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Abstract

The rate-based execution (RBE) task model was developed to support the real-time execution of event-
driven tasks in which noa priori characterization of theactualarrival rates of events is known; only the
expectedarrival rates of events is known. The RBE model is well suited for systems that must execute
in environments that are not well-behaved (i.e., when the arrival rate of events is neither periodic nor
sporadic).

Aperiodic requests withunknownexecution times andunknownarrival patterns are mapped to RBE
tasks and scheduled such that the real-time tasks are guaranteed to meet their deadlines while aperiodic
requests share the available processor capacity without reserving a fixed processor capacity for any one
aperiodic request. This approach was selected over the traditional approach of using a server task to
process aperiodic requests so that the available processor capacity could be dynamically shared between
active aperiodic requests.

1 Introduction

The rate-based execution (RBE) task model was developed to support the real-time execution of event-driven

tasks in which noa priori characterization of theactual arrival rates of events is known; only theexpected

arrival rates of events is known [19]. The RBE model is a generalization of Mok’s sporadic task model [27]

in which tasks are expected to execute with an average execution rate ofx times everyy time units, and was

motivated, in part, by distributed multimedia applications. A strength of the RBE task model is that it supports

theburstypacket arrival pattern common in networked multimedia environments.

∗Supported, in part, by grants from NASA (grant NCC5-169) and the National Science Foundation (grant CCR-0208619). This is
the Technical Report version of “Scheduling Aperiodic Requests under the Rate-Based Execution Model,”Proceedings of the IEEE
Real-Time Systems Symposium, Austin, TX, December 2002.
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The RBE model is an attractive execution model for systems that execute in unpredictable environments

where the arrival pattern of events is neither periodic nor sporadic. However, many such systems also receive

aperiodic command and control messages as well as other aperiodic requests. In many cases, the aperiodic

requests do not have hard deadlines, but there is a clear difference in the urgency between aperiodic requests.

That is, some aperiodic requests are much more urgent than other aperiodic requests and must be done sooner.

This work addresses the theory of integrating RBE tasks with aperiodic requests on a uniprocessor. The

only known scheduling algorithm for RBE tasks is based on the earliest-deadline-first (EDF) scheduling algo-

rithm, which requires the specification of task parameters that are generally unknown for aperiodic requests

(or too pessimistic to be useful). Moreover, even the concept of an aperiodic request executing with a rate

seems, on the surface, to be at odds with usual execution semantics of such requests. We usually think of

an aperiodic request executing once and then terminating. In contrast, RBE tasks are expected to execute

indefinitely, makingx request everyy time units.

The canonical approach to supporting aperiodic requests in a uniprocessor real-time system has been to

add a server that processes aperiodic (non-real-time) requests [23, 32, 30, 15, 31, 13, 14, 1, 10, 9, 11, 22].

The server is allocated a portion of the CPU bandwidth and aperiodic requests are executed by the server such

that no real-time job misses a deadline. The approach taken here differs in that we do not create a separate

server for aperiodic requests. Instead, we dynamically map aperiodic requests withunknownexecution times

andunknownarrival rates to RBE tasks and schedule all tasks in the system with a simple EDF scheduling

algorithm.

The primary contribution of this work is to generalize the theory of aperiodic request scheduling in hard-

real-time systems. A portion of the processor capacity is allocated to aperiodic processing and each aperiodic

request shares this capacity in proportion to its urgency, represented by a weight. Deadlines of hard real-time

tasks are guaranteed to be met while aperiodic requests dynamically and proportionally share their allocation

of processor capacity. The theory and approach presented in this work can be applied, with minor modifi-

cations, to deadline-driven scheduling of periodic and sporadic task models since RBE is a generalization of

these models. Rather than using a weight to share processor capacity, a (variable) fraction of the processor ca-

pacity could be specified for each aperiodic request as long as an admission control algorithm ensured the sum

of the fractions did not exceed the portion of processor capacity allocated to aperiodic requests. In this sense,

the proportional sharing mechanism presented here could be applied to a set of aperiodic server tasks that

dynamically change their size (e.g., a Total Bandwidth Server [30]) or period (e.g., Constant Bandwidth Sever

[1]). The theory presented here can also be applied to adaptive real-time systems in which tasks dynamically

change their resource requirements.

The rest of this paper is organized as follows. Section 2 introduces the processing model assumed in

this work. Section 3 discusses related work in proportional share scheduling and canonical approaches to

scheduling aperiodic requests in uniprocessor, real-time system. Section 4 presents the mapping of aperiodic



requests to RBE specified tasks. Section 5 discusses the feasibility of scheduling the integrated RBE task set

using a simple extension of the EDF scheduling algorithm. The issue of fairness for aperiodic requests is also

discussed in Section 5. Section 6 discusses some of the issues encountered in applying the theory to actual

systems. We conclude with a summary and discussion of future work in Section 7.

2 The Model

The genesis for this work is a uniprocessor system for which the RBE task model was a good choice for the

real-time processing requirements, but the system also had to support aperiodic command and control requests

as well as other aperiodic processing that was not rate based.

The model presented assumes a uniprocessor system that consists of a set of two distinct classes of tasks:

real-time tasks with hard deadlines and tasks representing aperiodic requests without deadlines. All tasks are

independent of each other (i.e., they do not share resources) and are preemptable at arbitrary points. Real-

time tasks make a sequence of requests that can be described with a RBE rate specification, as described in

Section 2.1. Aperiodic requests consist of a single request withunknownduration that terminates (and leaves

the system) after its processing requirement has been fulfilled. Noa priori characterization of the arrival rates

of aperiodic requests is known.

Real-time tasks are modeled as a set of RBE tasks whose membership is static during the life of the

system. Aperiodic requests are mapped to a set of tasks whose membership changes over time. Thus, from a

scheduling theory perspective, the system consists of two distinct classes of tasks:RBEtasks andaperiodic

tasks. Formally, the task systemT (t) at timet consists of the setA(t) of aperiodic tasks at timet and the set

R of RBE tasks, which is independent oft: T (t) = A(t) ∪R. The set of aperiodic requests over an interval

of time [t1, t2] is specified asA([t1, t2]) =
⋃t2

t=t1
A(t). Thus, over the interval[t1, t2], the task system is

specified asT ([t1, t2]) = A([t1, t2]) ∪ R. When the context is clear the temporal parameter will be dropped

from the notation:T = A ∪R.

The rest of this section provides a more detailed description of the model assumed for real-time and

(non-real-time) aperiodic tasks. Section 2.1 provides an overview of the RBE task model and the execution

semantics of RBE tasks. Section 2.2 describes the execution semantics assumed for aperiodic tasks.

2.1 RBE Tasks

A task is a sequential program that is executed repeatedly in response to the occurrence of events. Each

instance of the execution of the task is called ajob or a task instance. Jobs are made ready for execution,

or released, by the occurrence of an event. An event may be externally generated, e.g., a device interrupt,

or internally generated, e.g., a message arrival. In all cases, once released, a job must execute to completion

before a well-defined deadline. We assume instances of an event type are indistinguishable and occur infinitely

often. Thus over the life of a real-time system an infinite number of jobs of each RBE task will be released.



The RBE task model is a generalization of the real-time task model developed by Mok [27], and later

extended by Baruahet al.[5], and Jeffayet al.[21]. RBE provides two fundamental extensions to the sporadic

task model. First, it makes no assumptions about the points in time at which events occur. It is assumed that

events are generated at a precise average rate (e.g., 30 events per second) but that the actual distribution of

events in time is arbitrary. Second, tasks specify a desired rate of progress in terms of the number of events to

be processed in an interval of specified length. This allows a task to process a “burst” of simultaneous events

as a single event.

A RBE task is specified by a four-tuple(x, y, d, c) of integer constants. The pair(x, y) is referred to as

the rate specificationof a RBE task;x is the maximum number of executions expected to be requested in

any interval of lengthy. Parameterd is a response time parameter that specifies the maximum desired time

between the release of a task instance and the completion of its execution (i.e.,d is the relative deadline of

the task). Parameterc is the maximum amount of processor time required for any job of taskT to execute

to completion on a dedicated processor. It is assumed that time is discrete and clock ticks are indexed by the

natural numbers. Task parameters,x, y, d, andc are expressed as integer multiples of the interval between

successive clock ticks.

A RBE task set is schedulable if there exists a schedule such that thejth release of taskTi at timeti,j is

guaranteed to complete execution by timeDi(j), where

Di(j) =

{
tij + di if 1 ≤ j ≤ xi

max(tij + di, Di(j − xi) + yi) if j > xi

(1)

Thus the deadline of a job is the larger of the release time of the job plus its desired deadline or the deadline

of thexth previous job plus they parameter of the task. Therefore, up tox jobs of a task may contend for the

processor with the same deadline. Note that for allj, deadlines of jobsJij andJi,j+xi of taskTi are separated

by at leasty time units. Without this restriction, if a set of jobs of a task were released simultaneously it

would be possible to saturate the processor. With the restriction, the time at which a task must complete its

execution is not wholly dependent on its release time. This is done to bound processor demand. See [19] for

a more detailed discussion on the RBE task model.

2.2. Aperiodic Requests

Neither the arrival rate nor the execution cost of aperiodic requests is assumed a priori. However, it is assumed

that each aperiodic requests is associated with a weight that represents its relative urgency with respect to

other aperiodic requests.1 A request’s weight, relative to the weight of other aperiodic requests, determines

the share of the CPU capacity allocated to aperiodic request processing that the request will receive. This

is the approach taken by many proportional-share resource allocation models to ensure fairness in resource

sharing (e.g., [3, 26, 28, 35, 37, 38]).
1A default value of one can always be used. If all aperiodic requests have the same weight they also have the same level of

urgency.



More formally, a weightwi > 0 is associated with each aperiodic requestAi ∈ A. Let F̂ denote the

fraction of the CPU capacity allocated to processing aperiodic requests. This fraction will be shared by the

aperiodic tasks in proportion to their respective weights. Thus, ifA(t) denotes the set of aperiodic requests at

time t, the fractionfi(t) of the CPU each aperiodic requestAi ∈ A(t) should receive can be computed as

fi(t) =





0 if Ai 6∈ A(t)
wiP

j∈A(t) wj
F̂ otherwise.

(2)

The goal in scheduling aperiodic requests is to achieve a proportional sharing of the CPU capacity allo-

cated for aperiodic requests. Thus, for any interval of timeL, aperiodic taskAi would receivefi(t)L time

units in aperfectly fair system. However, the model presented here only approximates a perfectly fair system

in that the CPU will be allocated to aperiodic requests in discrete quanta less than or equal to a maximum

system specified quantumq. (Real-time tasks are not so restricted.)

Generally following the terminology and notation introduced by Stoicaet al. in [35], the CPU time aperi-

odic requestAi would receive in a perfectly fair system during the time interval[t1, t2] is

Si(t1, t2) =
∫ t2

t1

fi(t)dt (3)

time units. Letsi(t1, t2) be the actual number of time units allocated to aperiodic requestAi in the same

interval. The difference between the amount of time the request would receive in a perfectly fair system and

the time it actually receives in a given interval is calledlag. The lag ofAi at timet is

lag i(t) = Si(ti, t)− si(ti, t) (4)

whereAi first becomes eligible for execution at timeti. Since a perfectly fair system cannot be implemented

with discrete allocation quanta, the goal in scheduling will be to bound the lag for all aperiodic requests such

that ∀t ≥ 0, i ∈ A(t) : lag i(t) < q whereq is a system specified parameter that defines the scheduling

quantum used to execute aperiodic requests. In fact, we will show that, when aperiodic requests are mapped

to RBE tasks and scheduled as described in Section 4, the lag of aperiodic requests is bounded such that

∀t ≥ 0, i ∈ A(t) : lag i(t) ≤ q(1− fi)

wherefi is the minimum non-zero fraction of the processor allocated to aperiodic requestAi.

The next section relates the work presented here to prior research results found in the literature.

3 Related Work

The RBE task model was formally presented in [19] and summarized in Section 2.1. It is a generalization of

the model of sporadic tasks developed by Mok [27], and later extended by Baruahet al. [5], and Jeffayet al.

[21]. The sporadic task model is a simple variant of the Liu and Layland periodic task model [25]. Whereas



periodic tasks recur at constant intervals, sporadic tasks (as defined by Mok) have a lower bound on their

inter-invocation time, which creates an upper bound on their rate of occurrence. As described earlier, RBE

tasks have an expected rate of execution,(x, y), rather than an exact or lower bound on inter-invocation times.

The advantage of the the RBE task model is that correct execution of real-time tasks is not dependent on a

well-behaved environment. This is the primary reason the RBE model was selected for this work.

A significant drawback to selecting the RBE model is that there has been no work showing how to support

aperiodic processing (i.e, non-rate-based processing) within the model. One obvious method for supporting

aperiodic requests is to extend the theory of aperiodic servers to the RBE model. However, we did not want

the aperiodic requests to execute in a FIFO manner with respect to each other. A preemptive aperiodic server

could have been implemented, as described for the Total Bandwidth Server (TBS) in [31], but the execution

cost of some of the aperiodic requests is unknown a priori (for the system being supported).

A better approach than using a TBS would be to use a Constant Bandwidth Server (CBS) [1], or a set of

CBSs, with each CBS representing a class of aperiodic requests. Each CBS could be modeled as a RBE task

with a server budgetQs = q and a periodTs = q
fi

where whereq is a system specified parameter that defines

the scheduling quantum used to execute aperiodic requests andfi is the fraction of the processor capacity

allocated to CBSi. The RBE parameters would then be(1, TS , TS , Qs). Whenever the CBS budget was

exhausted, the server would be preempted and a new deadline set with Equation (1) as though one RBE job

had terminated and another was released. Doing so results in the same deadline assignments described in [1]

as long as only one aperiodic request was ever processed by a CBS at a time. However, this requires reserving

a fixed fraction of CPU capacity for each CBS, which would go unclaimed if there was no pending aperiodic

request for that server. The unused capacity would then be shared byall tasks in the system, including real-

time tasks. The CASH algorithm presented in [9] could be used to share unused capacity with another CBS

server. However, this creates a form of priority inversion with respect to urgency of aperiodic requests since

the CASH algorithm allocates the unused capacity of one server to the next server that needs it, independent

of the classification of the server.

Thus, it was decided to use weights rather than fixed classifications to prioritize the aperiodic requests

and to share the available processor capacity for aperiodic requests in proportion to the requests’ weight. The

advantage of this approach is that it separates urgency from execution duration or the server’s replenishment

period in prioritizing the requests.

Most research in proportional share resource allocation (e.g., [26, 28, 37, 38, 8, 20, 35, 33, 34]) is based

on the seminal work in bandwidth allocation for packet-switched networks by Demers et al. [12], Golestani

[18], and Parekh and Gallager [29]. Weighted Fair-Queueing (WFQ) (also known as packet-by-packet gener-

alized processor sharing) allocates a proportional share of a networks bandwidth to a session by employing a

two-level hierarchical scheduler. The WFQ scheduler creates a queue for each session. Each queue is param-

eterized by a weight and an expected finish time for its first packet. When the first packet in queuei departs,



the expected finish timefti is recomputed for the next packet asfti = max(ri, fti) + l
Bi

, whereBi is the

bandwidth reserved for sessioni, l is the size of the next packet,ri is the arrival time of the next packet, and

fti is the finish time of the packet. Packets within a queue are scheduled under the FIFO principle, which

can be substituted with other scheduling policies as described in [8]. Although originally proposed as a non-

preemptive scheduling algorithm (for network packets), WFQ can be easily modified to support preemptive

task scheduling [24] and is the basis for BERT [7] and SMART [28].

Rather than employing the two-level WFQ hierarchy, the Earliest Eligible Virtual Deadline First (EEVDF)

algorithm [35] schedules tasks according to their eligible times and deadlines in the virtual-time time domain

(as proposed by Zhang [39] and independently by Parekh and Gallager [29]) using a simple EDF algorithm.

Based on the weights of the tasks in the system, virtual time is computed; virtual time may progress faster,

slower or at the same rate as real time. According to task weights, release time and execution time, the

virtual eligible timeve and virtual deadlinevd of a task is computed using equations presented in [35] and

summarized as follows:

ve1 = V (ti0); vdk = vek +
r(k)

wi
; vek+1 = vd(k).

Tasks are scheduled by observing the Earliest Eligible Virtual Deadline First rule to ensure that no real-time

task is ever late by more than(q − 1) time units (in the real-time time domain), whereq is the length of the

scheduling quantum. Eligible time was introduced to prevent a task from being executed earlier than when it

should in the perfect generalized processor share model, which is similar toWF 2Q [8].

Virtual time is widely used in proportional-share algorithms to cancel the affect of dynamic work loads.

Since virtual time maintains the order of deadlines with respect to the order they occur in real time, it avoids

deadline adjustment when system workload changes. However, when we combine hard real-time tasks with

aperiodic requests (which do not have hard deadlines), deadlines of real-time tasks must be recomputed to

preserve the share they require with respect to the aperiodic requests [36, 16]. Thus, the primary advantage of

using virtual time is lost when the number of real-time tasks is greater than the number of aperiodic requests.

The work presented here combines elements from WFQ, EEVDF, and CBS. In some sense, it is a gener-

alization of the CBS to support variable execution periods and a variable number of servers in the system, but

the extension does not yet support resource sharing. The mapping of aperiodic requests to RBE tasks appears

to be equivalent to maintaining a CBS server with a variable share for each aperiodic request, though this has

not yet been verified. The total processor share of all aperiodic servers is fixed, equal to the share allocated

to aperiodic requests. If aperiodic requests were mapped to periodic or sporadic tasks, rather than RBE tasks,

the model would reflect a generalization of the Constant Utilization Server (CUS) first presented in [13] and

extended as part of an open system in [14].



4. Scheduling Aperiodic Requests

Rather than creating a server process to schedule aperiodic requests, each aperiodic request inA is mapped

to a RBE task and scheduled with the RBE tasks ofR using a simple EDF algorithm. Since the actual

computation time of an aperiodic request is not known a priori we model the aperiodic request as a RBE task

with each job requiringq time units until the request terminates. A timer will be used to enforce a maximum

request duration ofq time units for each release of an aperiodic request.

The mapping is achieved by setting the RBEx parameter to 1 and the RBEc parameter toq. Using

the same concept proposed by Spuri and Buttazzo in [30], the response time parameterd is set to q
fi(t)

. To

complete the RBE specification, they parameter is set to the same value,qfi(t)
. In any interval between

aperiodic requests arriving or terminating,fi(t) is equal to some constantfi and these parameters are equal

to the more familiar looking constantqfi
from [30] whereq is the duration of the aperiodic request.

More formally, the functionψ(Ai) : Ai → T̂i maps aperiodic requestAi ∈ A(t) to RBE taskT̂i as

follows:

ψ(Ai) : Ai → T̂i = (xi, yi(t), di(t), ci)

= (1,
q

fi(t)
,

q

fi(t)
, q)

(5)

wherefi(t), defined by Equation (2) in Section 2.2, is the fraction of the CPU allocated to aperiodic task

Ai ∈ A(t) andq is the maximum allocation quantum for aperiodic requests. Sincedi(t) = yi(t), the fraction

of the processor reserved for taskT̂i is xici
yi(t)

. This is the same share of the processor that needs to be allocated

to aperiodic requestAi with weightwi:

xici
yi(t)

=
q
q

fi(t)

= fi(t) =
wi∑

j∈A(t) wj
F̂ .

See Section 4.3.1 for an example of two aperiodic requests being executed as RBE tasks.2

The observant reader may notice two potential problems with modeling aperiodic requests as RBE tasks

defined using the mapping functionψ(Ai). The first is thatq may not be a multiple of the request’s sharefi(t),

which violates the assumption of integral RBE parameters. This problem also occurs in the models presented

in [30, 31, 13, 14, 35] and many other related models. Fortunately, this situation can be easily handled, as

described in Section 6. The second potential problem with our approach is that the actual execution time of

an aperiodic request may not be a multiple ofq. This situation also occurs in the model assumed by Stoicaet

al. in [35] when the actual execution time does not match the expected execution time. It also occurs in the

CBS proposed by Abeni and Buttazzo in [1] when the execution time is not a multiple of the server’s budget.

Our approach to this situation is very similar to the approach taken in [35] and is described in Section 6. To

simplify the presentation, the remainder of this section and Section 5 assumesq is a multiple offi(t) and the

execution of times of all aperiodic requests are multiples ofq.

2Rather than inserting examples after each new concept, Section 4.3 provides an extended example composed of subsections that
illustrate each concept separately but with a common context.



In its simplest form, the scheduling of an aperiodic request proceeds as follows. When aperiodic request

Ai arrives at timeti, it is mapped to a RBE task and assigned a deadline using Equation (1). That is,ψ(Ai) :

Ai → T̂i maps aperiodic requestAi to RBE taskT̂i and the first job of̂Ti is assigned a deadline ofti+di(ti) =

ti+ q
fi(ti)

. Since the processor share allocated to aperiodic requestAi does not change until the membership of

A changes,fi = fi(ti) andDi(1) = ti + q
fi

until an existing aperiodic request terminates or a new aperiodic

request arrives.

The taskT̂i is inserted into the ready queue with other RBE tasks and scheduled with the EDF scheduling

algorithm. When jobJij of taskT̂i is dispatched (i.e., begins to execute), an execution timer is set to preempt

the execution of jobJij afterq time units. If taskT̂i is preempted by another task, the execution timer state is

saved with the context of task̂Ti and restored when jobJij resumes execution. When the timer set for jobJij

expires, task̂Ti is preempted and, as though one job had completed and a new job released, a new deadline is

set for jobJij+1 using Equation (1) and the RBE parameters ofT̂i, which is similar to the method used by a

CBS in [1] when a request overruns the server’s budget.

The actual scheduling of aperiodic requests is a little more complicated in practice than described above,

and illustrated in the simple example of Section 4.3.1, because the set of aperiodic requests is dynamic. The

next section addresses the complexities of scheduling dynamic sets of aperiodic requests with a deadline

driven algorithm, such as EDF.

4.1. Dynamic Deadline Adjustment

When a new aperiodic request arrives, the processor share of existing aperiodic requests decreases. When the

processing required for an aperiodic request represented by taskT̂k completes and the task leaves the system,

the processor share of other aperiodic requests increases. In both cases, the fractionfi of the processor

allocated to each existing aperiodic request must be recomputed using Equation (2). The change in processor

share results in a change in the deadline for all pending aperiodic jobs. (Note that the deadlines for jobs of

real-time applications remain unchanged.)

We show in Section 5 that if the task set was schedulable before the deadline changes, it will be schedu-

lable after the deadline change and no task will miss its deadline.

There are two cases to be considered. The first is when an aperiodic request joins the system, which

moves the deadlines of pending aperiodic jobs back (i.e., their deadlines occur later). The second is when an

aperiodic request terminates and leaves the system, which moves the deadlines of pending aperiodic jobs up

(i.e., their deadlines occur earlier).

Case 1: Aperiodic requestAx joins the system at timetx. Let f ′i be the new fraction computed for

Ai 6= Ax ∈ A(tx) using Equation (2) at timetx. Pending deadlines at timetx are re-computed by dividing

the expected remaining service time required to complete pending jobJij by its new fractionf ′i and adding

this to timetx. Let ri be the expected remaining service time required to complete jobJij . That is,ri denotes



the amount of remaining service time jobJij would have in a perfectly fair system. Since aperiodic request

Ai is modeled as RBE task̂Ti with xi = 1 andyi(t) = di(t), the new deadline for the current jobJij of task

T̂i is computed using Equation (6).

D′
i(j) = tx +

ri

f ′i
(6)

In a perfectly fair system, the remaining service timeri for job Jij is computed as

ri = S̄i(t,Di(j)) =
∫ Di(j)

tx

fi(t)dt = (Di(j)− tx) · fi (7)

whereS̄i(t1, t2) denotes the service time taskT̂i would receive in a perfectly fair system if none of the weights

were changed at timetx (andfi is the fraction of the processor that would have allocated toT̂i in the interval).

By combining Equations (6) and (7), the deadline for pending aperiodic requests can be rewritten using

Equation (8).

D′
i(j) = tx +

S̄i(tx, Di(j))
f ′i

= tx +
(Di(j)− tx) · fi

f ′i

= tx + (Di(j)− tx) · fi

f ′i

(8)

See Section 4.3.2 for an example of deadline adjustments made when a new aperiodic request joins the

system.

Case 2: Aperiodic requestAx terminates at timetfx. After Ax terminates at timetfx, the processor share

allocated to each pending aperiodic request should increase since the total weight of all aperiodic requests

decreases. In a perfectly fair system, the change in processor shares would happen immediately and the

deadlines of pending aperiodic jobs would be updated using Equation (8) by substitutingtx with tfx. However,

Equation (8) can only be used to update deadlines whenAx terminates withlagx(tfx) = 0.

Aperiodic requestAx may terminate with non-zero lag since a perfectly fair system can only be approx-

imated. To accommodate this approximation, the termination of aperiodic requestAx is treated as though

it occurred at an expected finish timetex such thatlagx(tex) = 0. Deadlines of pending aperiodic requests

can then be adjusted by substitutingtx with tex in Equation (8). The deadline updates are made at timetfx

and requestAx is allowed to leave the system immediately. However, the change in processor shares for the

remaining aperiodic requests does not take effect until the expected finish timetex of requestAx. In what fol-

lows, we show from a proportional share perspective that the deadlines of pending aperiodic jobs are changed

to the same value whether we wait until timetex to make the updates or if we update the deadlines immediately

at timetfx.

The request is expected to terminate at its deadline. That is,tex = Dx(l) whereDx(l) is the deadline

whenAx terminates. Note:Dx(l) ≥ tfx always holds if all deadlines are met, and a sufficient condition for



determining the schedulability of the task set is presented and proven in Section 5. Since the actual service

time is the same and only the expected service times differ, the lag ofAx at timeDx(l) can be expressed as

lagx(Dx(l)) = lagx(tfx) + Sx(tfx, Dx(l)) = lagx(tfx) +
∫ Dx(l)

tfx

fx(t)dt = lagx(tfx) + (Dx(l)− tfx) · fx(tfx).

Therefore, the lag ofAx at timetfx can be expressed as

lagx(tfx) = lagx(Dx(l))− (Dx(l)− tfx) · fx(tfx)

= lagx(Dx(l)) + (tfx −Dx(l)) · fx(tfx).
(9)

ThusDx(l) = tfx − lagx(tfx)

fx(tfx)
becauselagx(Dx(l)) = 0 when the task set is schedulable (by Theorem 5.9 in

[17], which is Theorem A.8 in the Appendix).

Dx(l) can now be substituted fortx in Equation (8) to compute the new deadlines for pending aperiodic

requests. LetW represent the weight summation of aperiodic requests, includingwx of requestAx, and

W ′ represent the weight summation excludingwx. The new deadlines for pending aperiodic requests are

computed as follows.

D′
i(j) = Dx(l) + (Di(j)−Dx(l)) · fi

f ′i

= (tfx −
lagx(tfx)

fx
) + (Di(j)− (tfx −

lagx(tfx)
fx

)) · fi

f ′i

= tfx + (Di(j)− tfx) · fi

f ′i
− lagx(tfx)

fx
(1− fi

f ′i
)

= tfx + (Di(j)− tfx) · fi

f ′i
− lagx(tfx)

fx

(
1−

wi
W F̂
wi
W ′ F̂

)

= tfx + (Di(j)− tfx) · fi

f ′i
− lagx(tfx)

fx
(1− W ′

W
)

= tfx + (Di(j)− tfx) · fi

f ′i
− lagx(tfx)

fx
(
wx

W
)

= tfx + (Di(j)− tfx) · fi

f ′i
− lagx(tfx)

wx
W F̂

(
wx

W
)

= tfx + (Di(j)− tfx) · fi

f ′i
− lagx(tfx)

F̂

(10)

Observe that if aperiodic requestAx terminates withlagx(tfx) = 0, thenDx(l) = tfx and Equation (10)

reduces to Equation (8), just as one would expect to occur under this condition.

The effect of Equation (10) is to distribute non-zero lag to the remaining aperiodic requests and allow

requests to leave the system as soon as they terminate even though changes in processor share do not take

effect until the deadline of the completed request. The same concept was used by Stoicaet al in [35]. How-

ever, in this work the lag is distributed proportionally to the remaining aperiodic requests through deadline



adjustments. The main difference between our approach and that used in [35] is that our method operates in

real time and not in virtual time. The approaches are similar in that each pending aperiodic requestAi will

have its lag adjusted bylagi = lagx(tfx) · wi
W ′ . In real-time this is accomplished by subtractinglagi

f ′i
from the

updated deadline computed by Equation (8) for each pending aperiodic request represented by jobJij . Since

f ′i = wi
W ′ F̂ , a proportionate distribution of the remaining lag of requestAx to pending aperiodic requests by

modifying Equation (8) (withtx = tfx) reduces to Equation (10):

D′
i(j) = tfx + (Di(j)− tfx) · fi

f ′i
− lagi

f ′i

= tfx + (Di(j)− tfx) · fi

f ′i
− lagx(tfx) · wi

W ′ · wi
W ′ F̂

= tfx + (Di(j)− tfx) · fi

f ′i
− lagx(tfx)

F̂

= Equation (10).

(11)

Thus, using Equations (8) and (10) the deadlines of all existing aperiodic jobs can be updated whenever

an aperiodic request enters or leaves the system (respectively). Moreover, Equation (10) shows that, in an

implementation, one can distribute lag proportionally by updating pending deadlines without actually tracking

the lag; the new deadlines can be computed using the deadline of the leaving request, as shown in the first

form of the equality expressed by Equation (10).

See Section 4.3.3 for an example of deadline adjustments made when an aperiodic request terminates and

leaves the system.

4.2. Auxiliary Variable θ

What if the last aperiodic jobJxl in the system finishes and then another aperiodic requestAn arrives before

the deadline of jobJxl? As currently defined, the deadline of jobJn1 would be set using Equation (1) as

tn + dn. However, unless the lag of requestAx is tracked and transferred to the new request, the deadline of

job Jn1 will be set too early, which will create more processor demand than aperiodic requests are allocated.

As before, letDx(l) be the deadline of jobJxl (recall thatlagx(Dx(l)) = 0), tfx be the actual finish time, and

tn be the arrival time of requestAn. Intuitively, if requestAn arrives at timetn such thattfx < tn ≤ Dx(l),

the deadline of jobJn1 should be set toDx(l)+ dn rather thantn + dn, as specified by Equation (1). Observe

that

∀t ∈ [tfx, Dx(l)] : lagx(t) = Sx(tx, t)− sx(tx, t)

= Sx(tx, tfx) + (t− tfx)fx − sx(tx, tfx)

= Sx(tx, tfx)− sx(tx, tfx) + (t− tfx)fx

= lagx(tfx) + (t− tfx)fx

(12)



The intuitive deadline assignment equationDn(1) = Dx(l) + dn can be derived from Equation (1) such

that the remaining lag of requestAx at timetn is transferred to requestAn as follows.

Dn(1) = tn + dn − lagx(tn)
F̂

= tn + dn − lagx(tfx) + (tn − tfx)fx

F̂
by Equation (12)

= tn + dn − lagx(Dx(l)) + (tfx −Dx(l))fx + (tn − tfx)fx

F̂
by Equation (9)

= tn + dn − lagx(Dx(l)) + (tn −Dx(l))fx

F̂

= tn + dn − (tn −Dx(l)) sincefx = F̂ andlagx(Dx(l)) = 0

= Dx(l) + dn

(13)

If requestAn arrives after timeDx(l) (i.e., tn > Dx(l)), then Equation (1) should be used to assign a

deadline to jobJn1 sincelagx(tn) = 0 (and hence, the system lag is also zero).

Thus, the auxiliary variableθ is introduced to record the point in time at which the system lag reaches

zero. Initiallyθ = 0. Each time the last aperiodic job in the system terminates, the expected finish time of that

job, Dx(l), is recorded asθ = Dx(l). Using the auxiliary variableθ, the deadline of jobJi1 for each newly

arriving aperiodic requestAi at timeti is computed using Equation (14).

Di(1) = max(θ, ti) + di (14)

See Section 4.3.4 for an example using Equation (14) to set the deadline of an aperiodic request.

To summarize, Equations (1), (8), (10), and (14) for computing deadlines of aperiodic requests are com-

bined in Equation (15) to form a single expression for computing deadlines ofT̂i = ψ(Ai).

Di(j) =





max(θ, ti) + di(ti) if j = 1

max(tij + di(tij), Di(j − 1) + yi(tij)) if j > 1

tx + (Di(j)− tx) fi

f ′i
if Ax arrives attx

Dx(l) + (Di(j)−Dx(l)) fi

f ′i
if Ax terminates attfx

(15)

When the task set is schedulable, the second line of Equation (15) can be reduced toDi(j − 1)+yi(tij) since

job Jij of T̂i is released as soon as jobJij−1 has executed forq time units.

4.3. Examples

This section provides an extended example composed of subsections that illustrate each concept separately

with a common context. The fraction of the CPU allocated to aperiodic request processing isF̂ = 0.4 and

the system assigned quantum for aperiodic requests is 10 (i.e.,q = 10). Neither values will change during the

life of the system. Initially, the weight summation of all aperiodic requests inA is 70, which will change over

time.
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Figure 1: Execution pattern when no change in share allocations occur.
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Figure 2: Deadline adjustments when a new aperiodic request arrives.

4.3.1. Nominal execution ofA1 and A2

At time 100A1 andA2 join the system withw1 = 20 andw2 = 10. The summation of weights in the system,

W , now changes from 70 to 100. By Equation (2), the fraction of the processor allocated to each request is

f1 = 20
1000.4 = 0.08 andf2 = 10

1000.4 = 0.04 respectively. Using Equation (5),A1 andA2 are mapped to

RBE tasksT̂1 = (1, 125, 10, 125) andT̂2 = (1, 250, 10, 250). If no request enters or leaves the system after

time 100,A1 andA2 will follow the execution pattern shown in Figure 1.

4.3.2. A New Aperiodic Request Arrives

To illustrate deadline adjustment when a new aperiodic request arrives, assumeAx arrives at time 250 with

wx = 100. W now changes from 100 to 200. Consequently the fractions of the CPU capacity allocated to

A1, A2, andAx at time 250 are set using Equation (2) as follows:

f1 =
w1

W
F̂ =

20
200

0.4 = 0.04,

f2 =
w2

W
F̂ =

10
200

0.4 = 0.02,

fx =
wx

W
F̂ =

100
200

0.40 = 0.2.

The RBE specifications are then changed usingψ(), defined by Equation (5):̂T1 = (1, 250, 10, 250), T̂2 =

(1, 500, 10, 500), T̂x = (1, 50, 10, 50). Finally, the deadlines of pending aperiodic requests are modified.

DeadlinesD1(2) andD2(()1 are modified as follows and illustrated in Figure 2:D1(2) = 250 + (350 −
250) · 200

100 = 450, D2(()1 = 250 + (350− 250) · 200
100 = 450.
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Figure 3: Deadline adjustment when an aperiodic request terminates.
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Figure 4: Deadline adjustment when an aperiodic request joins the system with no aperiodic requests pending.

4.3.3. An Aperiodic Request Terminates

Assume aperiodic requestAx terminated at some point between time 350 and time 475, with no other changes

in the set of aperiodic requests, and deadlines were adjusted accordingly withW = 100. Then at time 670,

assume aperiodic requestA1 terminates. At this point, the summation of weights in the system,W , changes

from 100 to 80. LetW ′ = 80 represent the new weight summation. The fraction of the CPU allocated to

requestA2 is changed tof ′2 = w2
W ′ F̂ = 10

800.4 = 0.05 and the deadline ofA2 needs to be changed. Using

Equation (15), the new deadline is

D2(2) = D1(5) + (D2(2)−D1(5))
f2

f ′2

= 775 + (900− 775)
0.04
0.05

= 875.

Figure 3 illustrates this change.

4.3.4. Deadline Assignment with Variableθ

Assume the last aperiodic requestA2 terminates and leaves the system at time840. The deadline ofA2 is

recorded byθ = D2(l) = 855. If a new aperiodic requestAn with weightwn = 50 arrives at time843, it

will take over theF̂ = 0.4 fraction of the CPU allocated to aperiodic processing. The RBE specification of

An will be T̂n = (1, 25, 10, 25) and its first deadline isDn(1) = max(843, 855) + 25 = 880 as shown in

Figure 4.

5 Schedulability and Bounding Lag

A task set is schedulable if there exists a schedule such that no task instance misses its deadline. Thus, if

Demand(L) represents the total processor demand in an interval of lengthL, a task set is schedulable if



L ≥ Demand(L) for all L > 0. Section 5.1 summarizes a prior result from [19] that bounds the processor

demand of RBE tasks in an interval. Section 5.2 bounds the processor demand created by aperiodic requests.

Section 5.3 combines the results of the first two subsections to create a sufficient schedulability condition for

a task setT = A ∪R whereA is the set of aperiodic tasks at any timet ≥ 0 andR = {(x1, y1, d1, c1), . . .

(xn, yn, dn, cn)} is the set of real-time RBE tasks. Section 5.4 presents an least upper bound on the lag of any

aperiodic request that holds when the task set is schedulable.

5.1. Bounding Demand for RBE Tasks

Lemma 5.1 was presented as Lemma 4.1 in [19] to bound the processor demand of a RBE taskTi in an

interval. It is reproduced here (in a slightly different form) since it is used in the sufficient condition of

Theorem 5.6 for the set of tasksT considered in this work.

Lemma 5.1. For a RBE taskTi = (xi, yi, di, ci),

∀t > 0, dbf i(t) =

{
0 if t ∈ [0, di)

b t−di+yi
yi

cxici if t ∈ [di,∞]
(16)

is a least upper bound on the number of units of processor time required to be available in the interval[0, L]

to ensure that no job ofTi misses a deadline in[0, L].

5.2. Bounding Demand for Aperiodic Requests

The demand bound function defined by Equation (16) assumes that the task may begin executing at time0

and will continue to execute for the life of the system with fixed RBE parameters. Aperiodic requests enter

and leave the system dynamically, which results in changing RBE parameters during the life of an aperiodic

requestAi.

Let ti denote the arrival time of aperiodic requestAi, T̂i = ψ(Ai), andDi(l) be the deadline time of the

last jobJij of T̂i representing aperiodic requestAi. Under these assumptions, the processor demand forT̂i in

the intervals[0, ti) and(Di(l),∞] is 0 since the first job is not released until timeti and the last jobJil of T̂i

completes by timeDi(l). It should be the case, since we are trying to give each aperiodic requestAi a portion

of the CPU capacity equal tofi(t) that the processor demand created byT̂i is never greater than
∫ l
ti

fi(t)dt

for all l ∈ [ti, Di(l)]. Lemma 5.2 shows that this is indeed the case. Observe that whenfi = fi(t) is constant

over the interval[ti, l], then
∫ l
ti

fi(t)dt = (l− ti)fi, which yields the expected demand for a fixed interval and

processor share.

Lemma 5.2. Let T̂i = ψ(Ai) represent the aperiodic requestAi ∈ A(t). If no job ofT̂i released before time

t0 ≥ 0 requires processor time in the interval[t0, l] to meet a deadline in the interval[t0, l], then

∀l > t0, d̂bf i([t0, l]) =
∫ l

t0

fi(t)dt (17)



is an upper bound on the processor demand in the interval[t0, l] created byT̂i whereψ(Ai) is defined by

Equation(5) andfi(t) is defined by Equation(2).

Proof: See the appendix of proofs, Section A.

Clearlyt0 = 0 satisfies the requirement specified fort0 in Lemma 5.2. Thus, with the simple substitution

of t0 = 0 andl = L, Corollary 5.3 follows immediately from Lemma 5.2.

Corollary 5.3. Let T̂i = ψ(Ai) represent the aperiodic requestAi ∈ A(t). The processor demand created by

T̂i will never exceed its processor share. That is,

∀L > 0, d̂bf i([0, L]) =
∫ L

0
fi(t)dt

is an upper bound on the processor demand in the interval[0, L] whereψ(Ai) is defined by Equation(5) and

fi(t) is defined by Equation(2).

Lemma 5.2 bounds the processor demand created by a single aperiodic requests in an interval. The

following lemma extends this result to bound the processor demand created by all aperiodic requests in an

interval.

Lemma 5.4. If no job of an aperiodic request released before timet0 ≥ 0 requires processor time in the

interval [t0, l] to meet a deadline in the interval[t0, l], then

∀l > t0, (l − t0)F̂ (18)

is an upper bound on the processor demand in the interval[t0, l] created by the set of aperiodic requests

A([t0, l]).

Proof: See the appendix of proofs, Section A.

With the simple substitution oft0 = 0 andl = L, Corollary 5.5 follows immediately from Lemma 5.4.

Corollary 5.5. The processor demand created by the set of aperiodic requestsA will never exceed its proces-

sor share,F̂ . That is,

∀L > 0, LF̂

is an upper bound on the processor demand in the interval[0, L] created by the set of aperiodic requests

A([0, L]).



5.3. A Sufficient Schedulability Condition

The following Theorem presents a sufficient condition for determining the schedulability of the task setT =

A∪R whereA is the set of aperiodic tasks at any timet ≥ 0 andR = {(x1, y1, d1, c1), . . . (xn, yn, dn, cn)}
is the set of real-time RBE tasks. Corollary 5.7 shows that the schedulability of the task setT can be evaluated

efficiently in polynomial time when all RBEd parameters are equal to their respectivey parameters.

Theorem 5.6. Let the task setT = A ∪ R be the setA =
⋃∞

t=0A(t) of aperiodic tasks and the setR =

{(x1, y1, d1, c1), . . . (xn, yn, dn, cn)} of RBE tasks. Preemptive EDF will succeed in schedulingT if

∀L > 0, L ≥
n∑

i=1

dbf i(L) + LF̂ (19)

whereF̂ is the portion of the CPU capacity allocated to aperiodic requestsA anddbf i(L) is as defined in

Lemma 5.1.

Proof: See the appendix of proofs, Section A.

Corollary 5.7. Let the task setT = A ∪ R be the setA =
⋃∞

t=0A(t) of aperiodic tasks and the set

R = {(x1, y1, d1, c1), . . . (xn, yn, dn, cn)} of RBE tasks withdi = yi, 1 ≤ i ≤ n. Preemptive EDF will

succeed in schedulingT if Equation (20) holds whereF̂ is the portion of the CPU capacity allocated to

aperiodic requestsA.
n∑

i=1

xi · ci
yi

+ F̂ ≤ 1 (20)

5.4. Bounding Lag

The goal in scheduling aperiodic requests is to approximate fair scheduling wherein each request receives time

in proportion to its associated weight. By breaking the request into a sequence of request, each of durationq

time units, we are able to identify exact points in time at which the request will have received its processor

share. It is shown in [17] that if the task set is schedulable, the lag of aperiodic requestAi is guaranteed

to be less than or equal to zero at the deadline of each job ofT̂i = ψ(Ai). The lag may be less than zero

when, for example, real-time RBE tasks execute at lower rates than specified or for less than their worst-

case execution times. When that happens, the aperiodic requests get more than their “expected share” of the

processor. Without using eligible times to control the rate of execution of an aperiodic request, its lag can

become negative because it receives more processor time than would otherwise be possible.

In this work, we are not interested in completely bounding fairness; we are only interested ensuring

aperiodic requests receive a minimum processor share while real-time tasks meet all deadlines. Only an upper

bound on the maximum lag that can accumulate for any aperiodic request can be derived when it is scheduled

under the RBE model since tasks are allowed to execute faster than their rate specification if processor capacity

is available. (This is a desirable feature for the application with which we are working.) One way to provide



a lower bound on processor lag (should one be needed), is to map aperiodic requests to sporadic tasks, track

eligible times, and only release jobs of aperiodic requests when they are eligible—as was done by Stoicaet

al. in [35].

As the following theorem from [17] shows, when the task set is schedulable, our approach to scheduling

aperiodic requests provides a least upper bound oflag i(t) ≤ q(1 − fi) on the maximum lag for aperiodic

requestAi.

Theorem 5.8. Let the task setT = A ∪ R be the setA =
⋃∞

t=0A(t) of aperiodic tasks and the setR =

{(x1, y1, d1, c1), . . . (xn, yn, dn, cn)} of RBE tasks. If the task set is schedulable under preemptive EDF when

deadlines are assigned using Equation(15), the lag of aperiodic requests is bounded such that

∀t ≥ 0, i ∈ A(t) : lag i(t) ≤ q(1− fi) (21)

wherefi is the minimum non-zero fraction of the processor allocated to aperiodic request (i.e.,fi = min{fi(t)|t ∈
[ti, t

f
i ]}).

Proof: See the appendix of proofs, Section A.

6 Discussion

We now address the two potential problems with the model that were identified in Section 4: (i) whenq is not

a multiple offi(t), and (ii ) when the execution time of an aperiodic request is not a multiple ofq.

6.1. What if q is not a multiple of fi(t)?

In practice, mappingψ(Ai) defined by Equation (5) seems to works fine since the aperiodic jobs never execute

for more thanq time units and the real-time jobs seldom use all of the processor capacity they reserve.

However, strictly speaking, the resulting RBE task specification may be invalid. The problem withψ(Ai) is

that it does not ensure the resulting task parameters are positive integers, as assumed by the RBE model.

The obvious correction to this problem is to round they andd parameters to the next higher integer values

when necessary. Letψ′(Ai) : Ai → Ti mapAi to taskTi as follows:

ψ′(Ai) : Ai → Ti = (xi, yi, di, ci)

= (1, d q

fi
e, d q

fi
e, q) (22)

Usingψ′(Ai) for the mapping, the resulting task is guaranteed a slightly smaller fraction,f ′i of the processor:

f ′i =
xici
yi

=
q

d q
fi
e ≤

q
q
fi

= fi =
wi∑

j∈A(t) wj
(1− F ).

However, this approach may change theeffectiverelative weight with which each aperiodic request shares the

CPU. That is, usingψ′() may result inf ′i = f ′j whenwi 6= wj . This may or may not be a problem in practice,

depending on the system requirements.
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Figure 5: Mapping between schedule time and real time.

6.2. What if the execution time ofAx is not a multiple of q?

In the mapping from an aperiodic request to a RBE task, the execution time of the request is assumed to be

a multiple ofq. The actual execution timeex is unknown. Ifex is not a multiple ofq, then the deadline

assigned to the last job of the aperiodic request will be a little later than the deadline would be ifex were

known: (d ex
q e · q)/fi > ex

fx
. There is no way to compute the “correct” deadline in advance since we do not

knowex, which is only known after requestAx terminates.

The impact of this problem is that the request requires less processor share in the interval[Dx(l − 1), Dx(l)]

than it is allocated and terminates with more (positive) lag than accounted for by Equation (10). We cannot

adjust the deadline after it is finished because doing so may violate the EDF principle. One way to solve this

“problem” is to insertd ex
q e · q−ex units of idle time into the schedule at the end of the execution ofAx (when

ex is determined).

Of course we do not want the processor to be idle just so the theory of proportional share scheduling

holds! Rather than idling the processor, the system can skip the idle interval by adjusting theschedule time–

i.e., making a jump in schedule time. Schedule time, as it is introduced here, is similar to the concept of

virtual time used in proportional share scheduling algorithms. (Making a jump in virtual time was used in

[35] to solve the same problem.) The main difference between schedule time and virtual is that schedule

time progresses at the same rate as real time, except when an aperiodic request uses less execution time than

anticipated and schedule time advancesd ex
q e·q−ex units instantaneously. For example, consider an aperiodic

request that terminates at timetfx with 3 left in its timer counter. Instead of keeping the processor idle for 3

time units, we adjust the schedule time fromtfx to tfx + 3. Then the deadlines of all pending aperiodic jobs

are updated using Equation (10). The mapping between schedule time and real time is shown in Figure 5.

Schedule time always progresses at or ahead of real time. Clearly, if all deadlines are met in schedule time,

they are also met in real time.

An alternative approach to advancing schedule time is to adopt a method similar to that used by the

resource reclaiming TBS presented in [31] or to the CBS CASH mechanism proposed in [9]. In this case,

the unused processor allocation (still available) could be transferred to the next aperiodic request (if it arrived

soon enough). However, this would result in violations of the proportional sharing principle.



7 Summary and Future Work

We have presented a task model and scheduling algorithm capable of executing RBE tasks and aperiodic

requests using a simple EDF scheduler. Neither the arrival rate nor the execution duration of aperiodic requests

must be known a priori. Our approach differs from the canonical approach in that we do not create a separate

server for aperiodic requests. Instead each aperiodic request is dynamically mapped to a RBE task that

shares the allocated processor capacity in proportion to its weight. If the sufficient schedulability condition of

Theorem 5.6 is met, the hard deadlines of all real-time tasks are guaranteed to be met while aperiodic requests

dynamically and proportionally share their allocation of processor capacity.

The primary contribution of this work is to generalize the theory of aperiodic request scheduling in hard-

real-time systems when resources are not shared. Since deadline driven scheduling of periodic and sporadic

tasks sets is a special case of scheduling RBE tasks, the theory and approach presented can be applied to

periodic and sporadic task models by enforcing an inter-release time for jobs of an aperiodic request.

Rather than a weight, a fraction of the processor capacity could be specified for each aperiodic request as

long as an admission control algorithm ensured the sum of the fractions did not exceed the portion of proces-

sor capacity allocated to aperiodic requests. Similarly, a specific quantum and period could be associated with

each request. Thus, the proportional sharing mechanism presented could be applied to a set of Total Band-

width Servers that dynamically change their size or a set of Constant Bandwidth Servers that dynamically

change their period or budget. The theory presented here can also be applied to adaptive real-time systems in

which tasks dynamically change their resource requirements.

Even as presented, our approach for scheduling aperiodic requests represents a generalization of the CBS

first proposed in [1]. Each task̂Ti represents an instance of a CBS with a server budgetQs = q and a period

Ts = q
fi

that serves jobs for that task until the request terminates. When there exists only one aperiodic

request in the system at a time, the execution schedule created by our approach is identical to one created by a

CBS. Similarly, if each request requires at mostq time units, the execution schedule created by our approach

is identical to one created by the original TBS presented in [30].

Recently researchers have developed mechanisms for sharing resources among real-time periodic tasks

and aperiodic servers [10, 11, 22]. Similar approaches may prove useful in relaxing the assumption made

in this work that all tasks are independent. Moreover, we hope to combine the schedulability conditions

presented in [19] for resource sharing among RBE tasks with deadlines less than theiry parameter with a

utilization test for aperiodic request processing similar to those presented in [10, 11, 22], depending on the

synchronization protocol assumed. This should result in tighter sufficient schedulability conditions than those

presented in [10, 11, 22].

A least upper bound on the difference between the ideal processor allocation in a perfectly fair processor

allocation scheme and the actual allocation for an aperiodic request was also presented. This difference is

called lag.



In general, a lower bound on lag cannot be determined without modeling the aperiodic requests as either

periodic or sporadic tasks and setting release times for jobs of an aperiodic request. That is, the current

mapping to RBE tasks does not result in a completely fair processor scheduling algorithm. Forcing a minimal

inter-release time on jobs of an aperiodic request will result in tight bounds on fairness and the resulting model

will change from resembling a generalization of CBS to a generalization of the Constant Utilization Server

[13]. To achieve both fairness and good response times for aperiodic requests, minimum inter-release times

could be relaxed when the processor is idle, using an approach similar to that described by Liu in [24] for a

Starvation-Free Constant Utilization/Background Server.

We are investigating an alternative approach that breaks up the request of real-time jobs into multiple

requests of lengthq. The advantages of this approach are that a lower bound on lag greater than−q should be

attainable, all requests will be able to make proportional progress, and job release times need not be enforced.

The modified task set represents an instance of the Generalized Multiframe Task model introduced by Baruah

et al. [6] and a new (more complicated) scheduling condition must be developed.
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A Appendix of Proofs

This appendix provides the restatement and proof of all corollaries, lemmas, and theorems presented, but not

proven, in the body of the paper.

Lemma A.1. Let T̂i = ψ(Ai) represent the aperiodic requestAi ∈ A(t). If no job ofT̂i released before time

t0 ≥ 0 requires processor time in the interval[t0, l] to meet a deadline in the interval[t0, l], then

∀l > t0, d̂bf i([t0, l]) =
∫ l

t0

fi(t)dt (23)

is an upper bound on the processor demand in the interval[t0, l] created byT̂i whereψ(Ai) is defined by

Equation(5) andfi(t) is defined by Equation(2).

Proof: The proof of this lemma is separated into two parts. First, we show that Equation (23) is an upper

bound on the processor demand created by taskT̂i when its sharefi(t) never changes in the interval[t0, l].

Second, we show the lemma also holds whenfi(t) changes at any timetx ∈ [t0, l], which is done by mapping

segments of the interval to the first case.

Case 1:fi(t) never changes through the interval[t0, l]. This is a straightforward reduction from Lemma 5.1,

which states that the tight upper bound on processor demand created by a RBE task isdbf i(L) = bL−di+yi
yi

cxici.

Let fi = fi(t) be the constant share in the interval andL = l − t0. Based on the mappinĝTi = ψ(Ai):

xi = 1, ci = q, di = yi = q
wi
W

F̂
= q

fi
. Sincefi(t) remains constant in the interval[t0, l] and no job ofT̂i

released before timet0 requires processor time in the interval, the demand created byT̂i is

dbf i(L) = bL− di + yi

yi
cxici = bL

yi
cq

≤ L

yi
q =

L
q
fi

q

= Lfi = (l − t0)fi

=
∫ l

t0

fi(t)dt = d̂bf i([t0, l]).

Thus, Equation (23) is an upper bound on the processor demand in the interval[t0, l] created byT̂i and the

lemma holds for this case.

Case 2:fi(t) changes at timetx ∈ [t0, l]. Without loss of generality, assumetx is the first timefi(t)

changes in the interval[t0, l]. The remaining portion of this proof will assume thatfi(t) remains constant in

the interval[tx, l]. If fi(t) changes in the interval[tx, l], then this proof can applied recursively to that interval.

There are two sub-cases to consider: whentx is a deadline for a job of̂Ti, and when it is not.

Case 2a:tx is a deadline for a job of̂Ti in [t0, l], as shown in Figure 6.

In this case, the execution of̂Ti in the interval[t0, l] can be treated as two separate portions:[t0, tx] and

[tx, l]. From the result of Case 1, the demand created byT̂i in the subinterval[t0, tx] is bounded from above

by d̂bf i([t0, tx]) sincefi(t) does not change in the subinterval. Similarly, the demand created byT̂i in the
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Figure 6: Dynamic deadline adjustment whentx coincides with a deadline of̂Ti.
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Figure 7: Dynamic deadline adjustment whentx does not coincide with a deadline ofT̂i.

subinterval[tx, l] is bounded from above bŷdbf i([tx, l]). Thus, the processor demand created byT̂i in the

interval[t0, l] less than or equal to

d̂bf i([t0, tx]) + d̂bf i([tx, l]) =
∫ tx

t0

fi(t)dt +
∫ l

tx

fi(t)dt

=
∫ l

t0

fi(t)dt = d̂bf i([t0, l])

and the lemma holds for this case.

Case 2b:tx is not a deadline for a job of̂Ti in [t0, L], as shown in Figure 7.

Let Di(m + 1) > tx be the (initial) deadline of jobJim+1 at time tx, andDi(m) < tx be the dead-

line of job Jim. (If tx ∈ (ti, Di(1)), let Di(m) = ti.) At time tx, the sharefi(tx) changes and deadline

Di(m + 1) is recomputed using Equation (15). LetD′
i(m + 1) represent this recomputed deadline. Observe

thatD′
i(m + 1) > tx when computed using Equation (15).

Thus, for this case, the interval[t0, l] is divided into three subintervals:[t0, Di(m)], [Di(m), D′
i(m + 1)]

and[D′
i(m + 1), l]. Let fi = fi(t) for t ∈ [t0, tx] andf ′i = fi(t) for t ∈ [tx, l].

From Case 2a,̂dbf i([t0, Di(m)]) is an upper bound on the processor demand in the interval[t0, Di(m)].

The demand created bŷTi in the interval[Di(m), Di(m + 1)] is, by definition,q time units. Thus,

since deadlineDi(m + 1) is recomputed toD′
i(m + 1), the processor demand created byT̂i in the interval

[Di(m),D′
i(m + 1)] is q time units. Thus, the proof obligation is to show that̂dbf i([Di(m), D′

i(m + 1)]) ≥
q.



If tx represents the timefi(t) changes due to an aperiodic request joining the system then

d̂bf i([Di(m), D′
i(m + 1)]) =

∫ D′i(m+1)

Di(m)
fi(t)dt

=
∫ tx

Di(m)
fi(t)dt +

∫ D′i(m+1)

tx

fi(t)dt

= (tx −Di(m))fi + (D′
i(m + 1)− tx)f ′i

= (tx −Di(m))fi + (tx + (Di(m + 1)− tx) · fi

f ′i
− tx)f ′i by Equation (8)

= (tx −Di(m))fi + (Di(m + 1)− tx)fi

= (Di(m + 1)−Di(m))fi

= yi(Di(m)) · fi(Di(m)) =
q

fi(Di(m))
fi(Di(m)) = q

If tx represents the timefi(t) changes due to aperiodic requestAx leaving the system then,tx = Dx(l)

(the deadline of the last job ofAx) since that is when changes in processor shares take effect.

d̂bf i([Di(m), D′
i(m + 1)]) =

∫ D′i(m+1)

Di(m)
fi(t)dt

=
∫ tx=Dx(l)

Di(m)
fi(t)dt +

∫ D′i(m+1)

tx=Dx(l)
fi(t)dt

= (Dx(l)−Di(m))fi + (D′
i(m + 1)−Dx(l))f ′i

= (Dx(l)−Di(m))fi + (Dx(l) + (Di(m + 1)−Dx(l)) · fi

f ′i
−Dx(l))f ′i

by Equation (15)

= (Dx(l)−Di(m))fi + (Di(m + 1)−Dx(l))fi

= (Di(m + 1)−Di(m))fi

= yi(Di(m)) · fi(Di(m))

=
q

fi(Di(m))
fi(Di(m))

= q

It follows that d̂bf i([Di(m), D′
i(m + 1)]) is an upper bound on the processor demand in the interval

[Di(m), D′
i(m + 1)].

From Case 2a,̂dbf i([D′
i(m + 1), l]) is an upper bound on the processor demand in the interval[D′

i(m + 1), l]

sinceD′
i(m + 1) meets the requirement fort0 (in Case 2a) andf ′i = fi(t) for t ∈ [D′

i(m + 1), l].

Thus, the processor demand in the interval[t0, l] created byT̂i is less than or equal to

∫ Di(m)

t0

fi(t)dt +
∫ D′i(m+1)

Di(m)
fi(t)dt +

∫ l

D′i(m+1)
fi(t)dt = d̂bf i([t0, l])

and the lemma holds for this and each of the other cases.



Corollary A.2. Let T̂i = ψ(Ai) represent the aperiodic requestAi ∈ A(t). The processor demand created

by T̂i will never exceed its processor share. That is,

∀L > 0, d̂bf i([0, L]) =
∫ L

0
fi(t)dt

is an upper bound on the processor demand in the interval[0, L] whereψ(Ai) is defined by Equation(5) and

fi(t) is defined by Equation(2).

Proof: Clearly t0 = 0 satisfies the requirement specified fort0 in Lemma A.1. Thus, with the simple

substitution oft0 = 0 andl = L, Corollary A.2 follows immediately from Lemma A.1.

Lemma A.3. If no job of an aperiodic request released before timet0 ≥ 0 requires processor time in the

interval [t0, l] to meet a deadline in the interval[t0, l], then

∀l > t0, (l − t0)F̂ (24)

is an upper bound on the processor demand in the interval[t0, l] created by the set of aperiodic requests

A([t0, l]).

Proof: By Lemma A.1, Equation (23) provides an upper bound on the processor demand created by any

requestAi ∈ A([t0, l]). Thus, demand created by all aperiodic requests in the interval[t0, l] is less than or

equal to

∑

i∈A([t0,l])

d̂bf i([t0, l]) =
∑

i∈A([t0,l])

∫ l

t0

fi(t)dt

=
∫ l

t0

∑

i∈A(t)

fi(t)dt

= (l − t0)F̂

Corollary A.4. The processor demand created by the set of aperiodic requestsA will never exceed its pro-

cessor share,̂F . That is,

∀L > 0, LF̂

is an upper bound on the processor demand in the interval[0, L] created by the set of aperiodic requests

A([0, L]).

Proof: Clearly t0 = 0 satisfies the requirement specified fort0 in Lemma A.3. Thus, with the simple

substitution oft0 = 0 andl = L, Corollary A.4 follows immediately from Lemma A.3.

Theorem A.5. Let the task setT = A ∪ R be the setA =
⋃∞

t=0A(t) of aperiodic tasks and the set

R = {(x1, y1, d1, c1), . . . (xn, yn, dn, cn)} of RBE tasks. Preemptive EDF will succeed in schedulingT if

∀L > 0, L ≥
n∑

i=1

dbf i(L) + LF̂ (25)



whereF̂ is the portion of the CPU capacity allocated to aperiodic requestsA anddbf i(L) is as defined in

Lemma 5.1.

Proof: To show the sufficiency of Equation (25), it is shown that the preemptive EDF scheduling algorithm

can schedule all releases of tasks inT without any job missing a deadline if the tasks satisfy Equation (25).

This is shown by contradiction.

Assume thatT satisfies Equation (25) and yet there exists a release of a task inT that misses a deadline

at some point in time whenT is scheduled by the EDF algorithm. Lettd be the earliest point in time at which

a deadline is missed and lett0 be the later of:

• the end of the last interval prior totd in which the processor has been idle (or 0 if the processor has

never been idle), or

• the latest time prior totd at which a task instance with deadline aftertd stops executing prior totd (or

time 0 if such an instance does not execute prior totd).

By the choice oft0, (i) only releases with deadlines less than timetd execute in the interval[t0, td], (ii) any

task instances released beforet0 will have completed executing byt0 or have deadlines aftert0, and(iii) the

processor is fully utilized in[t0, td].

Thus, by a result due to Baruahet al. (Lemma 3.5 in reference [4]), at most

n∑

i=1

⌊
td − t0 − di + yi

yi

⌋
xi

instances of tasks inR can have deadlines in the interval[t0, td], and

n∑

i=1

⌊
td − t0 − di + yi

yi

⌋
xici =

n∑

i=1

dbf i(td − t0)

is the least upper bound on the units of processor time required to be available in the interval[t0, td] to ensure

that no task release misses a deadline in[t0, td].

By Lemma A.3, at most(td− t0)F̂ units of processing time are are needed to processes aperiodic requests

in the interval under deadline scheduling and, by Lemma A.1, at mostd̂bf j([t0, td]) time units are needed to

process any single aperiodic request in the interval.

If the tasks inT are scheduled with a deadline driven scheduling algorithm, such as EDF, then

∑

i∈R
dbf i([t0, td]) +

∑

j∈A([t0,td])

d̂bf j([t0, td]) =
n∑

i=1

dbf i([t0, td]) + (td − t0)F̂

is an upper bound on the processor demand in the interval[t0, td]. Thus, since the processor is fully used in

the interval[t0, td] and since a deadline is missed at timetd, it follows that

n∑

i=1

dbf i([t0, td]) + (td − t0)F̂ > (td − t0).



However, this contradicts our assumption thatT satisfies Equation (25).

Hence ifT satisfies Equation (25), then no release of a task inT misses a deadline whenT is scheduled

by a deadline driven algorithm such as EDF. It follows that satisfying Equation (25) is a sufficient condition

for schedulability under preemptive EDF.

Corollary A.6. Let the task setT = A ∪ R be the setA =
⋃∞

t=0A(t) of aperiodic tasks and the set

R = {(x1, y1, d1, c1), . . . (xn, yn, dn, cn)} of RBE tasks withdi = yi, 1 ≤ i ≤ n. Preemptive EDF will

succeed in schedulingT if Equation (26) holds whereF̂ is the portion of the CPU capacity allocated to

aperiodic requestsA.
n∑

i=1

xi · ci
yi

+ F̂ ≤ 1 (26)

Proof:
n∑

i=1

xici
yi

+ F̂ ≤ 1 =⇒ ∀L > 0, L ≥
n∑

i=1

L · xici
yi

+ LF̂

=
n∑

i=1

L

yi
· xici + LF̂

=
n∑

i=1

L− yi + yi

yi
· xici + LF̂

=
n∑

i=1

L− di + yi

yi
· xici + LF̂ sincedi = yi

≥
n∑

i=1

dbf i(L) + LF̂ .

Theorem A.7. Let the task setT = A ∪ R be the setA =
⋃∞

t=0A(t) of aperiodic tasks and the set

R = {(x1, y1, d1, c1), . . . (xn, yn, dn, cn)} of RBE tasks. If the task set is schedulable under preemptive EDF

when deadlines are assigned using Equation(15), the lag of aperiodic requestAi is less than or equal to zero

at the deadline of each of its jobs. That is,

∀k, i : 1 ≤ k ≤ l, i ∈ A(t) :: lag i(Di(k)) ≤ 0 (27)

wherel is the number of jobs executed for aperiodic requestAi.

Proof: By Equation (4), the lag ofAi at timeDi(k) is

lag i(Di(k)) = Si(ti, Di(k))− si(ti, Di(k))

whereAi first becomes eligible for execution at timeti. By Equation (3),Si(ti, Di(k)) =
∫ Di(k)
ti

fi(t)dt, and

it was shown in the proof of Lemma A.1 that
∫ Di(k)
Di(k−1) fi(t)dt = q. Therefore

Si(ti, Di(k)) =
∫ Di(k)

ti

fi(t)dt = kq.



Once a job is released, its deadline is computed and a timer set to ensure that it never executes for more

thanq time units. Once the timer expires, the job is suspended (terminated) and the next job is released. Thus,

if the task set is schedulable,at leastk jobs, each of durationq time units, will have completed execution by

timeDi(k). Therefore,si(ti, Di(k)) ≥ kq.

It immediately follows that

lag i(Di(k)) = Si(ti, Di(k))− si(ti, Di(k))

= kq − si(ti, Di(k))

≤ 0

and the theorem holds.

Theorem A.8. Let the task setT = A ∪ R be the setA =
⋃∞

t=0A(t) of aperiodic tasks and the set

R = {(x1, y1, d1, c1), . . . (xn, yn, dn, cn)} of RBE tasks. LetDi(l) be the deadline of the last job of aperiodic

requestAi when it terminates. If the task set is schedulable under preemptive EDF when deadlines are

assigned using Equation(15) and the execution time of aperiodic requestAi is a multiple ofq, the lag of

aperiodic requestAi is zero at timeDi(l), the deadline of its last job. That is,

∀i ∈ A(t) : lag i(Di(l)) = 0 (28)

wherel is the number of jobs of lengthq executed for aperiodic requestAi.

Proof: As shown in the proof of Theorem A.7,Si(ti, Di(l)) =
∫ Di(l)
ti

fi(t)dt = lq.

Once a job is released, its deadline is computed and a timer set to ensure that it never executes for more

thanq time units. Once the timer expires, the job is suspended (terminated) and the next job is released. Thus,

if the task set is schedulable,exactlyl jobs, each of durationq time units, will have completed execution by

timeDi(l). Therefore,si(ti, Di(l)) = lq.

It immediately follows that

lag i(Di(l)) = Si(ti, Di(l))− si(ti, Di(l))

= lq − lq

= 0

and the theorem holds.

Theorem A.9. Let the task setT = A ∪ R be the setA =
⋃∞

t=0A(t) of aperiodic tasks and the set

R = {(x1, y1, d1, c1), . . . (xn, yn, dn, cn)} of RBE tasks. If the task set is schedulable under preemptive EDF

when deadlines are assigned using Equation(15), the lag of aperiodic requests is bounded such that

∀t ≥ 0, i ∈ A(t) : lag i(t) ≤ q(1− fi) (29)

wherefi is the minimum non-zero fraction of the processor allocated to aperiodic request (i.e.,fi = min{fi(t)|t ∈
[ti, t

f
i ]}).



Proof: By Theorem A.7,lag i(Di(k)) ≤ 0, ∀k : 1 ≤ k ≤ l wherel is total number of jobs of aperiodic

requestAi. Thus, the maximum (positive) lag for requestAi must occur somewhere between two deadlines.

This occurs when jobJij does not begin to execute until timeDi(j + 1)− q. If the job began to execute any

later, it would miss its deadline at timeDi(j + 1) since each job requiresq time units of execution.

Thus, let timeDi(j + 1)− q be the point in time at which the lag of requestAi is greatest. Since jobJij

does not execute in the interval(Di(j), Di(j + 1)−q), the lag of requestAi at timeDi(j + 1)−q is bounded

such that

lag i(Di(j + 1)− q) = Si(ti, Di(j + 1)− q)− si(ti, Di(j + 1)− q)

= Si(ti, Di(j)) + Si(Di(j), Di(j + 1)− q)

− (si(ti, Di(j)) + si(Di(j), Di(j + 1)− q))

= Si(ti, Di(j))− si(ti, Di(j)) + Si(Di(j), Di(j + 1)− q)

− si(Di(j), Di(j + 1)− q)

= lag i(Di(j)) + Si(Di(j), Di(j + 1)− q)− si(Di(j), Di(j + 1)− q)

= Si(Di(j), Di(j + 1)− q)− si(Di(j), Di(j + 1)− q)

= Si(Di(j), Di(j + 1)− q)

=
∫ Di(j+1)−q

Di(j)
fi(t)dt

≤ ((Di(j)− q)−Di(j + 1))fi

= (yi(j)− q)fi

≤ (
q

fi
− q)fi

= q(1− fi).

When the processor share remains constant during the life of requestAi, fi = fi(t) andlag i(t) = q(1− fi),

∀t ∈ [ti, Di(l)]. Therefore (29) is a least upper bound on any request’s lag when the task set is schedulable.


