-
vert these costs into monetary values so that we can combine them
in calculations involving revenues. To perform this conversion, we
categorize the costs into two groups: costs related to human efforts
(CS , COi , COr , CVi and CF ), and costs related to machine time
(CAin , CAtr , CR, CVd , and CE ).

We then project the cost-benefits of regression testing by consid-
ering techniques in light of their business value to organizations, in
terms of how much organizations pay for applying the techniques
and how much revenue they gain or lose by doing so. This involves
two equations: one that captures costs in terms of salaries of the en-
gineers who perform regression testing tasks (using PS to translate
time spent by one or more engineers into monetary values), and one
that captures revenue gains or losses related to changes in product
release time (using REV to translate times into monetary values).

Further, in keeping with our desire to account for lifetime factors
by tracking costs and benefits across entire system lifetimes, our
equations calculate costs and benefits across entire sequences of
system releases, rather than simply on individual system releases.

The two equations that comprise our model are as follows:

Cost = PS ∗

n
X

i=2

(CS(i) + COi(i) + COr(i)

+ b(i) ∗ CVd(i) + c(i) ∗ CF (i)) (4)

Benefit = REV ∗

n
X

i=2

(ED(i) − (CS(i) + COi(i) + COr(i)

+ ain(i − 1) ∗ CAin(i − 1) + atr(i − 1) ∗ CAtr(i − 1) + CR(i)

+ b(i) ∗ (CE(i) + CVi(i) + CVd(i)) + CD(i))) (5)

Relating these formulas to our prior discussions of processes and
cost-benefits, if an organization does not test their product at all be-
fore delivery, then they gain potential revenue by reducing all of
the cost terms other than CF in Equation 4 to zero, and all the
cost terms of form CX in Equation 5 to zero. If CF is zero, the
resulting revenue increase is proportional to the saved expected de-
livery time ED . When a regression testing technique reduces (in-
creases) testing time, either through selection or prioritization, the
right hand side of Equation 5 is positive (negative), indicating an in-
crease (decrease) in revenue. These revenue changes are coupled,
however, with changes in costs captured in Equation 4 in determin-
ing whether techniques are cost-beneficial overall.

Note that of the costs that we consider in this work, several (CS ,
COi , COr ,CA) can potentially be partially offloaded from the
critical testing phase to the maintenance phase; that is, the phase
denoted t1-t2 in Figure 1. For example, test engineers can make
test hardware ready or perform preliminary analyses on modules on
which maintenance is complete. In this case, costs may decrease:
they continue to have associated salary and hardware aspects, but
may be less likely to contribute directly to delays in release dates.
Four other costs (CR, CE , CVi , CVd ) are incurred primarily dur-
ing the regression testing phase. CD occurs during the regression
testing and fault correction phase, but may also extend into the post-
release phase. CF is incurred during the post-release phase.

In constructing the foregoing model we make several simplify-
ing assumptions. We assume that S has just one (evolving) test
suite, that tests have equal run times, that instrumentation costs per
unit and trace are uniform, and that fault costs are all the same.
We assume that test case execution, analysis, and regression test-
ing technique costs involve only machine time, with no human cost
component, and we consider test setup and obsolete test detection
to have only human effort cost, (an assumption appropriate to our
experiment objects). In this work, where we consider the relative
efficacy of regression testing techniques that re-use T, we consider
only fault losses incurred due to execution of subsets of T. We make
these assumptions for convenience, as they are suitable to the sce-
narios we consider in our empirical study. All of these assumptions
can be relaxed, however, given appropriate changes made in the
model and sufficiently accurate measurement instruments.

3.4 Evaluating and Comparing Techniques
The foregoing cost models can be used in cost-benefit analyses

in various ways. Let A and B be regression testing techniques with
costs CostA and CostB , and benefits BenefitA and BenefitB . We
can determine whether A is beneficial by calculating:

BenefitA − CostA (6)

Further, we can determine the difference in value between A and
B by calculating:

(BenefitA − CostA) − (BenefitB − CostB) (7)

with positive values indicating that A has greater value than B, and
negative values indicating that A has lesser value than B.

4. EMPIRICAL STUDY
The foregoing model captures a richer set of factors than have

been considered in prior research on regression testing techniques,
and allows us to address various questions about those techniques.
Our study is designed to address three such questions:

RQ1: What effect does the imposition of time constraints have on
the relative cost-benefits of regression testing techniques?

RQ2: What effect does availability of incremental resources have
on the relative cost-benefits of regression testing techniques?

RQ3: What are the relative cost-benefits of regression test selec-
tion and test case prioritization techniques?

None of these research questions have been addressed previously
in empirical studies of regression testing; In fact, no cost-benefit
models previously defined capture the necessary factors. In the
case of RQ1 and RQ2, no prior models consider the relationship
between fault omission or rate of fault detection and technique ex-
ecution costs. In the case of RQ3, no prior models have been ca-
pable of expressing the cost-effectiveness of these two classes of



techniques in comparable units. All three of these questions are
important, however, for practitioners who wish to determine what
technique might be most cost-effective in their organizations.

4.1 Objects of Analysis
We used five Java programs as objects of analysis: ant, xml-

security, jmeter, galileo, and nanoxml. The first three objects have
JUnit test suites, and the last two have TSL (Test Specification
Language) suites [26]. Ant is a Java-based build tool; it is simi-
lar to make, but it is extended using Java classes instead of with
shell-based commands. Jmeter is a Java desktop application used
to load-test functional behavior and measure performance. Xml-
security implements security standards for XML. Galileo is a Java
bytecode analyzer. Nanoxml is a small XML parser for Java. Sev-
eral sequential versions of each of these systems, modified to vary-
ing degrees, were selected for use in this study. These programs,
versions, and test suites are all available as part of an infrastructure
supporting experimentation [8].

Table 1 lists, for each of our objects, its associated “Versions”
(the number of versions of the object program), “Classes” (the
number of class files in the most recent version of that program),
“Size (KLOCs)” (the total lines of code in the most recent version
of that program), and “Test Cases” (the number of test cases avail-
able for the most recent version of that program). The rightmost
column is described in Section 4.3.

4.2 Variables and Measures

4.2.1 Independent Variable
Our study manipulated one independent variable, regression test-

ing technique. We consider the three different regression testing
methodologies described earlier in Section 2: retest-all, regression
test selection, and test case prioritization. For each of these method-
ologies, we consider one or more specific techniques, as follows.

Retest-all (control). The retest-all technique (reusing an entire ex-
isting test suite) together with original test case order serves as our
control technique, representing the typical common practice of run-
ning all non-obsolete test cases on a new version of a system, in
whatever order they are presented in.

Regression test selection. For regression test selection we con-
sider a safe technique, that selects test cases which exercise code
that has been changed to produce a modified program version [30].
The technique relies on control flow graphs and program coverage
information at the basic block level to select all test cases that exe-
cute changed code.

Test case prioritization. For test case prioritization we consider
two coverage-based techniques [11]. These techniques rely on block
coverage information per test case. The first technique, total block
coverage prioritization, simply counts the total number of blocks
each test case covers and sorts test cases in terms of those counts.
This technique has relatively low analysis costs. The second tech-
nique, additional block coverage prioritization, orders test cases in
terms of the numbers of additional blocks they cover by greedily
selecting the test case that covers the most as-yet-uncovered blocks
until all blocks are covered, then repeating this process until all test
cases have been used. This second technique incorporates a notion
of feedback not present in the total block coverage prioritization,
which causes it to have larger analysis costs than that technique.

Techniques facing time constraints. We also consider each of
the techniques just described in a manner that reflects the effects
of time constraints, in which regression testing activities are termi-
nated early. To do this, for each of the foregoing techniques, we

Table 1: Experiment Objects and Associated Data
Objects Versions Classes Size Test Mutants

(KLOCs) Cases
ant 9 627 80.4 877 2907
xml-security 4 143 16.3 83 127
jmeter 6 389 43.4 78 295
galileo 16 87 15.2 1533 1923
nanoxml 6 26 7.6 216 132

shorten the test execution process by 50%, simulating the effects of
having the testing process halted half way through.

Techniques using incremental resources. To investigate the ef-
fects of incremental resource availability, we consider versions of
each of our prioritization techniques and our regression test selec-
tion technique that re-use analysis data pertaining to instrumenta-
tion from previous testing sessions. In contrast to the non-incremental
techniques just discussed, which re-instrument all code and re-execute
all tests under instrumentation, these incremental techniques re-
instrument only classes that have changed, and re-execute only test
cases known to have passed through changed classes previously.

4.2.2 Dependent Variables and Measures
Our dependent variables are the cost and benefit factors pre-

sented in Section 3.3, and calculated by Equations 4 and 5. These
values are measured in dollars, and their calculation depends on
several constituent cost measures, which we collect as follows.

Cost of test setup (CS ). For our objects, the cost of test setup
involves only human resources, not hardware resources. The rel-
evant activities include setting up a working directory for testing,
compiling the program version to be tested, configuring test drivers
and test scripts, and (in some cases) performing minor edits to test
scripts. We measured the costs of these activities directly as an av-
erage of the time taken by two graduate students (Ph.D. students
from our research group) to perform them.

Cost of identifying obsolete test cases (COi ). For our objects,
identification of obsolete test cases as versions were developed would
have required manual inspection of a version and its test cases, and
determination, given modifications made to the system, of the test
cases that need to be modified for the next version (due to changes
in inputs or expected output). Our objects were already provided
with test suites, so to measure this cost we asked a graduate student
to perform these activities, working with the given suites.

Cost of repairing obsolete test cases (COr ). For our objects the
cost of repairing obsolete test cases includes the costs of exam-
ining specifications, existing test cases, and test drivers, as well
as observing the execution of suspect tests and drivers. Although
all of our objects had obsolete test cases, and the cost of identi-
fying them was measured as described above, on only one object,
nanoxml, were repaired tests present. To measure the cost of re-
pairing tests on this object, we asked two graduate students (Ph.D.
students from our research group) to perform these activities. We
averaged the times taken by these students.

Cost of supporting analysis – non-incremental (CA). The anal-
ysis costs for the non-incremental regression testing techniques in-
clude the costs of instrumenting programs (CAin ) and collecting
test execution traces (CAtr ). We calculated these values directly
for each version of each object program, by measuring the time
required to run the Sofya system [20] for instrumentation of Java
bytecode, and the time required to execute the test cases for that
version on that instrumented version.



Cost of supporting analysis – incremental (CA). Incremental
analysis costs consist of the time required to re-instrument only
modified classes for a given version (given a version previously
fully instrumented), and the time required to re-execute, on that ver-
sion, only those test cases known to have reached modified classes
in the prior version. Our code instrumenter does not support incre-
mental instrumentation, so we partially estimated these values by
utilizing the directly measured non-incremental analysis costs col-
lected as just described, and (as shown in Equation 5), multiplying
this number by (in the case of re-instrumentation) the ratio of the
number of classes requiring re-instrumentation to the total number
of classes and (in the case of re-execution) the ratio of the number
of traces requiring recollection to the total number of traces.

Cost of regression testing technique execution (CR). We directly
measured the time required to apply each regression testing tech-
nique studied, by running it against each version of each object
program using appropriate analysis information.

Cost of test execution (CE ). For cases in which all test cases
were executed, we directly measured execution time of test suites
automatically, by running them against each version of each object
program using appropriate analysis information. For cases in which
a subset of a test suite was executed, we estimated execution time
by multiplying the cost of executing the entire test suite by the ratio
of the number of test cases being rerun to the total number of test
cases, as shown in Equation 5.3

Cost of test result validation (automatic via differencing) (CVd ).
For cases in which all test cases were executed, we directly mea-
sured this validation time automatically, by measuring the cost of
running a differencing tool on test outputs as test cases were exe-
cuted, for each version of each object program. For cases in which
a subset of a test suites was executed, for reasons similar to those
discussed immediately above, we estimated this time by multiply-
ing the cost of validating the entire test suite by the ratio of the
number of test cases being rerun to the total number of test cases.

Cost of test result validation (human via inspection) (CVi ). To
measure the cost of validating test results, we averaged the time
taken by two graduate students (Ph.D. students from our research
group) to compare program outputs across versions, for each pair of
versions. For cases in which a subset of a test suites was executed,
we estimated this time (for reasons discussed above) by multiplying
the cost thus measured by the ratio of the number of test cases being
rerun to the total number of test cases.

Cost of missing faults (CF ). For each regression testing technique
that could omit faults, we measured the number of faults omitted
during a testing session on each version of each object program.
Determining the cost of missing faults, however, is much more dif-
ficult. Given the many factors that can contribute to these costs,
and the long-term nature of these costs, we could not obtain this
measure directly. Instead, we rely on data provided in [31] to ob-
tain estimates of the costs of faults. Because fault difficulties range
widely, we decided to analyze results relative to two classes of fault
importance: one corresponding to costs attributed in [31] to “se-
vere” faults, and one corresponding to costs attributed to “ordinary”
faults. These costs, respectively, are 22 and 1.5 hours.

3We used estimation in this case for two reasons: (1) the cost of
executing every test suite subset considered in this study was large;
and (2) because the test cases for each of our particular object ver-
sions are quite similar to one another in terms of execution times,
and test suite execution time ultimately accounts for a small frac-
tion of overall costs, this estimation could not affect overall results.

Cost of delayed fault detection feedback (CD). For each pri-
oritization technique applied to each object version and test suite,
we measured the rate of fault detection using the APFD (Average
Percentage Faults Detected) metric (a metric introduced for this
purpose in [12]) for that version and test suite. Then, following
the approach of [23], we translated APFD scores into the cumula-
tive costs (in time) of waiting for each fault to be exposed while
executing test cases under a particular order, defined as delays.

Revenue (REV ). A second metric that we cannot measure directly
relative to our object programs involves revenue, and to utilize our
cost models we required an estimate of this value. To obtain such
an estimate, we utilized revenue values cited in survey data from
software products [7], ranging from $116,000 to $596,000 per em-
ployee. Because our object programs are relatively small compared
to many commercial software systems, we utilize the smallest rev-
enue and a headcount of ten in this study.

Programmer salary (PS ). A third metric that we cannot mea-
sure directly on our object programs involves the salaries of pro-
grammers. To obtain an estimate, we rely on a figure of $100 per
person-hour, obtained by adjusting an amount cited in [17] by an
appropriate cost of living factor.

Expected time-to-delivery (ED). We do not calculate ED , be-
cause the comparisons we need to perform to address our research
questions do not require its calculation. To explain: we use Equa-
tion 7 to compare techniques, and this equation subtracts the benefit
value for a second technique from the benefit value for the first. In
so doing, because ED is necessarily identical for two techniques
compared on the same version, the value of ED is canceled out.

4.3 Experiment Setup and Analysis Strategy
To perform test case prioritization and regression test selection

we required two types of data: coverage information and fault data.
We obtained coverage information by running test cases on our ob-
ject programs instrumented using Sofya [20]. The resulting infor-
mation lists which test cases exercised which blocks in the pro-
gram; a previous version’s coverage information is then used to
prioritize a current version’s set of test cases, and to support the
selection of a subset of test cases for the current version.

To measure rate of fault detection for test case prioritization tech-
niques, and fault omission for non-safe regression test selection, we
required object programs containing faults. The object programs
we obtained had not been supplied with any such faults or fault
data. Thus we used mutation faults generated using a Java byte-
code mutant generator [9].4 Because our focus is regression testing,
however, we use only generated mutants that fall within modified
areas of code. The number of mutants created for each of our object
programs is shown in column five of Table 1.

In actual testing scenarios, programs do not typically contain as
many faults as the number of mutants we generated. Also, we wish
to investigate the use of regression testing techniques (relative to
the lifetime factor) across the entire sequences of versions of our
object programs. To do this, for each version of each program we
randomly selected several mutant groups from the mutant pool for
that version; each mutant group’s size varied randomly between
one and five.5 Then, for each program, we obtained four sequences

4Although studies involving real faults can be preferable for exter-
nal validity, real faults are seldom available in numbers sufficient to
support controlled experimentation; thus, researchers often rely on
faults created by mutation tools. Recent studies [1, 9] have shown,
moreover, that mutation faults can be representative of real faults.
5These numbers were chosen to maintain consistency with setup
procedures followed in an earlier experiment [9].



of mutant groups by randomly selecting a mutant group for each
version of that program.

Given these materials, to collect the data necessary to investigate
our research questions, we considered each object program in turn,
and for each version of that program, applied each regression test-
ing technique, and collected the appropriate values for necessary
cost variables (as indicated in Section 4.2.2). In this process, all
times were measured on a PC running SuSE Linux 9.1 with 1G
RAM and with a 3 GHZ processor.

Given these cost variables we calculated, for each object pro-
gram and each technique, the benefit and cost of that technique ap-
plied to the sequence of versions (with their associated test suites)
of that program for each of its four sequences of mutant groups.
We then averaged these numbers. These benefit and cost numbers
serve as the data for our subsequent analysis.6

4.4 Threats to Validity
In this section we describe the construct, internal, and external

threats to the validity of our study, and the approaches we used to
limit the effects of these threats.

Construct Validity. The dependent measures that we have consid-
ered for costs and benefits are not the only possible measures re-
lated to regression testing cost-effectiveness. As described in Sec-
tion 3.2, other testing costs might be worth measuring for different
testing situations and organizations.

Internal Validity. The inferences we have made about the cost-
benefits of regression testing techniques could have been affected
by two factors. The first factor involves potential faults in the tools
that we used to collect data. To control for this threat, we vali-
dated our tools on several simple Java programs. The second fac-
tor involves the actual values we used to calculate costs, some of
which involve estimations. For example, we used code change ra-
tios to estimate incremental instrumentation costs, and an average
test case execution time over the instrumented program to estimate
incremental trace collection costs. We also measured the costs of
test setup, finding obsolete tests, repairing obsolete tests, and val-
idating outputs by measuring the time taken by one or two grad-
uate students. The use of such estimates could confound results.
The values we used for revenue and costs of correcting and miss-
ing faults are estimated based on surveys found in the literature,
but such values can be situation-dependent; for example, Perry and
Stieg [27] present a different set of fault costs. However, we did
choose a relatively small revenue figure so as not to inflate results,
given that our object programs are relatively small. In summary,
we exercised care in selecting reasonable estimations relevant to
our object programs, but larger-scale industrial case studies will be
needed to follow up on these results.

External Validity. The Java programs that we study are relatively
small (7K - 80K), and their test suites’ execution times are rela-
tively short. Complex industrial programs with different character-
istics may be subject to different cost-benefit tradeoffs, including
also different amounts of revenue that could yield different cost-
benefit tradeoffs. The testing process we used is not representative
of all processes used in practice, and our results should be inter-
preted in light of this. The tools we use in this study are prototypes,
and thus may not reflect tools used in a typical industrial environ-
ment. Control for these threats can be achieved only through ad-
ditional studies with wider populations of programs, other testing
processes, and enhanced performance-efficient tools.

6Complete data sets can be obtained by contacting the first author.
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Figure 2: Cost factor scenarios.

4.5 Data and Analysis
In our analysis of results, in keeping with our research questions,

we organize the data considering two different context factors: time
constraints (captured in our process model, and through various
factors in our cost-benefit model, through the early termination of
testing activities), and availability of incremental analysis resources
(captured in our cost-benefit model in terms of incorporation of
differing forms of analysis costs in relation to instrumentation and
trace collection). The combinations of these context factors yield
four classes of technique applications, as illustrated in Figure 2.
Each of these classes (each of the four boxes in the figure) denotes
a different scenario that an organization could face in testing, de-
pending on resource availability and time constraints. We describe
each scenario further as follows.

Upper left (Box 1): no time constraints are applied and no incre-
mental analysis resources are available. In this situation, five of the
regression testing techniques we consider apply: three test case pri-
oritization techniques (original test order (“org”), total block cov-
erage (“tot”), and additional block coverage (“add”)), and two re-
gression test selection techniques (retest-all (“rta”) and regression
test selection (“rts”)).

Upper right (Box 2): no time constraints are applied and incre-
mental analysis resources are available. In this situation we con-
sider the same five techniques considered in Box 1, but three of
the heuristics (“tot”, “add”, and “rts”) use incremental analysis re-
sources. To identify techniques succinctly we add the tag “i” to
each technique’s mnemonic: “tot.i”, “add.i”, and “rts.i.”.

Lower left (Box 3): time constraints are applied and no incremen-
tal analysis resources are available. In this situation we also con-
sider five techniques, representing the case in which testing activi-
ties following the application of techniques in Box 1 are terminated
early. We eliminate the second half of the test suites for four of the
techniques (“org.50”, “tot.50”, “add.50”, and “rta.50”).7 For re-
gression test selection, we chose a different approach, randomly
selecting half of the test cases in the test suite, because we wished
all test suites for a given version in Box 3 to have the same size.

Lower right (Box 4): time constraints are applied and incremen-
tal analysis resources are available. In this situation we consider
only three techniques, “org.50”, “tot.50.i”, and “add.50.i”, because
incremental analysis does not apply to a test suite obtained (for re-
gression test selection) by random reduction.

7In principle test suites are sets, but in practice test cases are or-
dered, and thus the notion of using the first half of a suite applies.



To address each of our research questions, we need to compare
pairs of techniques for cost-benefit tradeoffs, and then compare the
relationships that occur between techniques under one set of fac-
tors to the relationships that occur under another set of factors. For
example, we ask whether the relationship between “org” and “rts”
in Box 1 is the same as the relationship between “org” and “rts” in
Box 3, in order to assess whether the effects of early test termina-
tion affect the relative cost-benefits of these two techniques.

We first perform technique comparisons within each box. Ta-
bles 2 and 3 summarize the result of this comparison, reporting
relative cost-benefit relationships measured for each pair of tech-
niques within each box, per program, using Equation 7. Table 2
contains one subtable corresponding to Box 1, one subtable corre-
sponding to Box 2 and two subtables for Box 3 – one for the case
in which non-severe faults are utilized in the cost-benefit equations,
and another for the case in which severe faults are utilized. Table
3 contains data for both types of faults with respect to Box 4. (The
use of pairs of tables for Boxes 3 and 4 corresponds to our wish to
analyze results relative to two classes of faults differing in sever-
ity. Note, however, that differences between fault severities have
effects only for cases in which time constraints limit test execution,
because when constraints are not applied and full test suites are ex-
ecuted, there are no omitted faults and thus no fault costs. Thus
these results are reported only for Boxes 3 and 4.)

All of the data in Tables 2 and 3 is represented in dollar values,
obtained by converting time measurements using the formulas and
values described in Sections 3.3 and 4.2.2, respectively.

Within each subtable in the tables, columns are labeled with pairs
of regression testing techniques compared, and rows are labeled
with object programs considered. If an entry in the table in Col-
umn B(T1 ,T2 ) and row foo contains a positive amount, then T1

yields benefit by that amount, in dollars, over T2 , for program foo.
If an entry in Column B(T1 ,T2 ) and row foo contains a negative
amount, then T2 yields benefit by that amount, in dollars, over T1

for foo. For example, the cell in Column B(tot , org), row ant, in
the topmost subtable in Table 2, lists the result of applying Equa-
tion 7 treating “tot” as technique A and “org” as technique B; the
amount listed, -916, is the dollar-cost advantage (or rather, disad-
vantage) of applying A rather than B to ant.

We now use the data in Tables 2 and 3 to address each of our
research questions, in turn.

4.5.1 RQ1: Effects of time constraints
Our first research question considers whether the imposition of

time constraints affects the relative cost-benefits of regression test-
ing techniques. To answer this question, we compare technique
pairs in Boxes 1 and 2 in Figure 2 to corresponding technique pairs
in Boxes 3 and 4, respectively. We restrict our attention to compar-
isons between heuristics and control techniques, deferring compar-
isons between regression test selection and test case prioritization
techniques to our discussion of RQ3.

Columns 2 through 4 in Table 2, in the subtable for Box 1, in-
dicate that heuristic regression testing techniques are not beneficial
compared to corresponding control techniques for any of the object
programs considered. All comparisons yield negative numbers, in-
dicating that the original and retest-all techniques outperformed the
heuristics in all cases. Data in the same columns in the subtable for
Box 2 also shows similar trends in the cases of columns 2 and 4
(“tot” versus “org” and “rts” versus “rta”), but not in the case of
Column 3 (“add.i” versus “org”).

Comparing this data to that for corresponding technique com-
parisons in Boxes 3 and 4 for non-severe faults reveals different
trends: in all but three cases in Box 3 and one in Box 4, heuristics

Table 2: Relative Benefits Between Technique Pairs (dollars)
No incremental analysis resource & no time constraints (Box 1)

Object B(tot, B(add, B(rts, B(rts, B(rts,
org) org) rta) tot) add)

ant -916 -1083 -1779 -616 -448
jmeter -298 -297 -552 -146 -147
xml -100 -104 -223 -63 -59
nanoxml -70 -41 -188 179 150
galileo -815 -322 -415 2576 2083

Incremental analysis resource & no time constraints (Box 2)
Object B(tot.i, B(add.i, B(rts.i, B(rts.i, B(rts.i,

org) org) rta) tot.i) add.i)
ant -599 148 -1483 -616 -448
jmeter -145 155 -399 -146 -147
xml -25 70 -148 -63 -59
nanoxml -32 66 -150 179 150
galileo -583 729 -182 2576 2079

No incremental analysis resource & time constraints (Box 3: non-severe faults)
Object B(tot.50, B(add.50, B(rts.50, B(rts.50, B(rts.50,

org.50) org.50) rta.50) tot.50) add.50)
ant 160 184 656 527 -1069
jmeter -96 -36 145 258 -158
xml 572 461 437 -132 -184
nanoxml 694 559 947 269 156
galileo -668 889 1822 2731 -1722

No incremental analysis resource & time constraints (Box 3: severe faults)
Object B(tot.50, B(add.50, B(rts.50, B(rts.50, B(rts.50,

org.50) org.50) rta.50) tot.50) add.50)
ant 17800 21455 9994 -7773 -13002
jmeter 3016 4114 2221 -778 -2234
xml 10949 9281 6663 -4282 -2778
nanoxml 14183 11973 14436 269 2231
galileo 9707 42393 27762 18295 -17286

Table 3: Relative Benefits Between Technique Pairs (dollars)
Incremental analysis resource & time constraints (Box 4)

Object B(tot.50.i, B(tot.50.i, B(add.50.i, B(add.50.i,
org.50) org.50) org.50) org.50)

non-severe severe non-severe severe
ant 477 18116 500 21771
jmeter 57 3170 117 4267
xml 647 11023 536 9356
nanoxml 732 14221 597 12011
galileo -436 9931 1122 42626

outperform control techniques. Furthermore, even the few cases
in which heuristics are not beneficial over control techniques are
altered when we consider the case in which faults are severe.

4.5.2 RQ2: Effects of incremental resource use
Our second research question considers whether the availability

of incremental resources affects the relative cost-benefits of regres-
sion testing techniques. To answer this question, we compare tech-
nique pairs in Boxes 1 and 3 in Figure 2 to corresponding technique
pairs in Boxes 2 and 4, respectively. Again, we focus on compar-
isons between heuristics and control techniques.

As already noted in Section 4.5.1, all three comparisons among
heuristics and control techniques in Box 1 show no benefits accru-
ing to heuristics. When we consider the use of incremental analysis
resources (Box 2), however, comparisons do reveal a few differ-
ences. First, in all cases, the use of incremental analysis yields ad-
vantages over the use of non-incremental analysis: all numbers in
the table are higher than their corresponding numbers in Box 1. In
the comparisons of “tot” to “org” and “rts” to “rta”, however, con-
trol techniques continue to outperform heuristics overall. A second
difference, however, is more apparent: in the comparison of “add”
to “orig”, the use of incremental analysis does render the heuristic
beneficial with respect to the control technique.



Comparisons between Box 3 and Box 4 do not reveal many dif-
ferences, but here too, overall the benefits associated with heuristics
increase, and in two cases (“tot.50” versus “orig.50” and “add.50”
versus “orig.50” for jmeter) the use of incremental analysis re-
sources allows heuristics to outperform control techniques.

4.5.3 RQ3: Test selection versus prioritization
Our third research question considers whether the relative ben-

efits of regression test selection and test case prioritization tech-
niques differ. Columns 5 and 6 in the subtables for Boxes 1 and
2 show the comparison results between these techniques when no
time constraints are applied, and when safe regression test selection
is involved. (Note that Columns 5 and 6 in Box 1 contain values
identical to those in Box 2; this is because the techniques used in the
two boxes differ only in terms of their use of incremental analysis
resources, and in the case of these particular techniques, where time
constraints are not applied, the costs of the activities performed do
not differ across the boxes.)

The results show that the regression test selection technique (“rts”)
is more cost-effective than test case prioritization techniques (“tot”
and “add”) for the two object programs (nanoxml and galileo) that
have specification-based test suites. For the other three programs,
which use JUnit test suites, test case prioritization techniques are
more beneficial than regression test selection. This result is impor-
tant because it suggests that in practice, a preferred technique might
vary with test suite type. Further study of this effect is needed,
however, to determine whether test suite type, technique, or their
interaction are responsible for this effect.

Turning to the subtable for Box 3, when we compare results be-
tween test case prioritization and regression test selection in the
case in which time constraints apply, we see different relationships
between techniques. For non-severe faults, the selection technique
is better than the “tot” technique in all but one case, but the “add”
technique is better than selection in all but one case. For severe
faults, the comparison between random and “add” reveals trends
similar to that of the non-severe fault case, but the comparison
between selection and “tot” reveals two cases (ant and jmeter) in
which selection ceases to be better than the “tot” technique.

5. DISCUSSION
To further explore the results of our study we consider two top-

ics: (1) the ramifications for practice of the results we obtained;
and (2) a comparison of our results with those obtained in earlier
work using different cost models.

Where the first topic is concerned, our results support the con-
clusion that accounting for different context factors in assessing
regression testing techniques makes a difference when assessing
the relative benefits of those techniques. In particular, our analysis
shows that the time constraints factor had a large impact on relative
benefits. In practice, cases in which time constraints intervene to
affect product release are frequent in the software industry; Hen-
dricks et al. [16] report that a typical reason for product delays is
the need for additional testing and debugging. At other times, or-
ganizations cut back on testing activities in order to ensure timely
release of their product.

Further study of our data suggests, in fact, that the primary cause
of the impact of time constraints was the tradeoff between the costs
of applying additional tests and not missing faults, and the costs
of reduced (non-safe) testing in which faults are missed. On-time
but incomplete-test delivery can lead to revenue increases, but if
the product contains defects after delivery, the organization can
suffer from post-delivery revenue losses (due to additional defect
removal costs and the loss of customers due to distrust of the prod-

uct). Meanwhile, complete-test but late delivery can lead to smaller
numbers of post-release defects, but if the delivery date is delayed
long, the company can lose opportunities to earn revenue from the
product. These inferences are not unexpected, but what our empir-
ical results suggest is that cost models such as ours can be used to
ascertain the regression testing technique that can best be used in a
particular scenario, based on expected revenues and values of other
factors related to testing costs.

Regarding the use of incremental resources, our results show that
this factor, too, can affect evaluations of regression testing tech-
niques, but such impact was apparent in only some cases. One
cause of this was the relationship observed, for our objects, be-
tween instrumentation and trace collection costs. In general, we
expect that if we reduce the number of class files that need to be
instrumented to collect information for a testing session, we could
also reduce the number of trace files to be collected by a propor-
tional amount, because we need to collect only traces that are af-
fected by instrumentation changes. However, this expectation was
often not met on our objects. For example, in the case of nanoxml,
incremental instrumentation required only 30% of total instrumen-
tation time, but incremental trace collection required 98% of to-
tal trace collection cost. This result occurred because some of the
newly instrumented files are accessed by most test cases. The les-
son learned from this example, where our study and the use of cost
models are concerned, is that it can be important to decouple factors
in those models, to avoid conflating different effects.

Where our second topic of discussion is concerned, in this work
we evaluated regression testing techniques using a cost model that
(1) allows comparisons of previously incomparable classes of tech-
niques (prioritization and selection) and (2) includes a richer set of
factors than has been employed in prior evaluations. Our compar-
ison of prioritization and selection (RQ3) illustrates the effects of
considering such factors on the relative cost-effectiveness of these
classes of techniques: not only time constraints, but also fault sever-
ity and test suite type potentially affect tradeoffs between them.

To gain further insights into how evaluations of regression test-
ing techniques differ as cost models vary, we compared our results
with those from a previous empirical study of prioritization tech-
niques in which three of the same JUnit object programs were used
(ant, jmeter, and xml-security) [10]. The previous study evaluated
a prioritization technique (additional block coverage) using a cost
model that considered only two cost components (test case execu-
tion time and prioritization technique cost) and one benefit (fault
detection rate). The study showed that the additional block cover-
age technique was beneficial compared to original test case order-
ings for two of the three programs (jmeter, and xml-security). This
result is quite different from our results in this study, which do not
show benefits for any heuristics over control techniques in the case
in which time constraints do not apply. One lesson suggested by
this observation is that evaluations of techniques based on different
models can result in quite different evaluations of the cost-benefits
of techniques, and so, efforts to capture richer sets of factors in
models, as we have done in this work, are worthwhile.

6. CONCLUSIONS
Empirical assessments of regression testing techniques depend

on cost-benefit models. In this paper we have presented such a
model, that captures a richer set of the factors (including context
and lifetime factors) that affect technique cost-effectiveness than
prior models. Our model facilitates the investigation and compari-
son of techniques along dimensions that have not previously been
possible, and our empirical results indicate that this expanded view
has practical implications for users and researchers of techniques.



Although the cost-benefit model that we present captures spe-
cific testing-related factors relative to just one (common) regression
testing process, it can be adapted to include other factors and apply
to other processes, and our future work will consider such adapta-
tions. Further, our study results are somewhat explorative, in the
sense that they do not provide data sufficient to support statistical
analysis. Such results are important in the early stages of research
to show whether value potentially exists in models; however, hav-
ing shown this, this work motivates future studies employing larger
data sets and statistical analysis.

In the study reported in this paper, we evaluated regression test-
ing techniques using systems of size (7K - 80K) and relatively small
revenue estimates. Program size, however, does not appear to be a
factor in our results, for the programs that we consider; thus, we
conjecture that similar trends could be expected for larger, indus-
trial systems. Such larger systems, however, will also be associated
with higher revenues than those considered here, and we expect that
in such cases, the context factors we have considered will have an
even greater impact on the relative cost-benefits of regression test-
ing techniques. We hope that through continuing research in this
area, we can bring the benefits of better cost models and expanded
empirical understanding to organizations that create such systems.
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