Analyzing the Real-Time Properties of a Dataflow
Execution Paradigm using a Synthetic Aperture Radar

Application*

Steve Goddard — Kevin Jeffay
Technical Report TR97-007
Department of Computer Science
University of North Carolina
Chapel Hill, NC 27599-3175
{goddard, jeffay}@cs.unc.edu

April 1997

Keywords: Data-flow, real-time systems, scheduling theory, embedded systems, software architecture.

Abstract

Real-time signal processing applications are commonly designed using a dataflow software architec-
ture. Here we attempt to understand fundamental real-time properties of such an architecture — the
Navy’s coarse-grain Processing Graph Method (PGM).

By applying recent results in real-time scheduling theory to the subset of PGM employed by the ARPA
RASSP Synthetic Aperture Radar benchmark application, we identify inherent real-time properties of
nodes in a PGM dataflow graph, and demonstrate how these properties can be exploited to perform
useful and important system-level analyses such as schedulability analysis, end-to-end latency analysis,
and memory requirements analysis. More importantly, we develop relationships between properties such
as latency and buffer bounds and show how one may be traded-off for the other. Our results assume

only the existence of a simple EDF scheduler and thus can be easily applied in practice.

*Supported, in part, by grants from the Intel and IBM corporations, and the National Science Foundation (grant CCR-
9510156).

1 Introduction

Signal processing algorithms are often defined in the literature using large grain dataflow graphs [12]: directed
graphs in which a node is a sequential program that executes from start to finish in isolation (i.e., without
synchronization), and the graph edges depict the flow of data from one node to the next. Thus, an edge
represents a producer/consumer relationship between two nodes. Large grain dataflow provides a natural
description of signal processing applications with each node representing a mathematical function to be
performed on an infinite stream of data that flows on the arcs of the graph. The streams of input data are
typically generated by sensors sampling the environment at periodic rates and sending the samples to the
signal processor via an external channel. The dataflow methodology allows one to easily understand the
signal processing performed by depicting the structure of the algorithm; any portion of the application can
be understood in the absence of the rest of the algorithm.

Embedded signal processing applications are naturally defined using dataflow techniques. As real-time
applications, they require deterministic performance. The signal processing graph must process data at the
rates of a set of external devices (e.g., sonobuoys, dipping sonars, or radars) without the loss of data. Hence
signal processing applications, like other real-time systems, have a dual notion of correctness: logical and
temporal. It is not sufficient to only produce the correct output — e.g., the signature of a detected target;
embedded signal processing applications must produce the correct output within the correct time interval
— e.g., detect the signature within 1 second.

Dataflow models implicitly define a temporal semantics for a processing graph by specifying lower bounds
on when nodes may execute as a function of the availability of data on input edges. However, most models
do not support the specification of either an end-to-end latency constraint or an upper bound on the time
that may elapse between when a node becomes eligible to execute and the time the node either commences

or completes execution. Without one of these specifications, we are left with:

e no schedulability or admission control test — How does one determine if a set of nodes or a graph
“fits” on a processor?

e undetermined latency properties — How does one determine if a graph meets its timing requirements?

e no upper bound on queue length — If latency is not bounded, memory requirements for a graph cannot

be bounded and hence data loss may occur if enough storage is not provided.

System engineers use such metrics to size hardware and perform requirements verification. A cost trade-
off may be made on CPU utilization versus latency, or buffer space versus latency. High latency tolerances
allow the use of a slower (and cheaper) CPU but may require more memory for increased buffer space. On the
other hand, tighter latency requirements may demand a faster CPU (or lower utilization) but less memory.
In keeping costs in line, a system architect uses these metrics to make fundamental design trade-offs.

Unfortunately, without the application of real-time scheduling theory to dataflow methodologies and a
precise execution model, system architects have not been able to make these trade-offs in real-time dataflow
systems. Even the Navy’s own dataflow methodology, Processing Graph Method (PGM) [16], lacks real-time

analysis techniques to support making cost trade-offs or to verify latency requirements. This is somewhat

surprising since PGM is used to develop real-time, embedded, anti-submarine warfare (ASW) applications for
the AN/UYS-2A (the Navy’s standard signal processor). PGM has also been used to create a real-time Ka-
band synthetic aperture radar (SAR) benchmark application for ARPA’s Rapid Prototyping of Application
Specific Signal Processors (RASSP) project.

In this paper, we present a novel application of real-time scheduling theory to the subset of PGM used
in the RASSP SAR benchmark application. Using the SAR application graph as a driving problem, we
identify inherent relationships existing in real-time dataflow that have not been recognized in the literature.
We present theorems that characterize the non-trivial execution rates of every node in the dataflow graph
as a function of input rates by applying existing real-time scheduling theory to the dataflow methodology.
From scheduling theory, we get a scheduling condition for preemptive earliest deadline first (EDF) scheduling
algorithms. If the scheduling condition returns an affirmative result, the graph can be scheduled (with a
preemptive EDF algorithm) to meet specified execution deadlines. We also show how to set the deadline
parameters to bound end-to-end latency and memory requirements.

The rest of this paper is organized as follows. Our results are related to other work in Section 2. Section
3 presents a brief overview of the portion of PGM used by the SAR graph, which is introduced in Section
4. Section b presents node execution rates and a schedulability condition for EDF scheduling. Section 6
addresses latency issues and Section 7 shows how to bound the buffer requirements of an implementation of

a graph. We summarize our contributions in Section 8.

2 Related Work

This research was inspired by the analysis techniques applied to three different dataflow models: the dataflow
graphs found in the Software Automation for Real-Time Operations (SARTOR) project led by Mok [14, 15],
Lee and Messerschmitt’s Synchronous Dataflow (SDF) graphs [12] supported by the Ptolemy system [4], and
the Real-Time Producer/Consumer (RTP/C) paradigm of Jeffay [8]. Unfortunately, none of these paradigms
(or any other dataflow paradigms from the literature) correctly model the execution of PGM graphs.

The dataflow graphs of the SARTOR project have different (and incompatible) node execution rules
from PGM. As with the SARTOR, project, our goal is to demonstrate that we can apply real-time scheduling
results to real-life applications.

Like the RTP/C paradigm, we use the structure of the graph to help specify execution rates of the pro-
cesses. However, our execution model is capable of supporting much more sophisticated data flow models
than RTP/C. Whereas RTP/C models processes as sporadic tasks, our paradigm uses the Rate-Based Exe-
cution (RBE) process model of [10] to more accurately predict processor demand. (The RBE process model
is a generalization of sporadic tasks and the Linear-Bounded Arrival Process (LBAP) model employed by
the DASH system [1].) Unlike the RTP/C paradigm, PGM supports And nodes (nodes that are eligible to
execute only when all of the input queues are over threshold), which introduces different execution properties
than those of the RTP/C paradigm.

The SDF graphs of Ptolemy utilize a subset of the features supported by PGM. In addition to supporting

a more general dataflow model, our research differs from [12] in that we use dynamic, real-time, scheduling
techniques rather than creating static schedules.

Our latency analysis is related to the work of Gerber et al. in guaranteeing end-to-end latency require-
ments on a single processor [6]. Our work differs from [6] in that we cannot assume a periodic task model
and that our node execution rates are derived from the input data rate and the graph. Moreover, unlike [6],

we do not introduce new (additional) tasks for the purpose of synchronization.

3 Dataflow Model

This section describes the features of PGM used in the SAR graph. For a complete description of PGM, see
[16].

In PGM, a system is expressed as a directed graph of large grain nodes (processing functions) and edges
(logical communication channels). The topology of the graph defines the flow of data from an input source
to an output sink, defining a software architecture independent of the hardware hosting the application. The
edges of a graph are typed First-In-First-Out (FIFO) queues. The data type of the queue indicates the size
of each token (a data structure) transported from a producer to a consumer. Tokens are appended to the
tail of the queue (by the producer) and read from the head (by the consumer). The tail of a queue can be
attached to at most one node at any time. Likewise, the head of a queue can be attached to at most one
node at any time.

There are three attributes associated with a queue: a produce, threshold, and consume amount.! The
produce amount specifies the number of tokens atomically appended to the queue when the producing node
completes execution. The threshold amount represents the minimum number of tokens required to be present
in the queue before the node may process data from the input queue. The consume amount is the number
of tokens dequeued (from the head of the queue) after the processing function finishes execution. A queue
is over threshold if the number of enqueued tokens meets or exceeds the threshold amount. Unlike many
dataflow paradigms, PGM allows non-unity produce, threshold, and consume amounts as well as a consume
amount less than the threshold. The only restrictions on queue attributes is that they must be non-negative
values and the consume amount must be less than or equal to the threshold. For example, a queue may have
a produce of 2, a threshold of 5, and a consume of 3.

Although PGM supports general graphs consisting of nodes with multiple input queues and variable
produce and consume values, the SAR graph does not use these features. Since our driving application has
the topology of a chain of nodes, for space consideration we restrict our analysis to chains and simply note

that all of the results presented in this paper can be extended to general PGM graphs.

Tn PGM, a produce, threshold, or consume attributes is associated with a node port rather than the queue. For the subset
of PGM used by the SAR application, it is easier to associate these attributes with the queue rather than the node.

4 SAR Graph

This section introduces the SAR graph including a brief description of the processing performed by each
node in the graph. This information is provided for concreteness for the reader with a signal processing
background. The actual logical operation of the SAR graph is immaterial to the results we derive and the
analyses we perform. The only essential properties of the SAR graph are those that influence node execution:
the produce, consume, and threshold values for each node. For a more detailed description of the processing
performed by the SAR benchmark, see [17].

The full SAR benchmark cannot execute in real-time on a single processor. Therefore, the RASSP
project allocates a portions of the full SAR graph to individual processors. The graph in Figure 1 is one
such allocation. This graph, called the “mini-SAR”, was originally created to test tools developed by the
RASSP project. It performs the range and azimuth compression processing in the formation of an image
that is one eighth the size of that formed by the full SAR benchmark. Henceforth, we shall refer to the
mini-SAR graph as the SAR graph since an analysis similar to what we develop shortly, could be performed
on each processor to analyze the full application.

@ Range Fill

Window REFT

—»— = (Window) %" | (Range _ 7"~
=118 7=118" 256 256\ Pt / 956 256\ T /956 956,
=118 256 256 256
256
RCS
956-128,
956-64
Image Mult AFFT Azimuth
-+ -+ -+ -+
=128, p=128 128, 128 128, 128 128, 256-128
c=128 128 128 128

Figure 1: SAR Graph

The source node for the SAR graph (shown in Figure 1) is labeled YRange and represents a periodic
external device that produces data for the graph. The sink node, represents an external device that executes
whenever data is available on the Image queue. The nodes and queues of this graph have mnemonic labels.
(For a generic chain, we would label the source node Ny and the sink node N,4;. The output queue for
node N; would be labeled @);.) Produce, threshold, and consume values are annotated below the queue. For
example, the produce, consume, and threshold values of the queue labeled Range are all 118.

The top row of nodes in the SAR graph each operate on one pulse of data at a time. The pulse delivered
by the external source, labeled YRange, has already been converted to complex-valued data and consists of
118 range gate samples. The Zero Fill node pads the pulse with zeroes to create a pulse length of 256 samples
in preparation for the FFT node. Before performing the FFT, the data is passed through a Kaiser window
function, represented by the node Window Data, to reduce sidelobe levels and perform bandpass filtering.

After being compressed in the range dimension by the Range FFT node, the pulse is passed through the

radar cross section calibration filter performed by the RCS Mult node.

Unlike the previous nodes in the SAR graph, which require only one pulse of data before being eligible
for execution, the Corner Turn node requires 128 pulses of data. A 2-D processing array is formed where
each row of the array contains one sample from the 128 different pulses and each column contains the 256
range gates that form a pulse. The processing array consists of two 64 x 256 frames (or sequences of pulses).
As a new frame is loaded in, the previous two frames are “released” with the oldest frame being shifted out.
This processing is achieved with threshold and produce values of 256 - 128 and a consume value of 256 - 64.

Convolution processing is performed on each row of the 2-D matrix by the Azimuth FFT, Kernel Mult,
and Azimuth IFFT nodes. The Azimuth FFT node performs a FFT on the signal, which has been aligned
in the azimuth dimension. Next the Kernel Mult node multiplies each row of the matrix by a convolution
kernel. Before the SAR image is output to the Sink node, an inverse FFT is performed by the Azimuth IFFT

node.

5 Execution Model

Real-time scheduling theory provides a framework upon which we have developed an execution model that
supports bounding latency and memory usage for PGM graphs. These bounds in turn can be used to
guarantee no data loss occurs during graph execution. We also appeal to scheduling theory to provide
guarantees that these bounds will be met without the need to check for violations during graph execution
(assuming the basic assumptions made during the analysis phase are true at run-time).

This section introduces an execution paradigm and analysis techniques that support the evaluation of
real-time properties for a graph. The first subsection explores fundamental execution relationships that exist
between producer/consumer nodes, independent of the execution model. The remaining subsections address
node execution rates and the RBE task model. These concepts are used to model an implementation of the

graph.

5.1 Node Executions

Before exploring the fundamental execution relationships that exist between producer/consumer nodes, we
must first define the restrictions on node execution. In accordance with PGM, our execution model requires
all of the input queues to a node to be over threshold before the node is eligible for execution. Standard
practice in implementing dataflow systems ([8, 12, 15]), though not part of the PGM specification, is to
disallow two overlapping executions of the same node; we have adopted this restriction. PGM also requires
that data be read from an input queue at the beginning of node execution, but data is consumed after the
node has produced data on its output queues, which simply makes it clear that a node requires simultaneous
input and output buffer space. We add the common real-time dataflow restriction that no data loss can
occur during graph execution. The following definitions provide a formal basis for discussing the execution

of nodes.

Definition 5.1. Queue); is over threshold when it contains at least 7; tokens, where 7; is the threshold

dataflow attribute of the queue.

Definition 5.2. Node Nj is eligible for execution when all of its input queues are over threshold.
Definition 5.3. The execution of a node is wvalid if and only if:

e the node executes only when it is eligible for execution,

e no two executions of the same node overlap,

e cach input queue has its data atomically consumed after each output queue has its data atomically
produced, and

e data is produced at most once on an output queue during each node execution.

Definition 5.4. Graph execution consists of executing a (possibly infinite) sequence of nodes from the set

of nodes in the graph.

Definition 5.5. The execution of a graph is valid if and only if all of the nodes in the execution sequence

have valid executions and no data loss occurs.

We introduce the execution relationship that exists between producer/consumer nodes using three dif-
ferent producer/consumer pairs of nodes and the results of different dataflow attributes on their adjoining
queue. Unlike the SAR graph, Example 5.1 contains queues whose produce and threshold values are rel-
atively prime — this i1s done to illustrate the general relationships between dataflow attributes and node
execution. In each produce/consumer pair of Example 5.1,); is annotated with its produce, threshold, and

consume values below the queue.

Example 5.1. In the two node chain of Figure 2, N; produces 2 tokens every time it executes. N;y; has a
threshold of 7 and consumes 7 after it executes. Since each execution of N; produces 2 tokens, 4 executions

Qi-1 Qi Qit1

—_— iV —] V4])| —

Figure 2: Chain,

of N; are required to complete before the first execution of N;y1 occurs. When N;;1 executes, it consumes
7 of the 8 tokens on @Q;, hence, only 3 additional executions of N; (producing 6 more tokens for a total of 7
on ;) are needed for N;;1 to execute a second time. After N;y; executes the second time, it consumes all 7
tokens on @Q; leaving it in the same state as we began, with 0 tokens. If we followed subsequent executions,
we would find that the number of executions required of N; to produce enough data for N;;1 to execute
continues to alternate between 4 and 3. Therefore, 7 executions of N; tokens will produce 14 tokens and
result in N;y; executing twice. What happens when the produce amount is greater than the threshold?

Changing our two node chain so that N; produces 7 and N;41 has threshold and consume values of 2, as in

Qi-1 Qi Qit1

—_— ‘') —] {24l) —

Figure 3: Chains

Figure 3, results in the first execution of N; enabling 3 executions of N;y; and the second execution of N;
enabling 4 executions of N;;1. This is because the first 3 executions of N;yi left 1 token on @Q;. After 2
executions of N; and the resulting 7 executions of N;y1, @; is left in its original state: containing 0 tokens.

Finally, consider the two node chain of Figure 4. N; produces 4 tokens every time it executes. N;;1 has a

Qi1 Qi Qit1
—_ > —_ > — >
p=4 T=1,
c=3

Figure 4: Chains

threshold of 7 and consumes 3 after it executes. Consequently, N; must fire twice before @); is over threshold
and N;41 executes for the first time. After N;;; executes, it consumes only 3 tokens — leaving 5 tokens on
Q;. The third execution of N; produces 4 more tokens (for a total of 9 tokens on @;) and N;;1 executes
again, consuming 3 more tokens. The next execution of N; results in 10 tokens on @;, and N;41 is able to
execute twice — leaving 4 tokens on @;, which is the same number that were on @; after the first execution

of N;. Hence, subsequent executions of N; and N;;1 follow this same pattern. O

Example 5.1 demonstrates that the number of tokens on Q; at time ¢ is a function of the the queue’s
dataflow attributes and the number executions of nodes N; and N;4; prior to time t. Clearly if N; has
executed k times but N;;1 has not yet fired, then the number of tokens on @; is k- p;. It is also the case
that after N;;1 executes for the first time, Q; will always contain at least 7; — ¢; tokens. Sanjoy Baruah has
observed that this lower bound on the minimum number of tokens on @; is not tight. Consider, for example,
Q; with p; =8, 7, =7, ¢; = 6. In this case, 7; — ¢; = 1, but there will always be at least two tokens in the
queue. The crucial observation made by Baruah is that the number of tokens in the queue, n, is always of
the form n = k; - p; — ki1 - ¢i, where k; and k; 41 represent the number of times N; and N; 41 have executed
respectively. We use this observation in Lemma 5.1 to bound the minimum number of tokens on @Q; after
the first execution of N;;1 and the maximum number of tokens that can be on @; without the queue being

over threshold.

Lemma 5.1. The minimum possible number of tokens on @Q; after node N;11 has fired once is m; where

Ti

m; =

-‘ ~ged(ps, ¢i) — ¢ (5.1)

tokens, and the most tokens @); can hold without being over threshold is r; where

7 — ged(pi, ¢i) if 3k 7 =k - ged(pi,)

r—
{WJ ~ged(ps, ¢;) otherwise

(5.2)

Proof: Starting with Sanjoy Baruah’s observation that the number of tokens in the queue, n, is always of
the form n = k; - p; — ki41 - ¢;, we note that n takes on all values of k - ged(p;, ¢;):
Ja, b,k ki-pi—kigr-ci = ki (a-ged(pi, ci)) — kig1 - (b - ged(pi, ci))
= (]i’l -a— ki+1 . b) . gcd(pi, Ci)
=k -ged(pi,ci)
To prove (5.1), we must find the smallest k£ such that k - ged(p;,¢;) > 7 and then subtract ¢; from
this value since N;;1 consumes ¢; tokens whenever it executes. Observe that the smallest & such that

k-ged(piyci) > sk = {gcd&ilc)—‘ . Therefore, the minimum number of tokens that will ever be on @); after

Niyt1 has executed at least once is:

[t e
m; =
ged(pi, ci)

The most tokens @; can hold without being over threshold is &' - gcd(p;, ¢;) where k' is the largest & such

-‘ ~ged(ps,) — e = (5.1)

that & - ged(ps, ¢;) < 7. Observer that the largest & such that & - ged(pi, ;) < 7 is k' = {mf Hence,
ngaﬁzﬂ-gﬁ@hq)<n,®2ﬂmMsEmmﬁkﬂgﬁ@hq):{ga%zﬂ-gﬁ@mw)zn,mHHWHis
eligible for execution and @; is considered over threshold by Definition 5.1. In this case, the most tokens @;
can hold without being over threshold is (&' — 1) - ged(p;, ¢;) = 7 — ged(pi, ¢;), and (5.2) holds for this case
as well. O

Example 5.2. Applying Lemma 5.1 to the queue labeled @; in C'haing of Figure 4, we find
Ti 7 7
= e | 50 == [y e =2 [3] 1) a0
and r; = 7; — ged(ps,) =7—1=6.

Unlike @; in C'haing, none of produce and consume values for the queues of the SAR graph are relatively
prime. In fact, except for the queues labeled RCS and Azimuth, all of the queues have equal produce,
threshold, and consume values. For these queues m; = r; = 0. For the queue labeled Azimuth, 7; = ¢; =
ged(pi, ¢;) = 128; hence, m; = r; = 0. The queue labeled RCS provides a more interesting example. In this
case, p; = 256, 7, = 256 - 128, and ¢; = 256 - 64. Applying Lemma 5.1 to this queue yields:

" 256 - 128
ged (256, 256 - 64)

256 - 1287 ,
= <[WW ~256> — (256 - 64)

= (128 -256) — (256 - 64) = 256 - 64

m;

w - ged (256, 256 - 64) — (256 - 64)

and r; = 7 — ged(pi, ¢;) = (256 - 128) — 256 = 256 - 127. We will use these r; values in §7 to bound the
memory needs of the SAR graph. a

The following lemma, which will be used to prove Lemma 5.3 in §5.2, establishes the relationship for the

number of executions of N;41 as a function of the number of tokens produced by N;.

Lemma 5.2. Gwen | > 7; tokens on Q;, N;y1 will execute V;T”J + 1 times, consume QﬂJ + 1) -G

Ci

tokens, and leave I’ tokens on); where {m—‘ cged(ps,e) —e < U < .

Proof:? The number of times N;;; will execute is the least natural number n such that { — (n - ¢;) < 7,

which implies n > ({ — 7;)/¢;. The smallest natural number satisfying this inequality is V_T’J + 1. Since

Ci

each execution of N;ii consumes ¢; tokens from @;, it immediately follows that the number of tokens

consumed is (V‘T’J + 1) -¢;. By Lemma 5.1, m; = {m—‘ ~ged(ps, ¢) —e; < U < r; < 7. Therefore,

Cq

m—‘ ~ged(ps,ei) —e; < I < 75, and the lemma holds. O

Lemma 5.2 establishes the execution relationship that exists between producer/consumer nodes, but it
does not tell us the frequency with which the node will execute — only how many times the consumer will
execute given some number of tokens generated by the producer. The rate at which nodes execute is the

subject of the next section.

5.2 Node Execution Rates

PGM does not explicitly define temporal properties for the graph. However, the execution rate of every node
in a graph is defined by the graph topology, the definition of nodes, the dataflow attributes, and the rate at
which the source node produces data. Thus, given only the rate at which a source node delivers data, the
execution rates of all other nodes can be derived. This fundamental property of real-time dataflow is the
basis of the results presented in this section.

Most real-time execution models define task execution to be periodic or sporadic. Each time a task is
ready to execute, it is said to be released. A periodic task is released exactly once every p time units (and p
is called the period of the task). At least p time units separate every release of a sporadic task — no upper
bound is given on subsequent releases of a sporadic task. Even when the source node of a PGM chain is
periodic, the execution of the other nodes in the graph cannot be described as either periodic or sporadic.
For example, consider C'haing of Figure 4. If N; executes at times 0, y, 2y, ..., N;;1 is eligible for one
execution at times y and 2y, but twice at time 3y. For this instance of the problem, we may be able to
model N;y1 as two periodic or sporadic tasks (that interleave their execution), but this technique does not
generalize. If the consume value is 5 rather than 3, we get a very different execution pattern. When the
source is not periodic and data arrives in bursts, which is common in many implementations, even modeling
a node as z invocations of a (1,y) periodic or sporadic task is insufficient. An execution paradigm that
supports generic rates of the form z executions in y time units is required to analyze the execution of generic
dataflow graphs.

We assume the strong synchrony hypothesis of [5] to introduce the concept of node execution rates. Under

the synchrony hypothesis, we assume the graph executes on an infinitely fast machine. Hence, each node takes

2We thank the anonymous reviewer of [7] who suggested this proof and the proof of Lemma 5.3.

“no time” to execute and data passes from source to sink node instantaneously. The synchrony hypothesis
lets us define rate executions in the absence of scheduling algorithms and deadlines. Node execution rates

are defined as follows.
Definition 5.6. The time of the j** execution of node N; is represented as T ;-

Definition 5.7. An execution rate is a pair (z,y). A node Nj, Vi > 0, executes at rate R; = (z;,¥;) if,
Vj > 0, N; executes exactly z; times in all time intervals of [t + y; - (j — 1),t + y; - j) where t > T} ;.

Throughout this paper, we assume constant produce, threshold, and consume values with ¢; < 7;. If the
produce and consume values for a node are not constant, then the node’s maximum produce and minimum
consume values can be used to determine the maximum execution rate. We also assume a periodic source.
As implied by Theorem 5.4, a periodic source is not required for our analysis techniques. All lemmas and
theorems in this paper can be generalized to support the analysis of graphs that receive data from source
nodes specified by rates rather than periods.

Given a periodic source node, Ny, we present and prove the execution rate for N7, the second node in

the chain. Theorem 5.4 is a generalization of Lemma 5.3.

Lemma 5.3. Assuming the strong synchrony hypothesis and no tokens on QQq prior to the beginning of graph
execution, if Ry = (1, p) is the execution rate of Ny with Ty 1 =0, then Ry = (21, 31) is the execution rate of

N1 where z1 = —F° y and y; =

Co .
ged(po,co ged(po,co) P

Proof: Let t > Ti,, and [be the number of tokens on @)y before any executions of N; at time . By

Lemma 5.2, [)—‘ - ged(po,co) —eg < I < 19. Since Ry = (1,p), a total of pg -

—T0 tokens are
QCd(PDVCu)

Co
ged(po,co
enqueued on Qg over the interval [t,¢ 4 y1). Since each execution of Nj removes ¢g tokens, z; executions

during the interval [t,? + y1) will leave (I + pg - m) — (co - m) = [tokens on ()g. Furthermore,

th

no more executions could have occurred since the x1°? execution leaves | < 79 tokens on (Qq. Any fewer

executions would have left [> 73 tokens on Qg, and another execution of N7 would have occurred. Therefore,
exactly z;41 executions take place in this interval.

Simple induction shows that N; will execute exactly 3 times in all intervals of

Po
ged(po,co

Co Co

t+(i—1) ———. t+qj —
U=1" cedtpore) ” ' gedlporeo)

-p),Vj>0

where ¢ > T 1, leaving [tokens on Qg at the end of each interval. Therefore R, is a valid rate specification

for Nj. O

Theorem 5.4. Vi > 0: Assuming the strong synchrony hypothesis and no tokens on @Q; prior to the beginning

of graph ezecution, if Ry = (zo,y0) is the execution rate of Ny, then the execution rate of Niyq1 is Riy1 =

Pi
PiTi,Ci)

-~z and yip1 = . Y-

_ c
(1‘2'_1_1, yi+1) where CL‘Z'+1 = gcd(m

Proof: (by induction on i) Let i = 0 be the base case, t > T3 1, and ! be the number of tokens on (g before
any executions of Ny at time ¢. If zyp = 1 then Theorem 5.4 holds by Lemma 5.3. If 2 > 1 then a total

10

of (po - zg) - WUIDCDJ tokens are enqueued on Qg over the interval [t, ¢+ y;1). Since each execution of Ny

removes ¢g tokens, z1 executions during the interval [t,t 4 y;) will leave

Co (Po

(1+(Po~l‘o)'m)—

o POy
0 ged(po - o, ¢o) o)

tokens on (o. The rest of the proof for ¢ = 0 and zq > 1 follows the proof of Lemma 5.3. Therefore,
Theorem 5.4 holds for i = 0.

Assume by the induction hypothesis that Theorem 5.4 holds Vi : 0 < ¢ < n. Let i = n— 1, and I; be
the number of tokens on @); before any executions of N;;1 at time ¢’ > Tj4q ;. By the induction hypothesis,
N; executes z; times in all intervals of [t + y; - (j — 1),¢ + y; - j) where ¢ > T;; and j > 0. Observe that

Tit1,1 > Ti 1. Therefore R; also holds Vt >t/ > T;11 1, and N; executes z; - times in the interval

ci
ng(pl'l'zycl)
[t + m ~yi). Let ziyq = m ~x; and Y41 = m -y;. Then N; enqueues a total

of p; - » tokens on Q; over the interval [t',# + y;41). Since each execution of N;y1 removes ¢;

i ng(pf‘lI'zycz)
tokens, x141 executions during the interval [t',¢' + y;41) will leave

Ci Di
e | e LA T B
tokens on @);.

Simple induction shows that N;;1 will execute exactly ;41 times in all intervals of
W+G—=1) yig1, '+ yip1), Vi>0

where t' > T;14 1, leaving {; tokens on); at the end of each interval. Therefore, Theorem 5.4 holds for all
Vi:0<i<n. O

Example 5.3. We now apply Theorem 5.4 to the SAR graph shown in Figure 1 on page 4 to derive the
execution rate of each node in the graph (excluding the Sink node, which represents an external device). We
will use these numbers later to illustrate latency and buffer bounds.

Assume the Source node delivers one pulse (i.e., 118 tokens) every 3.6 ms and let y = 3.6, which means
the source has an execution rate of Ry = (1,3.6) = (1,y). The execution rate of the other nodes (excluding

the Sink node) is derived as follows:

Po - Zo Co " Yo)

(po - %0, co)” ged(po - ®o, co)

< PRange ~ X0 CRange " Yo)
gcd(PRange - €0, CRange) 8C¢d(PRange - L0, CRange)

118 -1 118 -y 118 118y z1 =1
= T10) 110 :(17?/) =
ged(118 - 1,118) ged(118 - 1, 118) 118" 118 =y

Rzero Fint =) =
oo v = (1) =

Revindow D < (7)_(pra - 1 Cri " Y)
ndow ata - 3
ged(pr - 21, 61) ged(pr - 21, ¢1) ged(prin - 1, erin)” ged(pran - 1, erin)
(256" 256

256 - 1 256 - y)_(@ 256y)_(1) o {m2:1

ged (256 - 1,256) " ged (256 - 1, 256) ys =y

11

256 256y — (L)
256’ 256)

RRrange FFT = RRCS Mult = (

256 - 1 (256 - 64) - y)

.) 256 (256 - 64)y
Corner Turn = \ gcd(256 - 1,256 - 64) " ged (256 - 1, 256 - 64)

290 1290 DY _ (1 64
256’ 256) (1,64y)

(256 - 128) - 1 128 - 64y) <256 <128 128 - 64y

= = (256, 64
ged((256 - 128) - 1,128) " ged((256 - 128) - 1, 128) 128 128) (256, 64y)

Razimuth FFT = <

128 - 256 128 - 64y
ged (128 - 256, 128) ged (128 - 256, 128)

Riernel Mutt = Razimuth IFFT = () = (256,64y) = (256,230.4ms)

O

The first three nodes have execution rates of (1,3.6 ms). That is, they execute once every 3.6 ms. The

Corner Turn node executes once every 230.4 ms and the last four nodes execute 256 times every 230.4 ms.

5.3 RBE Task Model

Moving from the strong synchrony hypothesis to an actual implementation, we need to implement the graph
as one or more tasks. A scheduling algorithm and a schedulability test that will analytically determine
whether or not a graph will meet its temporal requirements are also necessary. We have already seen that
nodes are neither periodic nor sporadic, even when the source is periodic, which eliminates most execution
models from the literature. Nevertheless, it is appealing to implement each node as a task that is released
when the input queue goes over threshold. If we schedule the tasks using the preemptive earliest deadline
first (EDF) scheduling algorithm [13], we can verify the real-time requirements of the application using the
techniques Jeffay has developed for the Rate Based Ezecution (RBE) model [10].

RBE is a general task model that consists of a collection of independent processes specified by four
parameters: (z,y,d,e). The pair (z,y) represents the execution rate of a RBE task where z is the number
of executions expected in an interval of length y. The response time parameter d specifies the maximum
time between release of the task and the completion of its execution (i.e., d is the relative deadline). The
parameter e is the maximum amount of processor time required for one execution of the task.

A RBE task set is feasible if there exists a preemptive schedule such that the j¢* release of task 7T} at

time ¢; ; is guaranteed to complete execution by time D;(j), where

) t; 5+ d; ifl1<j<uz .
Di(] :{ J (53)

max(t; ; + di, Di(j — x:) +yi) ifj >
The RBE task model makes no assumptions regarding when a task will be released, but the second line of
the deadline assignment function (5.3) ensures that no more than #; deadlines come due in an interval of
length y;, even when more than z; releases of T; occur in an interval of length y;.
We use the following lemma, which bounds the processor demand in an interval, to prove the RBE

feasibility condition of Theorem 5.6.

12

Lemma 5.5. For preemptive scheduling of the execution of a task T = (z,y,d,e),

L—id“/).x.e

YL >0, f<
)

(5.4)

is a least upper bound on the number of units of processor time required to be available in the interval [0, L]

to ensure that no job of T misses a deadline in [0, L], where

_Jlal #a>0
f(a)_{o ifa <0

Proof: Define the processor demand of a task in an interval [a, b] as the amount of processor time required
to be available in [a,b] to ensure that no release of T' misses a deadline in [a,b]. To derive a least upper
bound on the amount of processor time required to be available in the interval [0, L], it suffices to consider
a set of release times of 7' that results in the maximum processor demand in [0, L]. If ¢; is the time of the
jt* release of task T, then clearly the set of release times t; = 0,Vj > 0, is one such set. Under these release
times, Vk > 0, x releases of T' have deadlines in the intervals [k -y, (k + 1)y].

More precisely, z releases of T' have deadlines in [0, d]. After d time units have elapsed, = releases of T'
have deadlines every y time units, and thus the number of releases with deadlines in the interval [d, L] is

f (%) -z. Therefore, VL > d, the number of releases of T with deadlines in the interval [0, L] is

(50 e (s () oo () oo (5 0 o

VL < d, no releases of T" have deadlines in [0, L], hence the right hand side of (5.5) gives the maximum
number of releases of T' with deadlines in the interval [0, L], VL > 0.

Finally, as each release of T' requires e units of processor time to execute to completion, (5.4) is a least
upper bound on the number of units of processor time required to be available in the interval [0, L] to ensure

that no release of T' misses a deadline in [0, L]. O

Note that there are many sets of task release times that maximize the processor demand of a task in
the interval [0, L]. For example, given the recurrence relation for deadlines (5.3), it is straightforward to
show that the less pathological set of task release times t; = L]%J -y, Y5 > 0, also maximizes the processor

demand of task 7" in the interval [0, L].

Theorem 5.6. Let T = {(z1,y1,d1,€1), ... (Zn,Yn,dn,€n)} be a set of RBE tasks. T will be feasible if and
only if

. L—di+ty
VL >0, Lsz(T”).xi.ei (5.6)
i=1 t

la] ifa>0

where f(a) = {0 ifa<0

Proof: (=) We show the necessity of (5.6) by establishing the contrapositive, i.e., =(5.6) implies that 7
is not feasible. To show that 7 is not feasible it suffices to demonstrate the existence of a set of job release

times ¢;; for which at least one release of a task in 7 misses a deadline.

13

Assume —(5.6), that is,
. L—di+y
AL >0:L < f(*)xlel
Consider the set of release times ¢;; = 0, Ve : 1 <7 < n, and Vj > 0, where #;; is the time of the 7P release
of task T;. By Lemma 5.5, Vi, task T; requires f (%) - x; - e; units of processor time in the interval of
[0, L]. Therefore, for 7 to be feasible, we require that > ._, f (%) - x; - €; units of work be available

Yi
in [0, L]. However, since

n
L—di+y
L<Zf<ﬂ) Cnien,
- Yi
i=1
a release of a task in 7 must miss a deadline in [0, L]. Thus there exist a set of release times such that a

deadline is missed when —(5.6). This proves the contrapositive.

(<) To show the sufficiency of (5.6) we show that the preemptive EDF scheduling algorithm can schedule
all releases of tasks in 7 without any job missing a deadline if the tasks satisfy (5.6). This is shown by
contradiction.

Assume that 7 satisfies (5.6) and yet there exists a release of a task in 7 that misses a deadline at some
point in time when 7 is scheduled by the EDF algorithm. Let ¢4 be the earliest point in time at which a
deadline 1s missed and let ¢, bet the later of:

e the end of the last interval prior to ¢4 in which the processor has been idle (or 0 if the processor has

never been idle), or

e the latest time prior to t; at which a task’s release with deadline after ¢4 stops executing prior to ¢4

(or time 0 if such a release does not execute prior to #4).

By the choice of t,, (1) only releases with deadlines less than or equal to time ¢4 execute in the interval
[to,ta], and (2) the processor is fully used in [t,,¢4]. At most Y - | f (td_t"y_#) releases of tasks in T
satisfy the conditions in (1), thus, if the EDF scheduling algorithm is used, >\, f (%) -x; - e; is the
least upper bound on the units of processor time required to be available in the interval [¢,,%4] to ensure
that no task release misses a deadline in [t,,14]. Let £ be the amount of processor time consumed by tasks
in 7 in the interval [t,,?4] when scheduled by the EDF algorithm. It follows that

n

Zf(ﬂ) cxioe; > E.

i=1 Yi
Since the processor is fully used in the interval [¢,,%4], and since a deadline is missed at time ¢4, it follows
that & is greater than the processor time available in the interval [t,,t4], namely ¢4 — t,. Hence,

. L—di+y
Zf<7+y>'l‘i'6i25>td—to~
i=1 Yi

However this contradicts our assumption that 7 satisfies (5.6). Hence if 7 satisfies (5.6), then no release of
a task in 7 misses a deadline when T is scheduling by the EDF algorithm. Tt follows that satisfying (5.6) is

a sufficient condition for feasibility. O

14

Note that if the cumulative processor utilization for a graph is strictly less than one (i.e., Y, % <1

then condition (5.6) can be evaluated efficiently (in pseudo-polynomial time) using techniques developed in
[2] and applied in [3] and [11].

For a PGM graph, (5.6) becomes a sufficient condition (but not necessary) for preemptive EDF scheduling
as long as nodes execute only when their input queues are over threshold (i.e., the tasks are released when
the node’s input queue is over threshold — thereby ensuring precedence constraints are met). (5.6) is not a
necessary condition for PGM graphs since it assumes that all z; releases of a node may occur at the beginning

of an interval of length y;. For some nodes, such as N;y1 in Figure 4 on page 7, this is not possible.

6 Latency

We now address the issue of latency, and begin by defining latency in the context of signal processing graphs.
We then demonstrate, using the strong synchrony hypothesis, that there exist multiple latency values for a
graph and show how these latency values relate to latency induced by the scheduling algorithm. Finally, we

analyze the affect of deadlines on latency.

6.1 What is Latency?

Latency can be defined many different ways. An appealing definition is the delay between a start event and
a corresponding stop event. In graph models that require unity dataflow attributes, the start event may be
the arrival of a token from the source and the stop event can be identified as the enqueuing of a token on
the graph’s output queue. But it is difficult to apply this definition to PGM graphs. As the SAR graph
demonstrates, nodes may add tokens to the data stream. Nodes may also reduce the number of tokens in
the data stream (known as data decimation), or the node may delay some number of tokens and use the
delayed tokens in both the current and the subsequent execution as the Corner Turn node does in the SAR
graph.

A signal processing engineer describes latency as the time delay between the sampling of a signal and
the presentation of the processed signal to the output device (which may be a screen, speaker, or another
computer). We use this definition with a clarification. Since we can only measure time in units of the period
of the source, we consider the pg tokens delivered each period by Ny to be “one sample”; each pulse in
the SAR graph constitutes one sample, which consists of 118 tokens. Hence, under the strong synchrony
hypothesis, latency is the delay between the enqueuing of py tokens onto Qg by the source node Ny and the
next enqueuing of p, tokens on @, by node N, .

Latency is a function of the scheduling algorithm. It is the case for graph models, however, that latency

also has a structural component. The next section illustrates this property.

6.2 Latency with the Strong Synchrony Hypothesis

There is a pattern of executions that result in various latency values for the input signal. Consider the

execution of the SAR graph shown in Figure 5. In this example, we assume the strong synchrony hypothesis

15

Pulse 1 Pulse j+1 Pulse 128 Pulse129 Pulse k+1 Pulse 192 Pulse193 Pulse k+1+64 Pulse 256

N S S A A A Y SR AR
S S A S AN AN NS R
woow |l e e b e

256 256

N
a
(<2}

Azimuth \L \L l/
IFFT
Time — L .. _| \ \ L \ \ | . | \
\ \ \ \ \ \ \ \ \ \ \ \
0 Y% 127y, 128y, kY, loty, 192y, (k+64) 255y,

Figure 5: Latency for the SAR graph under strong synchrony hypothesis. Each down arrow represents the
release and instantaneous execution of a node.

and each down arrow represents the release and instantaneous execution of a node. The minimum latency
for a sample is zero, which is the case for the 128" pulse received by the SAR graph. As shown in Figure 5,
the 128" pulse arrives at time 127y, and results in the execution of every node in the graph. Pulses 192,
256, 320, 384, ... all have a latency of 0. The maximum latency value, encountered by the first pulse, is
127yo. The first signal received by the graph always encounters the maximum latency (assuming the queues
have no initial data). There is, however, another “maximum” latency that is of more interest, and that is the
maximum latency that occurs after the first execution of every node in the graph. In the execution example
shown in Figure 5 for the SAR graph, this maximum latency is encountered by pulses 129, 193, 257, 321,
., which have a latency of 63y;. Notice that there are 126 other unique latency values for this simple
graph (e.g., the latency for pulse j+1 is (127 — j)yo).
The latency encountered by a sample of the signal (under the strong synchrony hypothesis) is dependent
on the data flow attributes of the graph and the state of the queues (i.e., the number of tokens on each
queue of the graph) when the sample arrives. We can determine the magnitude of a sample’s latency by

determining how many more samples are required before node N, executes. Lemma 6.1 fulfills this role.

Lemma 6.1. Given I < 1 tokens on Qi Vk : i < k < j, N; must execute F(N;, N;) times to produce
enough data to put Qj_1 over threshold (and thus making N; eligible for execution) where

= ifi+1=j
Vi,j:0<i<j<n:F(N;,N;)= (6.1)

"(F(N,_,_l,Nj;:l).c,-}-n—lz-‘ Zfl+ 1 <j

Proof: Case 1: i+ 1 = j. If there are [; tokens on @); and [; < 7;, then 7, — l; more tokens are required
before N; is eligible for execution. Since NV; produces p; tokens every time it executes, it follows that N;

must execute [%—‘ times before N; is eligible for execution, and (6.1) holds for i + 1 = j.

Case 2: i+ 1 < j (by induction on ¢). We work the induction backward by starting with the maximum ¢
that satisfies 1 + 1 < j and decreasing i to 0. For the base case,let i=j—-2 (= i+ 1=7—1):

16

_— _— _— _—

Tz+1_ll+1
Pit41

Therefore, we need only answer how many times N; must execute for N;41 to execute more times. From

As in the previous case, N;y; must execute z = times before N; is eligible for execution.
Case 1, we know that 7, — [; more tokens are needed for N;;1 to execute once. Since N;;1 consumes ¢;
tokens every time it executes, the remaining z — 1 executions require an additional (z — 1) - ¢; tokens to be

produced by N;. Hence, N; must execute

Tit1—liga
[(I—l)-ci+Ti—li-‘_ q +Pi+1+—‘_1).ci+7—i_li _[(F(Ni+1,Nj)—1)'Ci+Ti
Di pi Di

— ﬂ (6.2)

times before N; is eligible to execute again, and (6.1) holds for i = j — 2.

Assume, by the induction hypothesis, that (6.1) holds Vi,j : 0 < i < j < n. Let i = 0. By the induction
hypothesis, N1 must execute F(N7, N;) times before N; is eligible for execution. Therefore, we need only
answer how many times Ny must execute for N; to execute F(Ny, N;) times. Applying (6.2) from the base

case, with ¢ = 0 and z = F(Ni, Nj), Ny must execute

F(Nq1, N; 1 —1
[((N, Ny) = 1) et 0} = F(No, N;)
Po
times and (6.1) holds. Therefore (6.1) holds ¥i,5:0< i< j < n. O

Evaluating F(Ng, N,,) just before the i'” sample’s arrival will tell us how many samples are required
before N, will be eligible for execution. Hence, as implied by Lemma 6.2, the latency the i** sample will
encounter is given by (F(Ng, N) — 1) - yo when F(Ng, N,,) is evaluated just before the sample arrives. We
subtract one from F(Ng, Ny,) before converting it to time units since the latency interval begins after the

sample arrives.

Lemma 6.2. Given Ry = (1,p). When F(Ngy, N,,) is evaluated just before the sample’s arrival,
Sample Latency = (F(No,Np)—1)-p (6.3)

Proof: By Lemma 6.1, Ny must execute F(Ng, N,) — 1 more times after the signal arrives if F'(Ng, Ny)
is evaluated just before the signal arrives. Therefore, under the strong synchrony hypothesis, if Ny has a

period of p, the sample’s latency will be (F/(Ng, Np) — 1) - p. O

Using Lemma 6.2 we find, as expected, that the latency of the first pulse received by the SAR graph is
127yq. Recall from Lemma 5.1 that the most tokens @; can hold without being over threshold is r; and the
minimum possible number of tokens on @; after node N;;1 has fired once is m;. When all of the queues in
the graph contain r; tokens, as is the case just before pulses 192, 256, 320, ..., the next sample’s latency
will be 0 — just as Figure 5 shows. Evaluating (6.3) when each queue in the SAR graph contains m; tokens,

we get a sample latency of 64y, — just as Figure 5 shows for pulses 129 and 193.

17

Pulse 1 Pulse j+1 Pulse 128 Pulse129 Pulse k+1 Pulse 192 Pulse193 Pulse k+1+64 Pulse 256

e S Y S
Zero Fill 4‘:‘

Window
Doy o ¥ v . v v vV v % v oV C N

)) i/) i/) i/) i/) i/) i/ v v v)

: 256 ¢ \L ¢ 256 256
Azimuth
Ti L. L I | | | | Lo
me — \ \ \ \ \ \ \ \ \ \ \ \
) t t+64Y,
0 Y 127y, 128y, kYo 191y, 192y, (k+64) y, 255y,

Figure 6: Latency for the SAR graph. A light arrow represents a node’s release under the strong synchrony
hypothesis. A dark arrow represents the actual release time, and the node’s execution is represented by a
box.

6.3 Latency in an Implementation

Scheduling an implementation of the graph results in an upper and lower bound for each of the latency
values identified with the strong synchrony hypothesis. In other words, we get latency intervals rather than
precise latency values for a given sample.

The lower bound for a sample’s latency is a function of the scheduling algorithm and, as shown in §6.2,
the graph attributes. The lower bound for the latency interval is the latency value derived using (6.3) plus
the sum of the execution times for the nodes in the chain. That is, a sample’s latency must be greater than
or equal to (F(No, Np) — 1) -yo + > iy €.

The upper bound for a sample’s latency is dependent on the scheduling algorithm, dataflow attributes,
and deadline values. Generally, the deadline parameters are the only free variables in the function. To
determine a sample’s latency in an implementation of the graph, we need to provide a value for each d; in
the RBE task set. Realizing that d; affects latency, what should 1t be? How does d; affect latency?

We start by observing that if, Vi : 1 < i < n, d; = y; and the graph is not schedulable (i.e., (5.6) returns
a negative result) then the processor is overloaded since (5.6) reduces to the Lui & Layland feasibility test
[13] and we get 1 < >0, % We also observe that increasing d; > y; will not improve latency and, as we
will show later, increases buffer requirements. Hence, we will set d; = y; and see how this affects the upper
bound for latency values.

Figure 6 shows an execution of the SAR graph with d; = y;. In this figure, the light arrows represent the
release time for V; under the strong synchrony hypothesis and the dark arrows represent the actual release
time. We see from Figure 6 that task Zero Fill is released at times 0, yo, 2yo0, 3yo, ..., and the deadlines
corresponding to each release time is yg, 2yo, 3y, ... since d; = y1 = yo. Due to scheduling and execution
times, however, the task Window Data is not released until times 0 + e1, yo + €1, 2yo + €1, 3yo + €1, ...,
and the corresponding deadlines are 04 e; +dy = yo + €1, 2yo + €1, 3yo + €1, In this example, the first
execution of task Azimuth IFFT is released at time ¢, which is after 128yq. Its deadline is ¢ 4+ 64yq, which is
after 192yy. Also note that the 256" execution of task Azimuth IFFT completes execution by time 191y

18

— well before its deadline.

The release times shown in Figure 6 for the tasks Zero Fill and Window Data are the earliest possible
release times. As we have noted, the task Azimuth IFFT completes its 256" execution by time 191y, even
though the deadline for the first release of Azimuth IFFT is not until ¢ + 64y,. This was no accident. All of
the first 256 executions of Azimuth IFFT will be released and complete execution between 127yy and 191y,.
To see this, we must look at the earliest possible release time for the first execution of Azimuth IFFT and the
schedulability condition (5.6). From Lemma 6.2, we know that the first release of task Azimuth IFFT cannot
occur before 127y. An affirmative result from (5.6) means that there exists enough processor capacity for
nodes Ny thru Ny, 1 < i <k < mn, to execute Z—‘: - z; times during an interval of length y;. This means that
64 executions of Zero Fill, Window Data, Range FFT, and RCS Mult; 1 execution of Corner Turn; and 256
executions of Azimuth FFT, Kernel Mult, and Azimuth IFFT will all complete execution within 64y, time
units even when they are all released at the same instant (i.e., when Zero Fill is first released). We will
exploit this fact, similarly to the way Jeffay did in [9], to bound a sample’s latency.

We can use the release point derived with the strong synchrony hypothesis and add d; to get the time

at which N; will have completed execution — even if this time is less than the actual release time plus d;.

Theorem 6.3 uses this fact to provide a lower and upper bound for any sample’s latency.

Theorem 6.3. Given Ry = (1,p) and a schedulable graph in whichVi: 1 <1< n :: d; < d;1, a sample’s
latency under EDF scheduling with deadline assignment function (5.3) is bounded such that

(F(Nog, Np)—=1)-p+ Zei < Sample Latency < (F(Nog,Np)—1)-p+d,
i=1

where F(Ny, Ny,) is evaluated just before the sample’s arrival.

Proof: By Lemma 6.2, a sample’s latency in an implementation of the graph cannot be less than
(F(Ng, Np)—1)-p) since this is the latency on a infinitely fast machine. The minimum latency for a signal oc-
curs when each node in the chain must only execute once after Ny delivers the additional (F/(Ng, Np)—1) - po
tokens. Therefore the sample’s latency must be greater than or equal to (F(Ng, No) — 1) - p+ > i, €.
Let sampley, be the sample for which we are bounding latency. When the (F(Ng, N,,) — 1)t sample after
sampley, arrives, every node in the graph will fire at least once before N, produces data. Using deadline
inheritance, every task released (either directly or indirectly) from this last sample will have a deadline less
than or equal to d, time units from the arrival of the last signal. Therefore if the graph is schedulable, N,
will execute within (F(Ng, N,) — 1) - p+ d,, time units of the arrival of sampley. Hence, a sample’s latency

1s bounded such that

(F(No,N,)—=1)-p+ Zei < Sample Latency < (F(No,Np)—1)-p+d,
i=1

where F'(Ng, Ny,) is evaluated just before the sample’s arrival and Theorem 6.3 holds. O

Theorem 6.3 tells us that if a graph is schedulable by (5.6), task N; will complete execution within d;

time units of the release time calculated under the strong synchrony hypothesis. Therefore, if we let the

19

released task N; inherit the release time of its predecessor in the dataflow graph (i.e., N;_1) and calculate its
deadline by adding d; to this logical release time, we get a deadline equal to the time that Theorem 6.3 states
the task will have finished executing. Since the first node of a chain receives data from an external device, it
has no release time to inherit and its logical release time is the same as its actual release time. Consider the
execution diagram of Figure 6. Node Zero Fill is first released at time 0. The first actual release of Window
Data occurs after Zero Fill completes execution, at time e, and its deadline is set to yg + €1. The logical
release of Window Data, however, occurs at time 0 since this i1s the release time inherited from Zero Data.
(Tt is also the release time derived under the strong synchrony hypothesis.) Using the logical release time,
we get a deadline of yg for Zero Data, which is the time Theorem 6.3 gave as the upper bound for when the
task will finish execution if the task set is schedulable. Similarly, we get a logical release time of 127y, and
a deadline of 191yg for the first execution of Azimuth IFFT.

As long as the scheduler ensures that a task only executes when its input queue is over threshold, it does
not matter if N;y1 executes before N;. When the RBE task set is specified such that d; < d;41, a release of
N;y1 will never be assigned a deadline earlier than a release of N;, even when logical release times are used.
Moreover, the latency bound of Theorem 6.3 holds even when a release of N;;1 executes before a release of
Nj, which may occur when both are assigned the same deadline. The EDF scheduling algorithm does not
specify how to break ties. Hence, a variant of EDF may break ties based on topological sorting rather than
actual release times, which may result in N;;1 executing before N; when d; = d;41. Although latency is not

affected by the tie breaking algorithm, buffer bounds are. We address this issue in §7.

6.4 Reducing Latency Further

If the latency bounds derived using d; = y; do not meet the application’s latency requirements, we can
evaluate the latency with smaller deadlines. As long as we keep d; < d;41, Theorem 6.3 can be used to
evaluate new latency bounds. A simple technique to reduce the maximum latency any signal will encounter
(for a graph executing on a uniprocessor) is to iteratively decrease the maximum deadline(s) to the maximum
y; such that y; < max{d;} in the graph. For example, after a positive result from (5.6) with d, = y,, we
would set dp = y,_1, assuming y,_1 < ¥y, otherwise we would set d,_1 = dy, = yn_2. When (5.6) finally
returns a negative result we have found a “breaking point”. We can either use the deadlines from the previous
iteration or find the “breaking point” (for this technique), which lies between the deadline values used in the

last two iterations.

7 Bounding Buffers

This sections gives bounds for the buffer requirements of chains executed under the RBE model with release
inheritance, as described in the previous section. We use logical release times rather than actual release
times so that deadline ties are created during execution. These ties can then be broken based on topology
to reduce the buffer requirements from what they would be if the ties were broken arbitrarily.

Since Nj 41 represents an external device and is not scheduled, we cannot give an upper bound on @,.

20

One may assume the device takes data as it is produced and bound the buffer space for @, with p,. Or
assuming double buffering techniques (common in /O interfaces), one might bound the buffer space as 2p,.
In either case, the bound is platform specific.

Recall from Lemma 5.1 that the most tokens); can hold without being over threshold is r;. After
@; goes over threshold, the number of tokens that can accumulate on the queue is a function of dataflow
attributes, deadlines, and the scheduling algorithm.

We have derived buffer bounds for preemptive EDF scheduling and two variations of EDF: Breadth-First
EDF (BF-EDF) and Depth-First EDF (DF-EDF). The names for these EDF variants become apparent
when one looks at a possible scheduling graph, which is used to break deadline ties. A scheduling graph is a
topologically sorted graph of vertices representing releases of RBE tasks with the same deadline. The graph
is sorted with respect to the dataflow graph and all jobs in the graph have the same deadline. Consider the
scheduling graph in Figure 7 — a possible snapshot of the ready queue for the SAR graph after Pulse 128

Va
Azimuth
FFT

Azimuth
IFFT

Figure 7: A scheduling graph.

has been processed by the Corner Turn node. The BF-EDF scheduling algorithm performs a breadth-first
search of eligible jobs, beginning at the left most side of each level. Hence, the BF-EDF algorithm would
select the Azimuth FFT task followed by the left most release of Kernel Mult. Using the labels a, b, ¢, d,
and e to refer to the tasks releases in Figure 7, BF-EDF would schedule them in order: a, b, ¢, d, d’, e
and e* where d’ represents the new release of Kernel Mult caused by the execution of Azimuth FFT and e*
represents the new releases of Azimuth IFFT, which result from executions of Kernel Mult. The DF-EDF
scheduling algorithm performs a depth-first search of eligible jobs by traversing down the left most side of
the tree until it reaches a leaf. In this case, DF-EDF would select the Azimuth IFFT task to execute followed
by the left most release of Kernel Mult. A DF-EDF schedule, starting with the schedule graph of Figure 7,

"

would be e, b, €', ¢, ", d, €', a where €', €’ and e’ are new releases of Azimuth IFFT caused by the

executions of Kernel Mult.

21

7.1 Buffer Bounds for EDF Scheduling

We begin the process of bounding the buffer requirements of a graph by observing that when d;+1 > d;, the
buffer bound for ; is the same for all EDF variant scheduling algorithms that use release time inheritance to
schedule PGM graphs. The case of d;11 > d; prevents deadline ties from occurring; hence, the tie breaking
algorithm has no impact on the buffer bound for @;. When d;11 > d; and d;1 > yo, we can bound the

buffer requirements of @@; independent of the number of tokens that may accumulate on @;_1.

Lemma 7.1. For EDF scheduling algorithms with release time inheritance, if Ry = (1,p) and dj41 >
d; N djt1 > yo, the mazimum buffer space required by Q; of a schedulable graph is less than or equal to

Beppr(Qi) = ([ZH] -2 -pi)+ri if (1>0 A ((dign >di A yo<dig1 <wi) V (di <y <dig1))

(1% 2 p) 4 if(i>0 Ay <di <diga)

(7.1)
Proof: The proof proceeds by cases.

Case 7 = 0: The bound for @y is independent of the tie breaking algorithm since Ny is not scheduled; it
adds pg tokens to @y at times 0, yo, 2y0, 3yo, - . - independent of the scheduling algorithm. Therefore, when
N is released at time kyo (for some non-negative integer k), it will will be assigned a deadline of kyg + d;.

If d; < yq, then all executions of Ny released prior to kyg will have completed execution by time ky, and
the release of Ny at kyy will complete by kyg 4+ d1. Therefore, the maximum number of tokens that can be
on @@; at any time is pg + rg = ([Z—;] po) + 7o and Lemma 7.1 holds for ¢ = 0 and dy < yg. Consider the
case in which d; > yy. During any interval of length di, Ny can produce at most ([Z—H - po) tokens. If the
interval begins with 7 tokens on ()¢ then Lemma 7.1 holds.

What if the interval begins with 79 or more tokens on Qo7 Let k’yo be the last time (); went over threshold
such that just before the produce of Ny at time k’yg, Qg held less then 7y tokens. Pick a time kyg such that
k'yo < kyo < k'yo + di. At most ([d—;] - po) tokens will be produced during the interval [k'yo, k'yo + d1).

y
After the [£2] releases of Ny with deadline k'yo + di complete execution, @; will contain at most

| (121 mon)- 121

tokens. During every yo time units between k'yg + d1 and kyg + d1, between LZ—EJ and [Z—g] deadlines for Ny
will come due and the number of tokens on ()1 can never become greater than the bound for the interval of
[k'yo, k'yo + d1), which is ([z—;] - Po + 7o) tokens in this case. Therefore, Lemma 7.1 holds for i = 0.

Case 1 >0 A diy1 > d;i N yo <dip1 <yt Observe dip1 < yi = [%—‘ = 1. Let kyo be the release
time of the first execution of N; that will put @; over threshold. With release time inheritance, the deadline
of Nit1 is kyo + di41 and kyg + d; < kyo + diy1 < kyo + yi. At most z; releases of N; will be assigned
deadlines between kyo and kyo + y;. Therefore, @); will contain no more than z; - p; + r; tokens during this
interval. Pick kyy such that the number of tokens on @; is greater than 7;, then following the proof for
the case of i = 0, we see that (); is still bounded from above by [%—‘ ~x; - pi + r; and (7.1) holds for

1>0 A di+1>di A y0§d1+1<yi.

22

Case 1 > 0 A d; <y <digs1: Let kyo be the release time of the first execution of N; that will put @Q;
over threshold. With release time inheritance, the deadline of N;11 is kyg + d; 41 and kyo + d; < kyo +y; <
kyo + diy1. At most z; releases of N; will be assigned deadlines between kyo and kyo + yi. If dip1 = v,

ds

Yi

then d; < y; = d;41 and @; will never contain more than z; - p; + r; = [—‘ -&; - p; + r; tokens during this
interval.
If diy1 > yi, then d; < y; < dijy1. Any releases of N; that occur at time kyo + y; will be assigned

deadlines of kyo + y; + d; and it may be the case (depending on the actual values of d;, y;, and d;41) that

kyo+ yi + di < kyo +dip1. If di < yi < dijy1 < 2y; then at most [d‘:l] -z - p; = 2x; - p; tokens will be
added to the queue during the interval [kyo, kyo + diy1). Simple induction shows that (7.1) holds for all
values of d;41 such that, for some 7 > 1, d; < y; < diy1 < jy; when the interval begins with at most r;
tokens. Pick kyg such that the number of tokens on @; is greater than r;, then following the proof of the
same case for ¢ = 0, we see that @); is still bounded from above by [%—‘ ~&; - pi + 7 and (7.1) holds for
i>0 A di <y <dig1.

Case 1 > 0 A y; < d; < dip1: Let kyo be the release time of the first execution of N; that will put @Q;
over threshold. With release time inheritance, the deadline of N;;1 is kyo + diy1 and kyo + v < kyo + d; <
kyo + diy1. Let d; and d;41 be defined such that y; < d; < dijj1 < 2y;. At most z; releases of N; will
be assigned deadlines during kyg and kyg + y;, and any more releases of N; before kyy + y; will not have
deadlines before kyo + 2y;. Therefore, at most z; deadlines of N; will elapse between kyo and kyo + diyq1. If
diy1 = 2y;, 2z; executions of N; will complete before kyy + diy1, the deadline for N;41. Simple induction
on the magnitude of d; ;1 shows that (7.1) continues to bound the buffer requirements of @;. If the number
of tokens on @; is greater than r; at release time kyg, then following the proof of the same case for : = 0, we

see that @; is still bounded from above by V;?J ~z;-pi+r;and (7.1) holds for i > 0 A y; < d; < djy1. O

The EDF scheduling algorithm does not specify how deadline ties are broken, and the buffer requirements
of a queue are greatest when breadth-first scheduling is used to break deadline ties between two eligible nodes.
Thus, to bound a queue’s buffer requirements, we must assume that whenever a deadline tie is possible it

may be broken by performing a breadth-first search of the scheduling graph.

Lemma 7.2. For EDF scheduling algorithms with release time inheritance that may break ties using a
breadth-first search of the scheduling graph, if Ry = (1, p), the mazimum buffer space required by Q;, Vi > 0,

of a schedulable graph is less than or equal to

([4+1 - po) + ro ifi=0
([42] @i pi) + 7 >0 A digr >di A yo < dip1 < ui)
Bpr(Q;) = V(>0 A di <y <dig1)
(L5] 2 pi) + 7 >0 A y<di <dig)
(|ZetQmtimmas | 1) piri otheruise (i i> 0 A (dig = di V di < digr <)

(7.2)

Proof: The proof proceeds by cases.

23

Case i = 0: By Lemma 7.1, the upper bound for Qo is ([2] - po + 7o) tokens in this case. Therefore,

Yo
(7.2) holds for 7 = 0.
Case 1 >0 Adiy1 > di AN yo <dip1 <yt By LemmaT.1, Q; is bounded from above by [d;l—‘ TP+

i

and (7.2) holds for i >0 A dijy1 >di A yo <diy1 < y;.

Case i >0 A d; < y; <dijy1: By Lemma 7.1, @Q; is bounded from above by [d;l—‘ -z p;+r; and (7.2)

holds for ¢ >0 A d; <y < diy1.

Case i >0 A y; <d; < diy1: By Lemma 7.1, @; is bounded from above by V‘:IJ -~z p;+r; and (7.2)
holds for ¢ >0 A y; < d; <djyq.

Case i >0 A (djp1 =d; V d; <diy1 <yo): (by induction on) Let ¢ = 1 and kyg be the release time
of the first execution of Ny that will put @1 over threshold. If d; < d;41 < yo, then all eligible releases of
N; and N will complete execution before (k + 1)yo. Under EDF scheduling, all eligible executions of Ny
will complete before any eligible executions of N3. Therefore the maximum number of tokens that will be
on Q1 is based on the number of times Ny executes in [kyg, (k+ 1)yo), which is based on the maximum size
of Qg in the same interval. From the proof for the case of i = 0, we know that @y will never contain more

than Bpr(Qo) tokens. From Lemma 5.2 we know that given Bpp(Qo) > 7o tokens on Qq, N1 will execute
({%J + 1) times. Therefore, (1 will contain at most ({%J + 1) - p; + r; tokens
and (7.2) holds for i = 1 and d; < diy1 < yo.

If d;y1 = d;, then all releases of Ny at time kyo will have the same deadline as any releases of Ny caused
by the execution of Ny in the interval [kyo, kyo + d1). Moreover, the next possible deadline for Ny or Ny is
(k+ 1)yo. Observe that the maximum number of tokens will accumulate on @1 when all released executions
of N; complete before any released executions of Ns. Such is the case when a breadth-first search of the
scheduling graph is used to break deadline ties. Therefore if deadline ties are broken using a breadth-first
search of the scheduling graph, the maximum number of tokens 1 can have is determined by the maximum

number of executions of N; that can be released at kyg. From the previous paragraph, we know that this

is ({%J + 1). Therefore,)1 will contain at most ({%J + 1) - pi + 7; tokens and
(7.2) holds for i = 1 and d; = d;4;1.

By the induction hypothesis on i, assume (7.2) holds for Vi: 1 <i<n—1. Let i=n—1and d; = di41
(i.e., dn—1 = dpn). The proof that (7.2) holds for i = n — 1 and d; = d; 41 follows the same proof used for

i = 1 and we see that (7.2) holds for all ¢ such that 0 < i < n. O

Since EDF does not specify how ties are broken, we need to sum Bpp(Q;) over all of the queues in the

chain to bound a graph’s simultaneous buffer requirements.

Theorem 7.3. For EDF scheduling with release time inheritance, if Ry = (1,p) and diy1 > d;, Vi: 0<i<

n, the marimum buffer space required is less than or equal to E?:_(Jl Bpr(Q;).

Proof: From Lemma 7.2, the maximum space @; will require is Bpp(Q;). Since EDF does not specify
how ties are broken, we need to sum Bpr(Q;) over all of the queues in the chain to bound a graph’s

simultaneous buffer requirements. Therefore, the maximum buffer space required is less than or equal to

>iZo Ber(Qi). O

24

If deadline ties are broken in a deterministic manner specified by the deadline driven scheduling algorithm,

we can get a much tighter bound on buffer requirements.

7.2 Buffer Bounds for BF-EDF Scheduling

The BF-EDF scheduling algorithm is an EDF algorithm in which deadline ties are broken by performing a
breadth-first search of the scheduling graph. The function Bpr(Q;), (7.2), returns the maximum number
of tokens the i*" queue will ever hold when deadline ties may be broken with a breadth-first search of the
scheduling graph. The BF-EDF algorithm always breaks ties with a breadth-first search of the scheduling
graph, so we can use Bpr(Q;) to bound the memory needs of @); when a schedulable graph is executed under
BF-EDF scheduling. When d; < d;41, Vi > 0, no deadline tie is possible and Theorem 7.3 bounds the graphs
buffer requirements for BF-EDF scheduling as well as EDF scheduling. When there exists consecutive nodes
in the chain with the same deadline, however, we can reduce the buffer bounds for the graph.

Consider the case when d; = d;41, Vi > 0. Since EDF does not specify how ties are broken, we had to
sum Bpr(Q;) over all of the queues in the chain to bound a graph’s simultaneous buffer requirements. With
BF-EDF, however, we know that, ¥j > ¢ > 1, any release of N; will execute before a release of N; when
N; and N; both have the same deadline. When N; executes, it reads data from (;_; and writes data to
Q; — using both queues simultaneously. By the time ;11 executes, however,);_; will be under threshold
and will hold at most r;_; tokens. Much of the space that was used by @;_1 when N; was executing can be
reclaimed and used by ;41 to hold the data produced by N;; 1. Therefore the total buffer space required
for Q;-1 and @Q;41 is

max{Bpr(Qi—1) — i1, BBr(Qit1) — rix1} + ric1 + rig1.

Theorem 7.4 divides the queues into two disjoint sets and uses this technique to bound the total buffer space

required by the chain when all of the nodes have the same deadline values.

Theorem 7.4. For the BF-EDF scheduling algorithm with release time inheritance, if Ry = (1,p) and

diy1 = di, Vi :0 < i< n, the marimum buffer space required is < 3, where

B = Bpr(Qo) + max{Bpr(Qk) —rr |Vk=2i:i>0 A k<n}
+max{Bpp(Qx) — 7k |[VE=2i—1:i>0 A k<n}—|—nz_:1ri (73)
i=1
Proof: Let the last queue in the chain be labeled @,,. Then the chain has n + 1 queues and n + 2 nodes.
The proof proceeds by case for n = 0...3, and by induction on n for n > 3.
Case 1: n =0 — one queue and two nodes. The theorem holds vacuously for n = 0.

Case 2: n =1 — two queues and three nodes as in the graph of Figure 8.

Since N represents an external device, we do not bound the space for (J; and the total buffer space

25

‘ Qo o)

Figure 8: n =1 =— 3 node chain

required by the 2 queue (3 node) chain is 3 where

£ < Bpr(Qo)
= Bpr(Qo) + max{Bpr(Qk) — s | Vk=2i:i>0 A k< 1}

0
+max{Bpr(Qr) —rr |Vk=2i—1:i>0 A k<1}+2ri

i=1
and (7.3) holds for n = 1.

Case 3: n =2 — three queues and four nodes as in the graph of Figure 9.

‘ Qo o)) Qs

Figure 9: n =2 =— 4 node chain

Since N3 represents an external device, we do not bound the space for (3 and the total buffer space
required by the 3 queue (4 node) chain is 3 where
B < Bpr(Qo) + Bpr(Q1) = Br(Qo) + (Ber(Q1) — 1) +

= Bpr(Qo) + max{Bpr(Qr) — & |[VE=2i:1>0 A k <2}
1
+max{Bpr(Qr) — 711 |Vk=2i—1:1>0 A k<2}+zri

i=1
and (7.3) holds for n = 2.

Case 4: n =3 — four queues and five nodes as in the graph of Figure 10.

‘ Qo Q1 Qs Qs

Figure 10: n =3 = 5 node chain

Since N, represents an external device, we do not bound the space for 3 and the total buffer space

26

required by the 4 queue (5 node) chain is 3 where
B < Bpr(Qo) + Bpr(Q1) + Bpr(Q2) = Bpr(Qo) + (Br(Q1) — 1) + 1 + (Br(Q2) —r2) + 72
= Bpr(Qo) + max{Bpr(Qr) — 75 |Vk=2i:1>0 A k <3}

2

+max{Bpr(Qr)—7rs |Vk=2i—1:1>0 A k<3}—|—Zri

i=1
and (7.3) holds for n = 3.
Case 5: by induction on n. Let n = 4 be the base case such that Ny and N, 41 represent external devices

as in the six node graph of Figure 11.

Figure 11: n =4 — 6 node chain

Theorem 7.4 does not bound the buffer space for @, so its space does not contribute to the total bound.

Since Ny is not scheduled but Ny is and d; > yo is allowed, Bpr(Qo) must be included in the upper
bound. When N; executes it reads data from Qg and writes data to)1 — using both queues simultaneously.
When Ns executes it reads data from @, and writes data to Q2 and all three queues may be needed at the
same time. When N3 executes, however, (J; will be under threshold and will hold at most r; tokens. Much
of the space that was used by J; when N, was executing can be reclaimed and used by @3 to hold the data
produced by Nj. Therefore, the total buffer space required for the 4 queues is 8 where

B < Bpr(Qo) + Bpr(Q2) + max{Bpr(Q1) —r1, Bpr(Qs3) —r3} + 1+ 73
= Bpr(Qo) + (Bar(Q2) — r2) + max{Bpr(Q1) — 1, Bpr(Qs) —rs} +r1 +ra+r3
= Bpr(Qo) + max{Bpr(Qx) —rx |VE=2i:i>0 A k <4}

3
+max{Bpp(Qk) — 7k |Yk=2i—1:i>0 A k<4}+> r

i=1
and (7.3) holds for n = 4. Assume by the induction hypothesis that (7.3) holds for 4 <n < N. Let n = N.
Recall we do not count the space for @, since N, 1 represents an external device and the bound on @, is
platform specific.
Observe that when N, _; executes under BF-EDF scheduling, Yk : 1 < k£ < (n — 1), Qx must be under
threshold. If n is even,
B < Bpr(Qo)+max{Bpr(Qr) — 75 |Vk=2i:1>0 A k <n}

n—1

+ max{Bpr(Qn-1), max{Bpr(Qr) —rx |[VE=2i—1:i>0 A k<n-—1}}+ E r;
i=1
= BBF(QO) —|—max{BBF(Qk) — L | Ve=2i:i<0 A k< 77,}

n—1

+max{Bpr(Qr)— 75 |VEk=2i—1:i>0 A k<n}+2ri

i=1

27

Similarly, if n is odd, the total buffer space for all queues must be less than or equal to 7 where

8 < BBF(QO) +HlaX{BBF(Qn_l),HlaX{BBF(Qk) — 7 | Ve=21:1>0 A k<n-— 1}}

n—1
+max{Bpr(Qr) — 75 |[Vk=2i—1:i>0 A k<n}+2ri
i=1
IBBF(QQ)—I—maX{BBF(Qk)—T’k |Vk:2iii>0 A k<n}
n—1
+max{Bpr(Qr) — 75 |[VE=2i—1:i>0 A k<n}—|—2ri
i=1

In either case, (7.3) holds for n = N. Therefore by induction, Theorem 7.4 holds for d;11 = d;, Vi: 0 < i < n.
O

Depending on the d; values, we may be able to use variations of the techniques shown in this section to
get tighter buffer bounds for a specific graph than either Theorem 7.3 or Theorem 7.4. We leave open the
problem of finding a tight buffer bound for generic chains executed with the BF-EDF scheduling algorithm.

7.3 Buffer Bounds for DF-EDF Scheduling

The DF-EDF scheduling algorithm is an EDF algorithm in which deadline ties are broken by performing a
depth-first search of the scheduling graph. For some applications, breaking deadline ties with a depth-first
search of the scheduling graph rather than a breadth-first search results in a lower upper bound on buffer
requirements for the graph. The function Bpp(Q;) returns the maximum number of tokens @; will ever hold
when the graph is scheduled with release inheritance and DF-EDF. This function is used in Theorem 7.6 to
bound the total buffer space required for the graph to execute with DF-EDF scheduling.

Lemma 7.5. For the Depth-first EDF scheduling algorithm with release time inheritance, if the graph is
schedulable, Ry = (1,p), and d;y1 > d;, Vi :0 < i < n, the mazimum buffer space required by Q; is less than

or equal to
([- po) + o ifi=0
([d;tl] xi - pi) T f(i>0 A digr >di A yo < digr < i)
V(>0 A di <y <djt1)
Bpr(Q:) = o = 74
or(Qi) ([%J%Pl)%—?‘z if(i>0 Ay <d;i <diqr) (7.4)

QBBF(Q;__II)_T_I_IJ + 1) cpitr fi>0 A di<dig1 <o
pi + 7 otherwise (i.e., i >0 A diy1 =4d;)

Proof: The proof proceeds by cases.
Case ¢ = 0: By Lemma 7.1, the upper bound for Qg is ([Z—;] - po + 7o) tokens in this case. Therefore,
(7.4) holds for 7 = 0.

Case 1 >0 A diy1 > di AN yo <dip1 <yt By LemmaT7.1, Q; is bounded from above by [

dit1
y+ -"l’i'pi‘FT’i

and (7.4) holds for i >0 A diy1 >di A yo <diy1 < y;.

Case i >0 A d; < y; <diy1: By Lemma 7.1, @; is bounded from above by [d;ﬁ—‘ -z p;+r; and (7.4)

holds for i > 0 A d; < y; < diy1.

28

Case 1> 0 A y; <d; <d;y1: By Lemma 7.1, Q; is bounded from above by V;%J -z p;+r; and (7.4)
holds for ¢ >0 A y; < d; < djy1.

Case i >0 A (diy1=d;i V di <diy1 < yo): (by induction on i)

Case i > 0 A d; < diy1 < yo: (by induction on i) Let i = 1 and kyo be the release time of the first
execution of N; that will put @ over threshold. If d; < d;41 < yo then all eligible releases of N1 and Nj
will complete execution before (k + 1)yg. Therefore the maximum number of tokens that will be on @
is based on the number of times Ny executes in [kyo, (k + 1)yo), which is based on the maximum size of

o in the same interval. From the proof for the case of : = 0, we know that @y will never contain more

than Bpr(Qq) tokens. From Lemma 5.2 we know that given Bpr(Qo) > m tokens on Qq, N1 will execute

({M%@J + 1) times. Therefore, ()1 will contain at most ({M%@J + 1) - p; + r; tokens
and (7.1) holds for i = 1 and d; < diy1 < yo.

By the induction hypothesis on i, assume (7.4) holds for ¥i : 1 < i < n—1. Let i = n—1 and
i>0 A d; <dit1 < yo. The proof that (7.4) holds fori =n—1and i >0 A d; < diy1 < yo follows the
same proof outlined above and we see that (7.4) holds for all i such that 0 <i < n.

Case i >0 A d;y1 = d;t (by induction on i) Let i = 1 and kyo be the release time of the first execution
of N; that will put @1 over threshold. If d;;1 = d;, then all releases of Ny at time kyy will have the same
deadline as any releases Ny caused by the execution of Ny in the interval [kyo, kyo+d1). Moreover, the next
possible deadline for Ny or Ny is (k + 1)yo. Since DF-EDF breaks deadline ties with a depth-first search of
the scheduling graph, releases of Ny with the same deadline of Ny will execute before the release of N; and
the maximum number of tokens @)y can have is p; + r1. Therefore, (7.4) holds for i = 1 and d; = dj41.

By the induction hypothesis on i, assume (7.4) holds for Vi: 1 <i<n—1. Let i=n—1and d; = d;41
(i.e., dn—1 = dp). The proof that (7.4) holds for i = n — 1 and d; = d;4; follows the same proof outlined
above and we see that (7.4) holds for all i such that 0 <i < n. O

Theorem 7.6. For DF-EDF scheduling with release time inheritance, if Ry = (1, p) and diy1 > d;, Vi : 0 <

t < n, the mazimum buffer space required is less than or equal to Zz;é Bpr(Qk).

Proof: From Lemma 7.5, the maximum space @y will require is Bpp (Qx). Therefore, the maximum buffer

space required is less than or equal to Z:;é Bpr(Qk). O

When the graph is scheduled with the BF-EDF algorithm and d;41 = d;, Vi : 0 < 7 < n, Theorem 7.4
provides a tighter bound on the buffer space required by the graph than Theorem 7.3 by reclaiming unused
buffer space. Unfortunately we cannot use the same technique when the graph is scheduled with the DF-EDF
algorithm to get a tighter bound than Theorem 7.6 provides. To see this, consider the graph of Figure 12
and let Rg = (1, p). Under DF-EDF scheduling, every time N, executes, Q3 will require space for 4 tokens.
At the same time @7 will require space for 6 tokens (not r; = 0 as it does with BF-EDF scheduling).

We leave open the problem of finding a tight buffer bound for generic chains executed with the DF-EDF
scheduling algorithm.

29

Figure 12: 6 node chain scheduled with the DF-EDF algorithm

7.4 Buffer Bounds for the SAR graph

This section develops buffer bounds for the SAR graph using different d; values and scheduling algorithms
by applying Theorems 7.3, 7.4, and 7.6. The SAR graph of Figure 1 is replicated below in Figure 13 to make
it easier to follow the derivations.

@ Range Full

Window RFFT

NG et U1) Pl W77 Perae 110 P
p=118 7=118" 256 256\ P J 956 256, 256 256,
=118 256 256 256
256
RCS
256-128,
256-64
Image Mult AFFT Azimuth
-+ -+ -+ -+
=128, p=128 128, 128 128, 128 128, 256-128
c=128 128 128 128

Figure 13: SAR Graph

We begin by finding the minimum buffer space required to execute the graph. This occurs when we set
di = yo, Y2 > 0, assuming we have a fast enough CPU that the graph is schedulable with these deadline
values. Observe that d; = yo, Vi > 0, also minimizes the latency any sample will encounter. Let Ry range =

(1,3.6ms), as in Example 5.3, and each d; = 3.6ms. We will also use the r; values derived in Example 5.2.

EDF and BF-EDF Scheduling with d; = yg. To bound the graph’s buffer needs when it is executed
with either canonical EDF or BF-EDF scheduling, we first need to bound the buffer requirements of each

queue using Bpr(Q;), (7.2):

dzero Fill

Bpr (QO = Ra'nge) = -‘ : pRange) + TRange

YY Range
S'Gmﬂ : 118) +0=118

3.6ms

B - ange
Bpr(Q1 = Fill) = sr (Range) = 7rong

J + 1) “PFill + TRl

CRange

118 — 118
TJ _|_1) 2564+ 0= (0+1)-256 = 256

30

BBF(FZ”) — TF3ll

CFill

256 — 256
TJ +1) -256 40 = (04 1) - 256 = 256

Bpr(Q2 = Window) =

J + 1) *PWindow + "Window

BBF (WZTLdOw) — TWindow

J + 1) “PRFFT + TRFFT
CWindow

256 — 256
TJ +1) 1256+ 0 = (0 + 1) - 256 = 256

BBF(RFFT) — TRFFT

CRFFT

256 — 256
2P)2 256 - 12
556 J +) 56 + (256 - 127)

= 256 + (256 - 127) = 256 - 128 = 32768

J + 1> “Prcs + Trcs

(
(
(
(
(
(

Bpr(Qs = Azimuth) = QBBF(RSQ?S_ s

/] (256 - 128) — (256 - 128)
- 256 - 64
= 256 - 128 = 32768

J + 1) s PAzimuth + TAzimuth

J+1)-(256~128)—|—0

Bpr(Azimuth) — Tazimuth

Bpr(Qs = AFFT) = <{ J + 1) “PAFFT + TAFFT

CAzimuth
(256 - 128) — 128
= 1])-12
(|t)

= (2554 1) - 128 = 256 - 128 = 32768

BBF(AFFT) — TAFFT

Bpr(Q7 = Mult) = <{ J + 1) “PMult + TMult

CAFFT
/] (256 128) — 128 ,
- Q 8 +1)-128+0

= (2554 1) - 128 = 256 - 128 = 32768

These results are summarized in Table 1.
By Theorem 7.3, the total buffer space required to execute the SAR graph with EDF scheduling when
d; = yo = 3.6ms is less than or equal to Z?:_(Jl Bpr(Q;) = 131,958. By Theorem 7.4, if BF-EDF scheduling
is used when d; = yg = 3.6ms, the required buffer spaced is less than or equal to g where
8= BBF(QO) —|—max{BBp(Qk) — T | Ve=2i:i>0 A k< 77,}

n—1

+max{Bpr(Qr) — 75 |[Vk=2i—1:i>0 A k<n}+2ri
i=1

= 1184 32,768 + 32,768 + 32,512 = 98,116

31

Queue | Bpr(Q:) | Bpr(Qi) | Br(Q:i) | Bor(Q:)
d; = yo d; = yo d; = y; d; = y;

Range 118 118 118 118

Full 256 256 256 256
Window 256 256 256 256
RFFT 256 256 256 256

RCS 32,768 32,768 48,896 48,896
Azimuth | 32,768 32,768 32,768 32,768
AFFT 32,768 128 32,768 128
Mult 32,768 128 32,768 128

Table 1: Maximum buffer space required per queue evaluated with Bpr(Q;) and Bpr(Q;).
DF-EDF Scheduling with d; = yo. To bound the graph’s buffer needs when it is executed with DF-EDF
scheduling, we first need to bound the buffer requirements of each queue using Bpr(Q;), (7.4):

dzero Fill
BDF(QO = Range) = <|'& *PRange | + TRange
YY Range

3.6ms
= 211 =11
<[3.6m3-| 8> +0 8

prin + rrin = 256 + 0 = 256

BDF(Ql = FZ”
BDF(Q2 Window PWindow + "Window = 256 + 0 = 256

Bpr(Qs = RFFT) = prrrr + rrrFT = 256 + 0 = 256

BDF(Q5 Azimuth) = PAzimuth + TAzimuth = (256 . 128) —+ 0 = 32768

)=
)=
) =
Bpr(Q4 = RCS) = pres + rres = 256 + (256 - 127) = 256 - 128 = 32768
)=
Bpr(Qs = AFFT) = pappr + rarrr = 128 +0 =128

)=

Bpr(Q7 = Mult) = paruie + rarure = 128 4+ 0 = 128

These results are summarized in Table 1.
By Theorem 7.6, the total buffer space required to execute the SAR graph with DF-EDF scheduling
when d; = yo = 3.6ms is less than or equal to Z?:_ol Bpr(Q;) = 66,678.

Scheduling with d; = y;. Now consider what happens to the buffer bounds when Vi > 0 : d; = y;. Table 1
shows the values returned from Bpr(Q;) and Bpr(Q;) for each queue in the SAR graph with d; = y;. Notice
that only the queue labeled RCS is affected by the new deadline values. This is because the Corner Turn
node acts as a gating node in which its deadline is 64 times greater than the RCS Mult node, but the deadline
values for the remaining nodes are the same as the Corner Turn node. Since i > 0 and y; < d; < djt1,

Bpr(Q;) and Bpr(Q;) for the queue labeled RCS are evaluated with the same expression:

d orner urn
Bpr(Qs = RCS) = Bpr(Q4 = RCS) = Bgpr(Q4 = RCS) = ([iJ “ZRCS Mult - PRCS) + TRCS

YRCS Mult
64 - 3.6
= ([Tmznsj +1-256) + (256 - 127) = (64 - 256) + (256 - 127) = 256 - 191 = 48,896

32

By Theorem 7.3, the total buffer space required for the graph to execute with EDF or BF-EDF scheduling
is less than or equal to 148,086 tokens. Since d;41 # d;, Vi, Theorem 7.4 is not applicable.

By Theorem 7.6, the total buffer space required to execute the SAR graph with DF-EDF scheduling
when d; = y; is less than or equal to E?:_ol Bpr(Qi) = 82, 806.

We have already established that Theorems 7.3, 7.4, and 7.6 are upper bounds on buffer needs for the
graph, depending on deadline values and scheduling algorithms. For some graphs, these may even be least

upper bounds. We show in the next section, however, that these are not tight bounds for the SAR graph.

7.5 Reducing Buffer Bounds Further

We are able to reduce the buffer bounds derived in §7.4 by taking advantage of specific attributes of the
SAR graph and features of the scheduling algorithms. Since EDF scheduling does not specify how deadline
ties are broken, we cannot reduce the buffer bounds from what we have already established for canonical
EDF scheduling. We can, however, take advantage of the deterministic tie breaking algorithms of BF-EDF
and DF-EDF to find lower buffer bounds. Since the first queue in the graph accepts data from an external

device, we will always include its maximum buffer needs in our new bounds.

BF-EDF Scheduling with d; = yo. Observe that for the SAR graph when the nodes after the Corner
Turn node execute, the queue labeled RCS will only contain 256 - 64 tokens. Moreover, the queues labeled
Azimuth, AFFT, and Mult can only contain tokens between the time the Corner Turn node executes and the
next time the source node delivers data. Therefore, we can get by with 118 + 32, 768 4 32, 768 + (256 - 64) =
82,038 tokens.

Taking the analysis further and fully exploiting the properties of the SAR graph, we observe that when
the Azimuth FFT node executes it appends 128 tokens to its output queue and then consumes 128 from
its input queue. Thus the total number of tokens left on its input and output queues does not change,
and the total number of tokens on the two queues at any one time is never more than 32,768 4+ 128. But
when the Azimuth FFT node executes, the input queue to the Corner Turn node only contains 16, 384
tokens. Therefore, we can actually reduce the buffer bound for BF-EDF scheduling of the SAR graph when
Vi>0:d; = yo =3.6ms to 118 4+ 32,768 + 32, 768 = 65, 654 tokens.

DF-EDF Scheduling with d; = yg. Since Vi > 0 : d; = yo = 3.6ms, we can reduce the bound on the
buffer requirements with DF-EDF scheduling even further by taking advantage of specific features of the SAR
graph. Observe that when node Window Data, Range FFT, or RCS Mult executes its input queue contains
at most 256 tokens, and it produces 256 tokens on its output queue before consuming the 256 tokens on the
input queue. Therefore the queues labeled Fill, Window, and RFFT never contain more than (256 + 256)
tokens between them at any one time. When they contain any tokens, the queues labeled Azimuth, AFFT,
and Mult are empty, and this latter set of queues never contain more than 128 + (256 - 128) tokens at one
time. This maximum occurs during the 1% execution of the Azimuth FFT node after the Corner Turn

node produces (256 - 128) tokens, which means the queue labeled RCS contains (256 - 64) tokens when this

33

maximum occurs. Therefore, we can actually reduce the buffer bound for DF-EDF scheduling of the SAR
graph when Vi > 0 :d; = yg = 3.6ms to 118 4+ 32,768 4+ 32, 768 = 65, 654 tokens.

BF-EDF Scheduling with d; = y;. Now consider what happens to the buffer bounds when Vi > 0: d; =
y;. By Theorem 7.3, the total buffer space required for the graph to execute with BF-EDF scheduling is less
than or equal to 148,086 tokens. Observe that the queues labeled Azimuth, AFFT, and Mult can only contain
tokens between executions of the Corner Turn node since they have the same deadline. Therefore, these
three queues never contain more than a total of (32,768 + 128) tokens. The queues labeled Fill, Window,
RFFT, and RCS never contain more than (256 + 48,896) tokens, but if these queues contain this many
tokens then the queue labeled Azimuth must be empty. Whenever the queues labeled Azimuth, AFFT, or
Mult contain tokens, the queue labeled RCS can hold at most rreg = 32,512 tokens. Hence, we can get by
with space for 118 4 48,896 4+ 32, 768 = 81, 782 tokens.

DF-EDF Scheduling with d; = y;. By Theorem 7.6, the total buffer space required to execute the SAR
graph with DF-EDF scheduling when d; = y; is less than or equal to Z?:_ol Bpr(Qi) = 82,806. For the
SAR graph, we can reduce this bound further.

Setting d; = y; implies d; = 3.6ms for nodes Zero Fill, Window Data, Range FFT, and RCS Mult. The
rest of the nodes in the graph have d; = 64 - 3.6ms, and the Corner Turn node has a rate of (1,64 - 3.6ms).
Therefore, the buffer needs are maximized when the Corner Turn node accumulates as much data as possible
before executing, which then enables 256 executions of each of the subsequent nodes in the chain. Let the
release time of the Corner Turn node be 127 - 3.6ms. The deadline for this release is (127 - 3.6ms) + (64 -
3.6ms) = 191 - 3.6ms. Observe that the 191" release of the Zero Fill node occurs at time 190 - 3.6ms
(assuming the first release was at time 0), and the deadline for this release will be 191 - 3.6ms. With DF-
EDF scheduling, the Corner Turn node will execute before this release of the Zero Fill node. Thus, at most
190 - 256 = 48, 640 tokens can accumulate on the queue labeled RCS before the Corner Turn node executes,
produces 32,768 tokens on its output queue (the queue labeled Azimuth), and consumes 16, 384 tokens from
its input queue (the queue labeled RCS). Since the data is produced on its output queue before data is
consumed from the input queue, the total buffer space required when the Corner Turn node executes in
the interval (190 - 3.6ms, 191 - 3.6ms) is 48,640 + 32, 768 tokens. The 256 executions of each down stream
node (i.e., the nodes Azimuth FFT, Kernel Mult, and Azimuth IFFT) will inherit the release release time
127-3.6ms and be assigned deadlines of 191-3.6ms. Since these nodes are scheduled with DF-EDF | the buffer
requirements are maximized during the 1%! execution of the Azimuth FFT node. This node will produce
128 tokens before it consumes 128 of the 32,768 tokens on its input queue. Hence, the maximum number
of tokens on these queues is 32,768 4+ 128 tokens, and this occurs when the queue labeled RCS contains
16, 384 tokens. Putting all of this together, we see that, when d; = y; and the SAR graph is scheduled with
DF-EDF, the queues will contain at most 118 + 48, 640 + 32, 768 = 81, 526 tokens at any one time.

34

8 Summary

In most “real-time” dataflow methodologies, system engineers are unable to analyze the real-time properties
of dataflow graphs like those created using PGM. We have shown that this is not an intrinsic property of
the methodologies, and that by applying scheduling theory to a PGM graph, we can determine exact node
execution rates, which are dictated by the input data rate and the dataflow attributes of the graph. We have
also shown how to bound latency and buffer requirements for an implementation of the graph scheduled with
the preemptive EDF algorithm (and variations thereof) under the RBE task model.

Given a graph, the only free parameters we have to affect the latency or buffer bounds of the application
are deadlines. If the latency requirement of the application is less than the latency value from the strong
synchrony hypothesis (i.e., (F(No, Nn)—1)-y0), then the given graph will never meet its latency requirement.
If the latency requirement is greater than the strong synchrony hypothesis bound but less than the lower
bound (F(Ng, Nnp)—1)-yo+> .+, €i, changing deadlines will not help the graph meet its latency requirement;
a faster CPU is required.

If the latency requirement is greater than this lower bound but less than the upper bound (F(Ng, N,) —
1) - yo + dn (where d; < d;41,1 < 1 < n) then one can attempt to follow the procedures outlined in §6.4
to reduce latency to the desired bound. Should this technique fail, the system engineer may need to make
cost trade-offs. For example, if the deadline assignment technique outlined in §6.4 failed to yield satisfactory
latency bounds before the schedulability test returned a negative result, the system engineer can decide
whether to use a faster processor, or add memory to increase buffering. It is clear that the first choice
resolves the latency problem, assuming a fast enough CPU exists. It may not be clear, however, that adding
memory can reduce latency. Suppose the deadlines have been reduced such that the first £ nodes in the chain
all have deadlines equal to their rate interval (i.e., d; = y;,Vi : 1 < i < k) and the last (n — k) nodes have
deadline values of dg, but the latency bound is still too high and lowering the deadline parameters for the
last (n — k) nodes yields a negative result from (5.6). We may be able to reduce the latency bound further
by setting all of the deadline parameters to LatencyRequirement — (F(Ng, Nn) — 1) - yo. This increases the
buffer requirements of the first £ nodes, but may produce enough slack in the schedule such that the graph is
now schedulable even though the deadline parameters of the last (n — k) nodes have been reduced to achieve
the desired latency bound. Should the graph become schedulable with these new deadline parameters but
require too much memory, the system engineer can make cost trade-offs: more memory, faster CPU, or
relaxed requirements.

Since our driving application has the topology of a chain, for space consideration we have restricted our

analysis to chains and note that the results presented in this paper can be extended to general PGM graphs.

References

[1] Anderson, D.P., Tzou, S.Y., Wahbe, R., Govindan, R., Andrews, M., “Support for Live Digital Audio
and Video”, Proc. of the Tenth International Conference on Distributed Computing Systems, Paris,
France, May 1990, pp. 54-61.

35

[2]

[3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Baruah, S., Howell, R., Rosier, L., “Algorithms and Complexity Concerning the Preemptively Scheduling
of Periodic, Real-Time Tasks on One Processor” Real-Time Systems Journal, Vol. 2, 1990, pp. 301-324.

Baruah, S., Mok, A., Rosier, L., “Preemptively Scheduling Hard-Real-Time Sporadic Tasks With One
Processor” Proc. 11th IEEE Real-Time Systems Symp., Lake Buena Vista, FL, Dec. 1990, pp. 182-190.

Buck, J., Ha, S., Lee, E.A., Messerschmitt, D.G., “Ptolemy: A Framework For Simulating and Prototyp-
ing Heterogeneous Systems” | International Journal of computer Simulation, special issue on Simulation
Software Development, Vol. 4, 1994.

Berry, G., Cosserat, L., “The ESTEREL Synchronous Programming Language and its Mathematical
Semantics”, Lecture Notes in Computer Science, Vol. 197 Seminar on Concurrency, Springer Verlag,

Berlin, 1985.

Gerber, R., Seongsoo, H., Saksena, M., “Guaranteeing End-to-End Timing Constraints by Calibrating
Intermediate Processes”, Proc. of IEEE Real-Time Systems Symposium, Dec. 1994.

Goddard, S. “Analyzing the Real-Time Properties of a Dataflow Execution Paradigm using a Synthetic
Aperture Radar Application”, To appear in: Proc. of IEEE Real-Time Technology and Applications
Symposium, June 1997.

Jeffay, K., “The Real-Time Producer/Consumer Paradigm: A paradigm for the construction of effi-
cient, predictable real-time systems”, Proc. of the ACM/SIGAPP Symposium on Applied Computing,
Indianapolis, IN, February 1993, pp. 796-804.

Jeffay, K., “On Latency Management in Time-Shared Operating Systems”, Proc. of the 11*" IEEE
Workshop on Real-Time Operating Systems and Software, Seatle, WA, May 1994, pp. 86-90.

Jeffay, K., Bennett, D. “A Rate-Based Execution Abstraction For Multimedia Computing”, ACM Mul-
timedia Systems, to appear.

Jeffay, K., Stone, D., “Accounting for Interrupt Handling Costs in Dynamic Priority Task Systems”,
Proc. of the 14" IEEE Symposium on Real-Time Systems, Durham, NC, 1993, pp. 212-221.

Lee, E.A., Messerschmitt, D.G., “Static Scheduling of Synchronous Data Flow Programs for Digital
Signal Processing”, IEEE Transactions on Computers, Vol. C-36, No. 1, January 1987, pp. 24-35.

Liu, C., Layland, J., “Scheduling Algorithms for multiprogramming in a Hard-Real-Time Environment”,

Journal of the ACM, Vol 30., Jan. 1973, pp. 46-61.

Mok, A.K., Sutanthavibul, S., “Modeling and Scheduling of Dataflow Real-Time Systems”, Proc. of the
IEEFE Real-Time Systems Symposium, San Diego, CA, Dec. 1985, pp. 178-187.

Mok, A. K., et al., “Synthesis of a Real-Time System with Data-driven Timing Constraints”, Proc. of
the IEEFE Real-Time Systems Symposium, San Jose, CA, Dec. 1987, pp. 133-143.

Processing Graph Method Specification, prepared by the Naval Research Laboratory for use by the Navy
Standard Signal Processing Program Office (PMS-412), Version 1.0, Dec. 1987.

Zuerndorfer, B., Shaw, G.A., “SAR Processing for RASSP Application”, Proc. of 1** Annual RASSP
Conference, Arlington, VA, August 15-18, 1994.

36

