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Abstract

Cluster Computing has emerged as a new paradigm for
solving large-scale problems. To enhance QoS and
provide performance guarantees in cluster computing
environments, various workload models and real-time
scheduling algorithms have been investigated. Thedi-
visible load model, propagated by divisible load theory,
models computations that can be arbitrarily divided into
independent pieces and provides a good approximation
of many real-world applications. However, researchers
have not yet investigated the problem of providing per-
formance guarantees to divisible load applications. Two
contributions are made in this paper: (1) divisible load
theory is extended to compute the minimum number of
processors required to meet an application’s deadline;
and (2) the first cluster-based, real-time scheduling algo-
rithm designed specifically for arbitrarily divisible loads
is presented and evaluated.

1 Introduction

The dawn of the information age has changed how
we solve important problems. Emerging computation
and data intensive applications cannot be solved by a
single stand-alone machine. This has led to the emer-
gence ofcluster computing as a new paradigm for com-
puting. Cluster computing harnesses the power of hun-
dreds and thousands of machines to facilitate the compu-
tation of large and complex problems in many application
domains. However, as the size of a cluster increases, so
does the complexity of resource management and mainte-
nance. Thus, innovations in automated performance con-
trol and resource management are crucial for continued
evolution of cluster computing. On one hand, system ad-
ministrators prefer a system that is easy to manage. On
the other hand, end-users expect high performance from
the cluster, such as receiving computational results before
specified deadlines.

The challenge, however, in applying real-time schedul-

ing theory to cluster computing is that computational
loads submitted to clusters are structured in various ways.
Some, called sequential jobs, are difficult to compute
concurrently whereas others are comprised of tasks that
can be executed in parallel. Parallel jobs can be fur-
ther categorized based on the divisibility property of their
computational loads. Modularly divisible loads can be
subdivided a priori into a certain number of subtasks;
these loads are often described with a task (or process-
ing) graph. Arbitrarily divisible loads can be partitioned
into any number of load fractions, and are quite com-
mon in high energy and particle physics. For exam-
ple, the the CMS (Compact Muon Solenoid) [9] and
ATLAS (AToroidal LHC Apparatus) [5] projects, which
are associated with the Large Hadron Collider (LHC) at
CERN (European Laboratory for Particle Physics), exe-
cute cluster-based applications with arbitrarily divisible
loads.

The cluster and real-time computing research commu-
nities have thoroughly explored the problem of provid-
ing QoS or real-time guarantees for sequential jobs and
modularly divisible jobs in distributed systems. Simi-
larly, significant progress has been made indivisible load
theory [26]. However, despite the increasing importance
of arbitrarily divisible applications [21], to the best of our
knowledge, the real-time scheduling of arbitrarily divisi-
ble loads has not been addressed before.

This creates a problem for cluster-based research com-
puting facilities such as the U.S. CMS Tier-2 sites that
are building high-end clusters for CMS applications [23],
which may execute for days or even weeks. (The CMS
project will not be fully operational until 2007. Thus,
the actual work load generated by this world-wide ex-
periment can only be simulated at this time.) One of
the management goals of the University of Nebraska-
Lincoln (UNL) Research Computing Facility (RCF) is
to provide a multi-tiered QoS scheduling framework in
which applications “pay” according to the response time
requested for each job [23]. Existing real-time cluster-
based scheduling algorithms assume the existence of a
task graph for all applications, while divisible load the-



ory attempts to minimize schedule length with no regard
for the actual deadline.

Two contributions are made in this paper: (1) divisible
load theory is extended to compute the minimum number
of processors required to meet an application deadline;
and (2) the first cluster-based, real-time scheduling algo-
rithm designed specifically for arbitrarily divisible loads
is presented and evaluated. Henceforth, the term “divisi-
ble” means “arbitrarily divisible” unless specified other-
wise.

The remainder of this paper is organized as follows.
Section 2 presents related work, and Section 3 describes
the task and system models assumed. Extensions to divis-
ible load theory to support real-time scheduling are pre-
sented in Section 4, while Section 5 presents the schedul-
ing algorithm. Section 6 evaluates the performance of the
algorithm. Section 7 presents our conclusions.

2 Related Work

Development of commodity-based clusters and Grid
computing have recently gained considerable momen-
tum. By linking a large number of computers together,
a cluster provides cost-effective power for solving com-
plex problems. In a large-scale Grid, the resource man-
agement system (RMS) is central to its operation. In or-
der to serve end-users in a timely fashion, it is essential
for the underlying cluster RMS to provide performance
guarantees or QoS.

Research has been carried out in utility-driven cluster
computing [27, 22] to improve the value of utility de-
livered to the users. Proposed cluster RMSs [7, 3] have
addressed the scheduling of both sequential and parallel
programs. The goal of those schemes is similar to ours—
to harness the power of resources based on user objec-
tives.

The real-time computing community, has made sig-
nificant progress in scheduling of periodic and/or aperi-
odic tasks with deadlines in distributed or multiproces-
sor systems. The models investigated most often, e.g., in
[20, 19, 13, 1, 17, 12], assume periodic or aperiodic se-
quential jobs that must be allocated to a single resource
and executed by its deadline. With the evolution of clus-
ter computing, researchers have begun to investigate real-
time scheduling of parallel applications on a cluster, e.g.,
[29, 18, 11, 2, 4]. However, [29, 18, 11, 2, 4] all assume
the existence of some form of task graph to describe com-
munication and precedence relations between computa-
tional units called subtasks (i.e., nodes in the task graph).

The most closely related work is [15], wherein the au-
thors propose scheduling algorithms for “scalable real-
time tasks” on multiprocessor systems. It is assumed
in their model that tasks can be executed on more than

one processors and that task computation times decrease
monotonically as more processors are allocated. We
show that this assumption is not true when communica-
tion costs are considered. Moreover, unlike their work,
which assumes the task execution time function is known
a priori, this paper applies divisible load theory to dynam-
ically compute the task execution time functions.

Our work differs significantly from other work in real-
time as well as cluster computing in both the task model
assumed and in the computational resources available.
As described in Section 3, we assume a workload in
which each aperiodic task is arbitrarily divisible into in-
dependent subtasks (i.e., no precedence relations or inter-
subtask communication) that can be executed in parallel
on a cluster of computers scheduled by a head node.

Divisible load theory [6, 21, 26] provides an in-depth
study of distribution strategies for arbitrarily divisible
loads in multiprocessor/multicomputersystems subject to
system constraints like link speed, processor speed and
interconnection topology. The goal of divisible load the-
ory is to exploit parallelism in computational data so that
the workload can be partitioned and assigned to several
processors such that execution completes in the shortest
possible time [6]. The application of divisible load the-
ory is widespread [21]. An example related to our work
is its application to [28, 14] and implementation in [25]
Grid computing. Complimentary to other work, our paper
applies divisible load theory to the design of a real-time
scheduling algorithm for cluster computing; specifically,
divisible load theory is applied to the scheduling of ap-
plications, such as CMS [9] and ATLAS [5], that execute
on a large cluster.

3 Task and System Models

Task Model. We investigate real-time scheduling of ar-
bitrarily divisible tasks that arrive aperiodically and ex-
ecute non-preemptively (once subtasks are allocated to
processors). In the real-time aperiodic task model each
aperiodic taskTi typically consists of a single invoca-
tion specified by the tuple(Ai, Ci, Di), whereAi ≥ 0
is the arrival time of the task,Ci > 0 is its computational
requirement, andDi > 0 is the relative deadline. The
absolute deadline of the task is given byAi + Di. The
computational requirementCi is usually considered to be
the worst case execution time of the task. The aperiodic
task model adopted here, however, uses the data sizeσi to
represent the computational requirement. That is, a divis-
ible taskTi = (Ai, σi, Di) is a single invocation, where
Ai is the arrival time of the task,σi is the total data size of
the task, andDi is the relative deadline. Task execution
time is dynamically determined usingσi and allocated
resources—processing nodes and bandwidth—by lever-
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Figure 1: System Topology.

aging the modelling power of divisible load theory [26],
as explained in Section 4.

System Model. A cluster consists of head node,
denotedP0, and N processing nodes, denoted byP1,
. . . ,PN . The system model assumes a typical cluster en-
vironment in which the head node does not participate
in computation. The role of the head node is to accept
or reject incoming tasks, execute the scheduling algo-
rithm, and divide and distribute the workload to process-
ing nodes. A star network topology (see Figure 1) is used
to represent the communication requirements of the clus-
ter. Since tasks and subtasks are independent, there is
no need for processing nodes to communicate with each
other.

In this work, a homogenous cluster and sequential
transmission of the workload is assumed. That is, (1) all
processing nodes have the same computational power; (2)
all links from the head node to the processing nodes have
the same bandwidth; and (3) the head node does not begin
to distribute the workload to nodePi+1 until it has com-
pleted its workload transmission to nodePi. According
to divisible load theory, linear models are used to repre-
sent processing speeds and transmission times [26]. In
the simplest scenario, the computation time of a loadσ is
calculated by a cost functionCp(σ) = σCps, whereCps

represents the time to compute a unit of workload on a
single processing node. The transmission time of a loadσ

is calculated by a cost functionCm(σ) = σCms, where
Cms is the time for a link to transmit a unit workload.
Divisible load theory also provides models for heteroge-
nous networks [26], which will be used in the future to
extend this work to heterogenous clusters.

4 Task Partition and Execution
Time Analysis

Executing a divisible load in a cluster entails two
decisions—allocating processing nodes to the task and
partitioning the task load among the allocated processing
nodes. Divisible load theory states that optimal execu-
tion time is obtained for a divisible load if all processing

nodes allocated to the task complete their computation at
the same time instant [26]. This is called theOptimal
Partitioning Rule (or simply, OPR). Development of our
cluster scheduling algorithm is guided by the OPR.

In divisible load theory, normally alln nodes of a clus-
ter are allocated to a task. Then, following the OPR, the
task load is partitioned such that all nodes finish process-
ing at the same time. In contrast to this approach, we
first compute the minimum number of processing nodes
needed to meet the task’s deadline, and then partition the
task following the OPR (using at least the minimum num-
ber of nodes required to meet the deadline). The execu-
tion time of a task is then trivially computed as the differ-
ence between its completion and start times. The follow-
ing notations, partially adopted from [26], will be used in
these computations.

• T = (A, σ, D): A divisible task, whereA = arrival
time,σ = data size, andD = relative deadline

• α = (α1, α2, ..., αn): Data distribution vector,
where0 < αj < 1 andΣn

j=1αj = 1

• αj : Data fraction allocated to thejth processing
node

• Cps: Processing time for a unit workload

• Cms: Time for transporting a unit workload

• ST : The setup time (cost) for the head node to ini-
tialize communication on a link

• SC: The setup time (cost) for a processing node to
initialize a computation

We analyze the task execution time under two different
models [26]. In the first model (Section 4.1), we assume
there are no setup costs for initializing data communica-
tion and computation. In the second model (Section 4.2),
we consider the communication and computation setup
costs.

4.1 Analysis without Setup Cost

Assuming no set up cost, we now compute a task’s ex-
ecution time and the minimum number of nodes needed
to meet its deadline on a homogeneous system. Based on
our system model (Section 3) we have the following cost
functions.

Processing time onjth node:Cp(αjσ) = αjσCps;
Transport time onjth link: Cm(αjσ) = αjσCms.

The OPR leads to the timing diagram in Figure 2 when
n nodes are allocated to a task load. LetE denoteTask
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Figure 2: Timing diagram of system without setup cost.

Execution Time andC denoteTask Completion Time. By
analyzing the diagram, we have

E = α1σCms + α1σCps (4.1)

= (α1 + α2)σCms + α2σCps (4.2)

= (α1 + α2 + α3)σCms + α3σCps (4.3)

. . .

= (α1 + α2 + α3 + ... + αn)σCms +

αnσCps (4.4)

From (4.1) and (4.2), we have

α1 = α2
σCms + σCps

σCps

=
α2

β
, where

β =
σCps

σCms + σCps

=
Cps

Cms + Cps

. (4.5)

It follows thatα2 = βα1. Similarly, from (4.2) and (4.3),
we haveα3 = βα2, and therefore,α3 = β2α1. This
leads to a general formula:αj = βj−1α1. Sinceαj is the
data fraction distributed tojth processing node, we have∑n

j=1 αj = 1, and substitutingαj with βj−1α1 in this
equation, we obtain

α1 + βα1 + β2α1 + ... + βn−1α1 = 1.

Solving this equation, we getα1 = 1−β
1−βn . Thus, the

execution time,E , for the task is

E = α1σ(Cms + Cps)

=
1− β

1− βn
σ(Cms + Cps).

Assuming that taskT = (A, σ, D) has start times,
thenC = s + E ≤ A + D, because the task must satisfy
its deadline. It follows that,

s +
1− β

1− βn
σ(Cms + Cps) ≤ A + D. Thus

1− β

1− βn
σ(Cms + Cps) ≤ A + D − s. (4.6)
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Figure 3: Timing diagram of system with setup cost.

Sinceβ =
Cps

Cms+Cps
< 1, 1− βn > 0. Multiplying both

sides of Eq. (4.6) by(1− βn), we get

(1− β)σ(Cms + Cps) ≤ (1− βn)(A + D − s).

If (A + D − s) ≤ 0, the task will miss its deadline no
matter how we schedule it at times. Therefore, assuming
(A + D − s) > 0 and dividing both sides byA + D − s,
we have

(1− βn) ≥
(1− β)σ(Cms + Cps)

A + D − s
. Thus,

βn ≤ 1−
(1− β)σ(Cms + Cps)

A + D − s

= 1−
(1−

Cps

Cms+Cps
)σ(Cms + Cps)

A + D − s

= 1−
( Cms

Cms+Cps
)σ(Cms + Cps)

A + D − s

= 1−
σCms

A + D − s
= γ

whereγ = 1 − σCms

A+D−s
, and it follows thatn ≥ ln γ

ln β
.

Sincen is be an integer,n ≥ ⌈ ln γ
ln β
⌉. Therefore, the min-

imum number of processing nodes that the task needs to
complete before its deadline at times is nmin = ⌈ ln γ

ln β
⌉

whereγ is defined above andβ in (4.5).

4.2 Analysis with Setup Cost

The setup cost of communication and computation can-
not be ignored in practice. The setup cost of communica-
tion comes from physical network latencies, network pro-
tocol overhead, or middleware overhead. In the TeraGrid
project [24], the network speed can be up to 40GBit/Sec
with latency around 100ms, which means around 1/3 of
the time required to send 1GB of data is due to latency.
[8] shows that the setup cost for computation can be up to
25 seconds in practice, which is also not neglectable for
some small tasks.
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We now consider the communication and computation
setup cost to derive the task execution time and the min-
imum number of processing nodes needed for the task to
meet its deadline. The processing time on thejth node is
Cp(αjσ) = SC + αjσCps, and the transmission time on
thejth link is Cm(αjσ) = ST + αjσCms. The timing
diagram with setup cost (SC) is shown in Figure 3. As
before, based an analysis of the timing diagram, we have

E = (ST + α1σCms) + (SC + α1σCps) (4.7)

= 2ST + (α1 + α2)σCms +

(SC + α2σCps) (4.8)

= 3ST + (α1 + α2 + α3)σCms +

(SC + α3σCps) (4.9)

. . .

= (n− 1)ST + (4.10)

(α1 + α2 + α3 + ... + αn)σCms +

(SC + αnσCps)

From (4.7) and (4.8), we haveα2 = α1β − φ, whereβ

is defined in (4.5) andφ = ST
σ(Cms+Cps) . Similarly, from

(4.8) and (4.9), we getα3 = α2β − φ, and therefore
α3 = α1β

2 − βφ− φ, leading to the general formula

αj = α1β
j−1 − Σj−2

k=0β
kφ. Thus,

αj = α1β
j−1 −

1− βj−1

1− β
φ.

Now, substitutingαj with (α1β
j−1 − 1−βj−1

1−β
φ) in the

equation
∑n

j=1 αj = 1, we get

Σn
j=1(α1β

j−1 −
1− βj−1

1− β
φ) = 1

=⇒ Σn−1
j=0 (α1β

j −
1− βj

1− β
φ) = 1.

A solution to the above equation leads to

α1 =
1− β

1− βn
+

nφ

1− βn
−

φ

1− β
.

AssumingB = 1−β
1−βn + nφ

1−βn −
φ

1−β
, it follows thatE =

ST + SC + σ(Cms + Cps)B and as before if taskT =
(A, σ, D) has start times, then,E ≤ A+D−s. It follows
that,

ST + SC + σ(Cms + Cps)B ≤ A + D − s. (4.11)

Thus, the smallest integer greater than or equal ton that
satisfies the above constraint is the minimum number of
processing nodes that need to be assigned to taskT at
time s to satisfy its deadline. This constraint can be
solved numerically.

Note that the model without setup cost (Section 4.1)
is a special case of this model, whereST = SC = 0
and accordingly,φ = ST

σ(Cms+Cps) = 0. Therefore, we
can reduce constraint (4.11) to constraint (4.6),σ(Cms +
Cps)

1−β
1−βn ≤ A+D−s, which was derived for the model

without setup cost.

5 Dynamic Scheduling of Divisible
Loads

In this section, we present an algorithm for scheduling
real-time arbitrarily divisible loads, consisting of aperi-
odic tasks dispatched dynamically. The problem of dy-
namic scheduling on multiprocessor systems, without a
priori knowledge of task arrival times is NP-complete
[?, 10]. This motivates our heuristic approach to solve
the problem ofdynamic scheduling of divisible loads.

Like typical dynamic scheduling [10, 19, 16], when
new tasks arrive, our scheduler dynamically determines
the feasibility of scheduling the new tasks without com-
promising the guarantees for the previously admitted
tasks. This feasibility analysis is done before a task is
admitted to the cluster. A feasible schedule is generated
if the deadlines of all tasks in the cluster can be satisfied.
Tasks will be dispatched according to the feasible sched-
ule developed. If no feasible schedule is found, the task
will be rejected, meaning in the cluster environment that
the system administrator will negotiate with the client
about the feasible deadline for the task.

Before describing the details of our algorithm, we
introduce the following notations (some of them are
adopted from [15]).

nmin
i (t): the minimum number of processing nodes

needed to finish computation of taskTi, dispatched
at timet, before its deadline.

Wi(n) = n∗E : cost of taskTi whenn processing nodes
are assigned to it. (see Figure 2).

DCi = Wi(nmin
i + 1) − Wi(nmin

i ): the derivative
of Wi(n) with respect ton evaluated at its current
nmin

i .

The proposed scheduling algorithm, calledMaximum
Cost Derivative First (MCDF), allocates the minimum
number of processing nodes to a task that satisfies its
deadline; and a task with high cost derivative is favored
to start earlier, just as [15] does.

The motivation for the heuristic is to minimize the total
cost of all scheduled tasks. It is assumed that the smaller
the total cost of the current tasks, the more likely that the
newly arrived tasks will meet their deadlines [15]. Next,
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we prove why following these rules minimizes the total
cost of the divisible tasks in the cluster environment.

Contrary to the scalable task model assumed in [15],
we prove that for divisible load model with setup cost
(Section 4.2), as the number of processing nodes allo-
cated to a task increases, its computation timedoes not
decrease monotonically. However, for the divisible load
model without setup cost (Section 4.1) the assertion does
hold.

Theorem 5.1 For a divisible load model without setup
cost, when the number of processing nodes assigned to
a task increases, its execution time decreases monotoni-
cally.

Proof: See [?].

Theorem 5.2 For a divisible load model with setup cost,
when the number of processing nodes assigned to a task
increases, its execution time does not decrease monoton-
ically.

Proof: See [?].
We believe these theorems have important implications

for the design of scheduling algorithms for divisible loads
in a cluster computing environment. We design our algo-
rithm accordingly.

Next, we prove that the costWi(n) of computation in-
creases monotonically as the number of nodes allocated
to a divisible taskTi increases.

Theorem 5.3 When the number of processing nodes as-
signed to a task increases, the total cost Wi(n) increases
monotonically.

Proof: See [?].
To summarize the discussion and theorems above, we

have several rules to follow for development of the pro-
posed heuristic: 1) to minimize the total cost, the number
of processing nodes assigned to each task is set at its cur-
rent minimum, i.e.,nmin

i (t); 2) schedule tasks in order of
decreasing cost derivative, i.e., always schedule the task
Ti with the highest cost derivativeDCi first.

Data Structures and Algorithm. We now present the
data structures used in the algorithm, followed by the al-
gorithm.

• NIList <j, tj>: Node-Information-List. The list
stores the information about computation nodes,
wherej denotes the index of the computation node
andtj denotes the time when the node becomes idle.
• AdmittedTasksList

<i, t arrivali, Di, σi, si, ei, n
min
i >. The list

stores the tasks that have been admitted but not been
dispatched, wherei denotes the index of the task,
t arrivali is the arrival time of the task,Di is the

relative deadline of the task,σi is the workload of
the task,si will be the starting time of the task,ei

will be the completion time of the task, andnmin
i

will be the minimum number of computation nodes
the task needs at timesi to complete before its
deadline.
• NewTasksList <i, t arrivali, Di, σi>. The list

stores the tasks which just arrive at the system,
wherei denotes the index of the task,t arrivali is
the arrival time of the task,Di is the relative dead-
line of the task,σi is the workload of the task.
• AvailableNodesList <tk, ANk>. The list is a list

of number of available nodes along with the time,
wheretk is the time andANk is the number of avail-
able nodes at timetk. This list can be generated
based on the information ofNIList.
• UnScheduledTasksList

<i, t arrivali, Di, σi, si, ei, n
min
i , DCi>. This list

stores the tasks that have not been scheduled, where
there is an additional termDCi representing the
derivative cost ofTi at nmin

i . The structure of this
list is the same asAdmittedTasksList.
• TempSTList: Temporarily-Scheduled-Tasks-List.

The data structure of this list is the same as
AdmittedTasksList. It stores the tasks that have
been temporarily scheduled at the Schedulability-
Test stage. If the Schedulability-Test is passed,
meaning that the admitted tasks and the new task
are all schedulable before their deadlines, the new
task will be admitted and the temporary sched-
ule will be accepted, that is, we will overwrite
the AdmittedTasksList with the TempSTList,
which includes the new scheduling information.

The pseudo code of our algorithm, called Maximum Cost
Derivative First (MCDF) is as follows.

1. voidMCDF()
2. while true
3. if AdmittedTasksList !=∅
4. for eachTi in AdmittedTasksList
5. if starting timesi == currenttime
6. dispatch TaskTi to nmin

i nodes
7. remove Ti from AdmittedTasksList
8. update NIList
9. end for

10. if NewTasksList !=∅
11. for eachTi in NewTasksList
12. if SchedulabilityTest(Ti) == true
13. accept Ti

/* accept the new schedule */
14. AdmittedTasksList← TempSTList
15. else
16. reject Ti.
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17. end for

18. end while

19. end MCDF()

1. booleanSchedulability Test(Ti)

2. UnScheduledTasksList← AdmittedTasksList +Ti

3. generate AvailableNodesList /* from NIList */

4. TempSTList← ∅

/* index for AvailableNodesList< tk, ANk >*/

5. k ← 1

6. while UnScheduledTasksList !=∅

7. for eachTi in UnScheduledTasksList

8. calculate nmin
i (tk) and DCi

/* N : total processing node number */

9. if nmin
i (tk) > N

10. return false /*not schedulabe*/

11. end for

/* by nonincreasing order ofDCi */

12. order UnScheduledTasksList

/* from the head to the tail of the list */

13. for eachTi in UnScheduledTasksList

14. if nmin
i (tk) ≤ ANk

/* set scheduled starting time */

15. si ← tk

/* set expected completion time */

16. ei ← E(σi, n
min
i (tk)) + tk

17. if ei > t arrivali + Di

18. return false /* deadline misses */

19. remove Ti from UnScheduledTasksList

20. insert Ti into TempSTList

21. update AvailableNodesList

/* if no more idle nodes at timetk */

22. if ANk == 0

23. break

24. end for

25. k++;

26. end while

/* all tasks in the cluster are schedulable */

27. return true

28. end Schedulability Test()

Note that this scheduling algorithm may cause a frag-
mentation where processing nodes are idle. In our future
work, we plan to reduce processing idle times by leverage
multi-round divisible load scheduling [6].

6 Performance Evaluation

We use a discrete simulator to model the system and eval-
uate the proposed scheduling algorithm with respect to
the metricTask Miss/Rejected Ratio (or simplyTask Miss
Ratio). The Task Miss/Rejected Ratio is of the number
of tasks that miss their deadline to the total number of
tasks that arrived at the system for algorithms without
admission control and for the algorithms with admission
control, this is the ratio of the number of tasks that are
rejected by the scheduler to the total number of task that
arrived at the system. Thus, our algorithm focuses on
minimizizing the task miss ratio.

6.1 Simulation Setup

The system load,L, is defined as the sum of minimum
execution time (using all nodes) of all tasks divided by the
total simulation time. The data sizes of tasks are assumed
to be normally distributed with a mean 100 and a standard
deviation equal to the mean.The deadlines of tasks are
chosen to be larger than the minimum computation time
and are assumed to be uniformly distributed between the
minimum and maximum computation time. The number
of computational nodes in the system is assumed to be
ten.

We assume a Poisson task arrival process, with aver-
age interval time of Poisson Distribution is defined as the
average minimum execution time of tasks divided by sys-
tem load. At each arrival point, the number of tasks ar-
riving is randomly chosen number between one and ten,
both inclusive. The simulation time is set as 1,000,000
time units which is considered to be sufficiently long.
The simulation is run ten times and the mean value is
computed.

6.2 Comparative Evaluation without Set-
up Cost

We compare our algorithm with six popular algorithms.
The six algorithms belong to two group. First group is
the FIFO (First In First Out). The survey [?] shows that
although the current prominent commercial cluster man-
agement software suites like Moab/Maui, LoadLeveler,
LSF, PBS, SGE, OSCAR, are packaged with a several
schedulers, but the default setting is FIFO. The second
group is EDF (Early Deadline First), which is known
to be the optimal algorithm on single processor sys-
tems when tasks are not preemptive. Algorithms in both
group are further divided in to three types:without ad-
mission control, using all nodes for every task, andus-
ing minimum nodes for every task. Thus, these algo-
rithms are FIFOANNA (FIFO using All Nodes and No
Admission control), FIFOAN (FIFO using All Nodes),
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Figure 4: Performance Evaluation–1 (without startup
cost)
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Figure 5: Performance Evaluation–2 (without startup
cost)

FIFOMN (FIFO using Minimum number of Nodes), ED-
FANNA (EDF using All Nodes and No Admission con-
trol),EDFAN (EDF using All Nodes) and EDFMN (EDF
using Minimum number of Nodes).

Figures 6.2 and 6.2 compare the performance of the
proposed algorithm MCDF to the six algorithms de-
scribed above. The algorithm MCDF, performs much
better as compared to all six algorithms. We observe that
algorithms without admission control miss the deadlines
for more that 99% of tasks. This is because the delays do
propagate. Among the six algotithms the performance of
FIFOAN and EDFAN is close to MCDF, but MCDF still
exhibit betetr performance than either with a margin of
about 10% decrement of Task Reject Ratio.

6.3 Comparative Evaluation with Set-up
Cost

Figures Figures 6.3, 6.3, 6.3 and 6.3 show the compar-
ative performance of our algorithm with respect to the
six algorithms when setup cost is considered. Since the
algorithms without admission control do not really per-
form well, we do not consider them here. The simula-

Performance Evaluation (ST=5, SC=5)
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Figure 6:

Performance Evaluation (ST=10, SC=10)
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Figure 7:

tion setups are the same as we described in section 6.1
except that the values ofST andSC are set from 5 to
20. From these graph, we can see that MDCF, our al-
gorithm, still has the best performance. Furthermore, it
can be observed that as setup cost increases, the gain in
performance of MDCF over other algorithms increses.
Under our simulation setup, MDCF exhibits much more
stability than the four algorithms (FIFOAN, FIFOMN,
EDFAN, EDFMN). Moreover, as the of setup cost in-
creases, the Task Miss Ratio increses for the four algo-
rithms, while the Task Miss Ratio of MDCF remains rel-
atively unchanged.

6.4 Impact of Cms and Cps

In this section we study the impact of changing the ratio
of Cms to Cps, that is, the ratio of communication cost to
the computation cost. These two parameters are most sig-
nificant parameters and thus sensitivity of our algorithm
to change in their ratio is of significance.

We first study the impact of the ratio on the task com-
pletion time. We fix the data size of the task to be 100,
the number of computational nodes to 10, andCps to 10.
We simulate the effect of changing the ratio ofCms to
Cps from 0.1 to 10.
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Performance Evaluation (ST=15, SC=15)
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Figure 8:

Performance Evaluation (ST=20, SC=20)
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Figure 9:

Impact of Cms and Cps 
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Figure 10:
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Figure 11:
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Figure 12:

Let C(1) denote the completion time of a task when
only one node is assigned to it, andC(N) the completion
time of the task when all nodes in the cluster are assigned.
Again, letTD = C(1) − C(N) denote the difference in
the two completion times.

From Figure 6.4, we observe that when the ratio of
Cms to Cps increases, as expected the completion time
of the task also increases. Analysis of Figures 6.4, 6.4
and 6.4 lead to several interesting observations. From all
three figures, we conclude that althoughTD increases as
the the ratio ofCms to Cps increases but the the incre-
ment levels off before the ratio reaches 2.0. An analysis
of Figure 6.4, depicts the gain that can be obtained in
completion time of a task by load distrbution among the
nodes of the cluster. However, the gain levels off as ratio
of Cms to Cps approaches 0.9. Figure 6.4, again shows
the gain we can obtain from load distribution. The figure
shows the ratio ofTD to C(1), which indicates the ex-
tent of benefit from parallelization of the task, decreases
sharply as the ratio ofCms to Cps increase.

We can infer from above discussion that as the trans-
port cost increases with respect to computation cost the
completion time is adversary affected.
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Figure 13:

Finally, we study the impact of the ratio ofCms to Cps

on the performance of our algorithm. From Figure 6.4,
we can observe that when the ratio of ofCms to Cps

small, the Task Reject Ration of our algorithm is very
sensitive to the system load. However, the sensitivity of
our algorithm system load decreases as the ratio ofCms

to Cps increase. Moreover, the algorithm looses all sen-
stivity to system load as the the ratio ofCms to Cps in-
creases beyond 3.0.

References

[1] T. F. Abdelzaher and V. Sharma. A synthetic utilization
bound for aperiodic tasks with resource requirements. In
Proceedings of the 15th Euromicro Conference on Real-
Time Systems (ECRTS 2003), pages 141–150, Porto, Por-
tugal, July 2003.

[2] A. Amin, R. Ammar, and A. E. Dessouly. Scheduling real
time parallel structure on cluster computing with possible
processor failures. InProceedings of the Ninth IEEE In-
ternational Symposium on Computers and Communica-
tions (ISCC 2004), pages 62–67, July 2004.

[3] Y. Amir, B. Awerbuch, A. Barak, R. S. Borgstrom, and
A. Keren. An opportunity cost approach for job assign-
ment in a scalable computing cluster.IEEE Transactions
on Parallel and Distributed Systems, 11(7):760+, 2000.

[4] R. A. Ammar and A. Alhamdan. Scheduling real time
parallel structure on cluster computing. InProceedings
of the Seventh IEEE International Symposium on Com-
puters and Communications (ISCC 2002), pages 69–74,
Taormina, Italy, July 2002.

[5] ATLAS (AToroidal LHC Apparatus) Experiment, CERN
(European Laboratory for Particle Physics). Atlas web
page. http://atlas.ch/.

[6] V. Bharadwaj, T. G. Robertazzi, and D. Ghose.Schedul-
ing Divisible Loads in Parallel and Distributed Systems.
IEEE Computer Society Press, Los Alamitos, CA, USA,
1996.

[7] B. N. Chun and D. E. Culler. Market-based propor-
tional resource sharing for clusters. Technical Report
UCB/CSD-00-1092, EECS Department, University of
California, Berkeley, 2000.

[8] G. Chun, H. Dail, H. Casanova, and A. Snavely. Bench-
mark probes for grid assessment. InIPDPS, 2004.

[9] Compact Muon Solenoid (CMS) Experiment for the
Large Hadron Collider at CERN (European Lab-
oratory for Particle Physics). Cms web page.
http://cmsinfo.cern.ch/Welcome.html/.

[10] M. L. Dertouzos and A. K. Mok. Multiprocessor online
scheduling of hard-real-time tasks.IEEE Trans. Softw.
Eng., 15(12):1497–1506, 1989.

[11] M. Eltayeb, A. Dogan, and F.̈Ozgüner. A data scheduling
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