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Abstract

The rate-based execution (RBE) task model was developed to support the real-time execution of event-
driven tasks in which na priori characterization of thactual arrival rates of events is known; only the
expectedarrival rates of events is known. The RBE model is well suited for systems that must execute
in environments that are not well-behaved (i.e., when the arrival rate of events is neither periodic nor
sporadic).

Aperiodic requests witlunknownexecution times andnknownarrival patterns are mapped to RBE
tasks and scheduled such that the real-time tasks are guaranteed to meet their deadlines while aperiodic
requests share the available processor capacity without reserving a fixed processor capacity for any one
aperiodic request. This approach was selected over the traditional approach of using a server task to
process aperiodic requests so that the available processor capacity could be dynamically shared between
active aperiodic requests.

1 Introduction

The rate-based execution (RBE) task model was developed to support the real-time execution of event-driven
tasks in which naa priori characterization of thactual arrival rates of events is known; only tlegpected

arrival rates of events is known [19]. The RBE model is a generalization of Mok’s sporadic task model [27]
in which tasks are expected to execute with an average execution raterads everyy time units, and was
motivated, in part, by distributed multimedia applications. A strength of the RBE task model is that it supports

theburstypacket arrival pattern common in networked multimedia environments.
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The RBE model is an attractive execution model for systems that execute in unpredictable environments
where the arrival pattern of events is neither periodic nor sporadic. However, many such systems also receive
aperiodic command and control messages as well as other aperiodic requests. In many cases, the aperiodic
requests do not have hard deadlines, but there is a clear difference in the urgency between aperiodic requests.
That is, some aperiodic requests are much more urgent than other aperiodic requests and must be done sooner.

This work addresses the theory of integrating RBE tasks with aperiodic requests on a uniprocessor. The
only known scheduling algorithm for RBE tasks is based on the earliest-deadline-first (EDF) scheduling algo-
rithm, which requires the specification of task parameters that are generally unknown for aperiodic requests
(or too pessimistic to be useful). Moreover, even the concept of an aperiodic request executing with a rate
seems, on the surface, to be at odds with usual execution semantics of such requests. We usually think of
an aperiodic request executing once and then terminating. In contrast, RBE tasks are expected to execute
indefinitely, makingr request every time units.

The canonical approach to supporting aperiodic requests in a uniprocessor real-time system has been to
add a server that processes aperiodic (non-real-time) requests [23, 32, 30, 15, 31, 13, 14, 1, 10, 9, 11, 22].
The server is allocated a portion of the CPU bandwidth and aperiodic requests are executed by the server such
that no real-time job misses a deadline. The approach taken here differs in that we do not create a separate
server for aperiodic requests. Instead, we dynamically map aperiodic requestskvithwnexecution times
andunknownarrival rates to RBE tasks and schedule all tasks in the system with a simple EDF scheduling
algorithm.

The primary contribution of this work is to generalize the theory of aperiodic request scheduling in hard-
real-time systems. A portion of the processor capacity is allocated to aperiodic processing and each aperiodic
request shares this capacity in proportion to its urgency, represented by a weight. Deadlines of hard real-time
tasks are guaranteed to be met while aperiodic requests dynamically and proportionally share their allocation
of processor capacity. The theory and approach presented in this work can be applied, with minor modifi-
cations, to deadline-driven scheduling of periodic and sporadic task models since RBE is a generalization of
these models. Rather than using a weight to share processor capacity, a (variable) fraction of the processor ca-
pacity could be specified for each aperiodic request as long as an admission control algorithm ensured the sum
of the fractions did not exceed the portion of processor capacity allocated to aperiodic requests. In this sense,
the proportional sharing mechanism presented here could be applied to a set of aperiodic server tasks that
dynamically change their size (e.g., a Total Bandwidth Server [30]) or period (e.g., Constant Bandwidth Sever
[1]). The theory presented here can also be applied to adaptive real-time systems in which tasks dynamically
change their resource requirements.

The rest of this paper is organized as follows. Section 2 introduces the processing model assumed in
this work. Section 3 discusses related work in proportional share scheduling and canonical approaches to

scheduling aperiodic requests in uniprocessor, real-time system. Section 4 presents the mapping of aperiodic



requests to RBE specified tasks. Section 5 discusses the feasibility of scheduling the integrated RBE task set
using a simple extension of the EDF scheduling algorithm. The issue of fairness for aperiodic requests is also
discussed in Section 5. Section 6 discusses some of the issues encountered in applying the theory to actual

systems. We conclude with a summary and discussion of future work in Section 7.

2 The Model

The genesis for this work is a uniprocessor system for which the RBE task model was a good choice for the
real-time processing requirements, but the system also had to support aperiodic command and control requests
as well as other aperiodic processing that was not rate based.

The model presented assumes a uniprocessor system that consists of a set of two distinct classes of tasks:
real-time tasks with hard deadlines and tasks representing aperiodic requests without deadlines. All tasks are
independent of each other (i.e., they do not share resources) and are preemptable at arbitrary points. Real-
time tasks make a sequence of requests that can be described with a RBE rate specification, as described in
Section 2.1. Aperiodic requests consist of a single requestumithownduration that terminates (and leaves
the system) after its processing requirement has been fulfille@ pMiori characterization of the arrival rates
of aperiodic requests is known.

Real-time tasks are modeled as a set of RBE tasks whose membership is static during the life of the
system. Aperiodic requests are mapped to a set of tasks whose membership changes over time. Thus, from a
scheduling theory perspective, the system consists of two distinct classes ofR&&ksisks andaperiodic
tasks. Formally, the task systeft) at timet consists of the sefl(¢) of aperiodic tasks at timeand the set

R of RBE tasks, which is independentf7 (t) = A(t) U R. The set of aperiodic requests over an interval

to
t=t1

specified ag ([t1, t2]) = A([t1,t2]) UR. When the context is clear the temporal parameter will be dropped
from the notation7 = AU R.

of time [t1, t2] is specified asAd([t1,t2]) = A(t). Thus, over the intervdky, t2], the task system is

The rest of this section provides a more detailed description of the model assumed for real-time and
(non-real-time) aperiodic tasks. Section 2.1 provides an overview of the RBE task model and the execution

semantics of RBE tasks. Section 2.2 describes the execution semantics assumed for aperiodic tasks.

2.1 RBE Tasks

A task is a sequential program that is executed repeatedly in response to the occurrence of events. Each
instance of the execution of the task is calleplaor atask instance Jobs are made ready for execution,

or released by the occurrence of an event. An event may be externally generated, e.g., a device interrupt,
or internally generated, e.g., a message arrival. In all cases, once released, a job must execute to completion
before a well-defined deadline. We assume instances of an event type are indistinguishable and occur infinitely

often. Thus over the life of a real-time system an infinite number of jobs of each RBE task will be released.



The RBE task model is a generalization of the real-time task model developed by Mok [27], and later
extended by Baruaét al.[5], and Jeffayet al.[21]. RBE provides two fundamental extensions to the sporadic
task model. First, it makes no assumptions about the points in time at which events occur. It is assumed that
events are generated at a precise average rate (e.g., 30 events per second) but that the actual distribution of
events in time is arbitrary. Second, tasks specify a desired rate of progress in terms of the number of events to
be processed in an interval of specified length. This allows a task to process a “burst” of simultaneous events
as a single event.

A RBE task is specified by a four-tuple:, y, d, ¢) of integer constants. The pdit, y) is referred to as
the rate specificatiorof a RBE task;z is the maximum number of executions expected to be requested in
any interval of lengthy. Parameted is a response time parameter that specifies the maximum desired time
between the release of a task instance and the completion of its executiod i§.¢éhe relative deadline of
the task). Parameteris the maximum amount of processor time required for any job of Taskexecute
to completion on a dedicated processor. It is assumed that time is discrete and clock ticks are indexed by the
natural numbers. Task parametersy, d, andc are expressed as integer multiples of the interval between
successive clock ticks.

A RBE task set is schedulable if there exists a schedule such thg'thelease of task; at timet, ; is

guaranteed to complete execution by timgj), where

D;(j) =

tij +d; if1<j<uay
{” (1)

max(ti; +di, Di(j —x;) + i) ifj >
Thus the deadline of a job is the larger of the release time of the job plus its desired deadline or the deadline
of the ! previous job plus thg parameter of the task. Therefore, upit@bs of a task may contend for the
processor with the same deadline. Note that foj alleadlines of jobg;; andJ; ;. of taskT; are separated
by at leasty time units. Without this restriction, if a set of jobs of a task were released simultaneously it
would be possible to saturate the processor. With the restriction, the time at which a task must complete its
execution is not wholly dependent on its release time. This is done to bound processor demand. See [19] for

a more detailed discussion on the RBE task model.

2.2. Aperiodic Requests

Neither the arrival rate nor the execution cost of aperiodic requests is assumed a priori. However, itis assumed
that each aperiodic requests is associated with a weight that represents its relative urgency with respect to
other aperiodic requestsA request’s weight, relative to the weight of other aperiodic requests, determines
the share of the CPU capacity allocated to aperiodic request processing that the request will receive. This
is the approach taken by many proportional-share resource allocation models to ensure fairness in resource
sharing (e.g., [3, 26, 28, 35, 37, 38]).

1A default value of one can always be used. If all aperiodic requests have the same weight they also have the same level of
urgency.




More formally, a weightv; > 0 is associated with each aperiodic requdste A. Let F' denote the
fraction of the CPU capacity allocated to processing aperiodic requests. This fraction will be shared by the
aperiodic tasks in proportion to their respective weights. Thud(ij denotes the set of aperiodic requests at
timet, the fractionf;(¢) of the CPU each aperiodic request € .A(t) should receive can be computed as

0 if A; & A(t
fi) L it A; & A(t) @

-F' otherwise
2jeA) Wi

The goal in scheduling aperiodic requests is to achieve a proportional sharing of the CPU capacity allo-
cated for aperiodic requests. Thus, for any interval of timeperiodic task4; would receivef;(t)L time
units in aperfectly fair systemHowever, the model presented here only approximates a perfectly fair system
in that the CPU will be allocated to aperiodic requests in discrete quanta less than or equal to a maximum
system specified quantug (Real-time tasks are not so restricted.)

Generally following the terminology and notation introduced by Steical. in [35], the CPU time aperi-
odic request4; would receive in a perfectly fair system during the time intef¥glts] is

t
Si(ti,te) = 3 fi(t)at (3)

time units. Lets;(¢1,t2) be the actual number of time units allocated to aperiodic reqdiest the same
interval. The difference between the amount of time the request would receive in a perfectly fair system and

the time it actually receives in a given interval is callad. The lag ofA; at timet is
lagi(t) = Sl'(ti, t) — Si(ti, t) (4)

whereA; first becomes eligible for execution at time Since a perfectly fair system cannot be implemented

with discrete allocation quanta, the goal in scheduling will be to bound the lag for all aperiodic requests such
thatVt > 0,7 € A(t) : lag;(t) < g wheregq is a system specified parameter that defines the scheduling
guantum used to execute aperiodic requests. In fact, we will show that, when aperiodic requests are mapped

to RBE tasks and scheduled as described in Section 4, the lag of aperiodic requests is bounded such that
vt > 0,i € A(t) : lag;(t) < q(1—f)

where f; is the minimum non-zero fraction of the processor allocated to aperiodic request

The next section relates the work presented here to prior research results found in the literature.

3 Related Work

The RBE task model was formally presented in [19] and summarized in Section 2.1. It is a generalization of
the model of sporadic tasks developed by Mok [27], and later extended by Betrahfb], and Jeffayet al.

[21]. The sporadic task model is a simple variant of the Liu and Layland periodic task model [25]. Whereas



periodic tasks recur at constant intervals, sporadic tasks (as defined by Mok) have a lower bound on their
inter-invocation time, which creates an upper bound on their rate of occurrence. As described earlier, RBE
tasks have an expected rate of executieny), rather than an exact or lower bound on inter-invocation times.

The advantage of the the RBE task model is that correct execution of real-time tasks is not dependent on a
well-behaved environment. This is the primary reason the RBE model was selected for this work.

A significant drawback to selecting the RBE model is that there has been no work showing how to support
aperiodic processing (i.e, non-rate-based processing) within the model. One obvious method for supporting
aperiodic requests is to extend the theory of aperiodic servers to the RBE model. However, we did not want
the aperiodic requests to execute in a FIFO manner with respect to each other. A preemptive aperiodic server
could have been implemented, as described for the Total Bandwidth Server (TBS) in [31], but the execution
cost of some of the aperiodic requests is unknown a priori (for the system being supported).

A better approach than using a TBS would be to use a Constant Bandwidth Server (CBS) [1], or a set of
CBSs, with each CBS representing a class of aperiodic requests. Each CBS could be modeled as a RBE task
with a server budgep, = ¢ and a period’; = fi where wherey is a system specified parameter that defines
the scheduling quantum used to execute aperiodic requestg; anthe fraction of the processor capacity
allocated to CBS. The RBE parameters would then be Ts,Ts, Qs). Whenever the CBS budget was
exhausted, the server would be preempted and a new deadline set with Equation (1) as though one RBE job
had terminated and another was released. Doing so results in the same deadline assignments described in [1]
as long as only one aperiodic request was ever processed by a CBS at a time. However, this requires reserving
a fixed fraction of CPU capacity for each CBS, which would go unclaimed if there was no pending aperiodic
request for that server. The unused capacity would then be shamdtitbgks in the system, including real-
time tasks. The CASH algorithm presented in [9] could be used to share unused capacity with another CBS
server. However, this creates a form of priority inversion with respect to urgency of aperiodic requests since
the CASH algorithm allocates the unused capacity of one server to the next server that needs it, independent
of the classification of the server.

Thus, it was decided to use weights rather than fixed classifications to prioritize the aperiodic requests
and to share the available processor capacity for aperiodic requests in proportion to the requests’ weight. The
advantage of this approach is that it separates urgency from execution duration or the server’s replenishment
period in prioritizing the requests.

Most research in proportional share resource allocation (e.qg., [26, 28, 37, 38, 8, 20, 35, 33, 34]) is based
on the seminal work in bandwidth allocation for packet-switched networks by Demers et al. [12], Golestani
[18], and Parekh and Gallager [29]. Weighted Fair-Queueing (WFQ) (also known as packet-by-packet gener-
alized processor sharing) allocates a proportional share of a networks bandwidth to a session by employing a
two-level hierarchical scheduler. The WFQ scheduler creates a queue for each session. Each queue is param-

eterized by a weight and an expected finish time for its first packet. When the first packet in giepaets,



the expected finish timét; is recomputed for the next packet A = max(r;, ft;) + B% whereB; is the
bandwidth reserved for sessidn is the size of the next packet, is the arrival time of the next packet, and

ft; is the finish time of the packet. Packets within a queue are scheduled under the FIFO principle, which
can be substituted with other scheduling policies as described in [8]. Although originally proposed as a non-
preemptive scheduling algorithm (for network packets), WFQ can be easily modified to support preemptive
task scheduling [24] and is the basis for BERT [7] and SMART [28].

Rather than employing the two-level WFQ hierarchy, the Earliest Eligible Virtual Deadline First (EEVDF)
algorithm [35] schedules tasks according to their eligible times and deadlines in the virtual-time time domain
(as proposed by Zhang [39] and independently by Parekh and Gallager [29]) using a simple EDF algorithm.
Based on the weights of the tasks in the system, virtual time is computed; virtual time may progress faster,
slower or at the same rate as real time. According to task weights, release time and execution time, the
virtual eligible timewve and virtual deadlined of a task is computed using equations presented in [35] and
summarized as follows:

r(k)

Wy

vel =V (th);  wdb =vek + —;  wektt = ud®).

Tasks are scheduled by observing the Earliest Eligible Virtual Deadline First rule to ensure that no real-time
task is ever late by more thgnp — 1) time units (in the real-time time domain), wherés the length of the
scheduling quantum. Eligible time was introduced to prevent a task from being executed earlier than when it
should in the perfect generalized processor share model, which is simiarFta) [8].

Virtual time is widely used in proportional-share algorithms to cancel the affect of dynamic work loads.
Since virtual time maintains the order of deadlines with respect to the order they occur in real time, it avoids
deadline adjustment when system workload changes. However, when we combine hard real-time tasks with
aperiodic requests (which do not have hard deadlines), deadlines of real-time tasks must be recomputed to
preserve the share they require with respect to the aperiodic requests [36, 16]. Thus, the primary advantage of
using virtual time is lost when the number of real-time tasks is greater than the number of aperiodic requests.

The work presented here combines elements from WFQ, EEVDF, and CBS. In some sense, it is a gener-
alization of the CBS to support variable execution periods and a variable number of servers in the system, but
the extension does not yet support resource sharing. The mapping of aperiodic requests to RBE tasks appears
to be equivalent to maintaining a CBS server with a variable share for each aperiodic request, though this has
not yet been verified. The total processor share of all aperiodic servers is fixed, equal to the share allocated
to aperiodic requests. If aperiodic requests were mapped to periodic or sporadic tasks, rather than RBE tasks,
the model would reflect a generalization of the Constant Utilization Server (CUS) first presented in [13] and

extended as part of an open system in [14].



4. Scheduling Aperiodic Requests

Rather than creating a server process to schedule aperiodic requests, each aperiodic rdgsesiipped
to a RBE task and scheduled with the RBE tasksRotising a simple EDF algorithm. Since the actual
computation time of an aperiodic request is not known a priori we model the aperiodic request as a RBE task
with each job requiring time units until the request terminates. A timer will be used to enforce a maximum
request duration af time units for each release of an aperiodic request.

The mapping is achieved by setting the RBEparameter to 1 and the RBEparameter tg;. Using
the same concept proposed by Spuri and Buttazzo in [30], the response time parhiaeﬂﬂrtoﬁ#u). To
complete the RBE specification, theparameter is set to the same val%. In any interval between
aperiodic requests arriving or terminating(¢) is equal to some constayit and these parameters are equal
to the more familiar looking constalit from [30] whereg is the duration of the aperiodic request.

More formally, the function)(A;) : A; — T; maps aperiodic request; € A(t) to RBE taskT; as

follows:

A~

Y(Ay) 2 Ap = Ti = (w4, y:(t), di (1), ci)
R B B (5)
fit) fi(t)

where f;(t), defined by Equation (2) in Section 2.2, is the fraction of the CPU allocated to aperiodic task

A; € A(t) andg is the maximum allocation quantum for aperiodic requests. Sif¢e = v;(¢), the fraction

of the processor reserved for taBkis ;(‘;) This is the same share of the processor that needs to be allocated

to aperiodic requesd; with weightw;:
T;Cq q
vit) 1 2 jeA(r) Wi

Wi

F.

See Section 4.3.1 for an example of two aperiodic requests being executed as RBE tasks.

The observant reader may notice two potential problems with modeling aperiodic requests as RBE tasks
defined using the mapping functiar{ A;). The firstis thaty may not be a multiple of the request’s sh#sé),
which violates the assumption of integral RBE parameters. This problem also occurs in the models presented
in [30, 31, 13, 14, 35] and many other related models. Fortunately, this situation can be easily handled, as
described in Section 6. The second potential problem with our approach is that the actual execution time of
an aperiodic request may not be a multipleyofhis situation also occurs in the model assumed by Sttica
al. in [35] when the actual execution time does not match the expected execution time. It also occurs in the
CBS proposed by Abeni and Buttazzo in [1] when the execution time is not a multiple of the server’s budget.
Our approach to this situation is very similar to the approach taken in [35] and is described in Section 6. To
simplify the presentation, the remainder of this section and Section 5 asgusn@snultiple off;(¢) and the

execution of times of all aperiodic requests are multipleg. of

2Rather than inserting examples after each new concept, Section 4.3 provides an extended example composed of subsections that
illustrate each concept separately but with a common context.



In its simplest form, the scheduling of an aperiodic request proceeds as follows. When aperiodic request

A; arrives at time;, it is mapped to a RBE task and assigned a deadline using Equation (1). That$,

A — T, maps aperiodic requedt to RBE taskl} and the first job off} is assigned a deadline gf+d;(t;) =

ti+ % Since the processor share allocated to aperiodic rediyelstes not change until the membership of
A changesf; = f;(t;) andD;(1) = t; + fi until an existing aperiodic request terminates or a new aperiodic
request arrives.

The taskI} is inserted into the ready queue with other RBE tasks and scheduled with the EDF scheduling
algorithm. When jobJ;; of task7} is dispatched (i.e., begins to execute), an execution timer is set to preempt
the execution of joly;; afterq time units. If taskl; is preempted by another task, the execution timer state is
saved with the context of tagk and restored when jols; resumes execution. When the timer set for jpp
expires, task} is preempted and, as though one job had completed and a new job released, a new deadline is
set for jobJ;;+1 using Equation (1) and the RBE parameterd gfwhich is similar to the method used by a
CBS in [1] when a request overruns the server’s budget.

The actual scheduling of aperiodic requests is a little more complicated in practice than described above,
and illustrated in the simple example of Section 4.3.1, because the set of aperiodic requests is dynamic. The
next section addresses the complexities of scheduling dynamic sets of aperiodic requests with a deadline

driven algorithm, such as EDF.

4.1. Dynamic Deadline Adjustment

When a new aperiodic request arrives, the processor share of existing aperiodic requests decreases. When the
processing required for an aperiodic request represented byjtasknpletes and the task leaves the system,

the processor share of other aperiodic requests increases. In both cases, the fraaftiirte processor
allocated to each existing aperiodic request must be recomputed using Equation (2). The change in processor
share results in a change in the deadline for all pending aperiodic jobs. (Note that the deadlines for jobs of
real-time applications remain unchanged.)

We show in Section 5 that if the task set was schedulable before the deadline changes, it will be schedu-
lable after the deadline change and no task will miss its deadline.

There are two cases to be considered. The first is when an aperiodic request joins the system, which
moves the deadlines of pending aperiodic jobs back (i.e., their deadlines occur later). The second is when an
aperiodic request terminates and leaves the system, which moves the deadlines of pending aperiodic jobs up
(i.e., their deadlines occur earlier).

Case 1: Aperiodic request, joins the system at timg,. Let f/ be the new fraction computed for
A; # A, € A(t;) using Equation (2) at time,. Pending deadlines at timg are re-computed by dividing
the expected remaining service time required to complete pending jddy its new fractionf; and adding

this to timet,.. Letr; be the expected remaining service time required to completg;jodhat is,r; denotes



the amount of remaining service time jdl would have in a perfectly fair system. Since aperiodic request
A, is modeled as RBE task with z; = 1 andy;(t) = d;(t), the new deadline for the current jolp; of task

T; is computed using Equation (6).
T

D/i(j) :tm‘i‘? (6)
In a perfectly fair system, the remaining service timéor job J;; is computed as
_ . D;(5) )
ri = Si(t, Di(j)) =/ fit)dt = (Di(j) — ta) - fi (7)
te

whereS; (1, ) denotes the service time tagkwould receive in a perfectly fair system if none of the weights
were changed at timg (andJ; is the fraction of the processor that would have allocatéd to the interval).
By combining Equations (6) and (7), the deadline for pending aperiodic requests can be rewritten using

Equation (8).

Si(te, Di(4))

D) =t + 2]
— B ) ®)
7
byt (D)~ ta) - Jf

See Section 4.3.2 for an example of deadline adjustments made when a new aperiodic request joins the
system.

Case 2: Aperiodic request, terminates at timei. After A, terminates at time!,? , the processor share
allocated to each pending aperiodic request should increase since the total weight of all aperiodic requests
decreases. In a perfectly fair system, the change in processor shares would happen immediately and the
deadlines of pending aperiodic jobs would be updated using Equation (8) by substifutiitiy t£. However,
Equation (8) can only be used to update deadlines wheterminates WitHagx(tﬁ) =0.

Aperiodic requestd, may terminate with non-zero lag since a perfectly fair system can only be approx-
imated. To accommodate this approximation, the termination of aperiodic requdsttreated as though
it occurred at an expected finish timg such thatlag,(tS) = 0. Deadlines of pending aperiodic requests
can then be adjusted by substitutiigwith t¢ in Equation (8). The deadline updates are made at time
and request, is allowed to leave the system immediately. However, the change in processor shares for the
remaining aperiodic requests does not take effect until the expected finistf toheequestd,,. In what fol-
lows, we show from a proportional share perspective that the deadlines of pending aperiodic jobs are changed
to the same value whether we wait until titfeto make the updates or if we update the deadlines immediately
at timet..

The request is expected to terminate at its deadline. Thét is; D, (I) whereD,(l) is the deadline

when A, terminates. NoteD,(l) > t£ always holds if all deadlines are met, and a sufficient condition for



determining the schedulability of the task set is presented and proven in Section 5. Since the actual service

time is the same and only the expected service times differ, the |ldg af time D, (1) can be expressed as

Dy (1)
lage(Dx (1)) = lags(t]) + S (t], Du (1)) = laga(t]) + /t . e(dt =lage(t]) + (Da(l) = £7) - fult]).

Therefore, the lag ofl, at timetZ, can be expressed as

lagx(t:j;) = lagx(D:c(l)) - (Dx(l) - tg) : fx(tg)

(9)
— laga(Da (1)) + (¢] = Da(1)) - fo(t]).

ThusD,(l) = th — % becauséag, (D, (1)) = 0 when the task set is schedulable (by Theorem 5.9 in
[17], which is Theorem A.8 in the Appendix).

D, (1) can now be substituted fox in Equation (8) to compute the new deadlines for pending aperiodic
requests. LetV represent the weight summation of aperiodic requests, includingf request4,, and
W' represent the weight summation excludimg. The new deadlines for pending aperiodic requests are

computed as follows.

D/,(j) = Dall) + (Di(j) — Do (1)) - ;
_4f _ lagw(tg) o ef lagm(tg) ﬁ
(f — 2 1 (i) - (of - Py
Dy iy FiJass(t) fi
ty + (Di(j) — tz) 7 i (1 f{)
I N B A AN PR 24
t, + (Di(j) — ) 7 i 1 w

gy W (o)

o )
fi lag,(t]) w,

TR )
fi lag,(th) w,
7 er W

~

f! £

Observe that if aperiodic requedt, terminates Withlagx(tg;) = 0, thenD,(l) = #/ and Equation (10)
reduces to Equation (8), just as one would expect to occur under this condition.

The effect of Equation (10) is to distribute non-zero lag to the remaining aperiodic requests and allow
requests to leave the system as soon as they terminate even though changes in processor share do not take
effect until the deadline of the completed request. The same concept was used by Sabind35]. How-

ever, in this work the lag is distributed proportionally to the remaining aperiodic requests through deadline



adjustments. The main difference between our approach and that used in [35] is that our method operates in

real time and not in virtual time. The approaches are similar in that each pending aperiodic requéist

have its lag adjusted by.g; = lagz(tf;) - %+ In real-time this is accomplished by subtract@ from the
updated deadline computed by Equation (8) for each pending aperiodic request representefy;bysjobe

= Vﬂ”,F a proportionate distribution of the remaining lag of requésto pending aperiodic requests by

modifying Equation (8) (witht, = ti) reduces to Equation (10):

D'i(j) =t + (Di(j) — th) - jf -
_4f (3 _ f -ﬁ—l fy. Wi
t:v+(Dl(]) tz) fz/ agz(tﬂc) W/'II/IU;/F (11)
| /
=t + (Di(j) — t]) - i, - lag}(%)

= Equation (10)

Thus, using Equations (8) and (10) the deadlines of all existing aperiodic jobs can be updated whenever
an aperiodic request enters or leaves the system (respectively). Moreover, Equation (10) shows that, in an
implementation, one can distribute lag proportionally by updating pending deadlines without actually tracking
the lag; the new deadlines can be computed using the deadline of the leaving request, as shown in the first
form of the equality expressed by Equation (10).

See Section 4.3.3 for an example of deadline adjustments made when an aperiodic request terminates and

leaves the system.

4.2. Auxiliary Variable 6

What if the last aperiodic jold,; in the system finishes and then another aperiodic reqligstrives before

the deadline of job/,;? As currently defined, the deadline of joh; would be set using Equation (1) as

t, + d,. However, unless the lag of request is tracked and transferred to the new request, the deadline of
job J,,1 will be set too early, which will create more processor demand than aperiodic requests are allocated.
As before, letD,(1) be the deadline of jol,; (recall thatlag,, (D, (1)) = 0), tJ be the actual finish time, and

t, be the arrival time of request,,. Intuitively, if requestA,, arrives at time,, such thattﬁé <ty < Dy(l),

the deadline of jol,,; should be set t®,.(!) + d,, rather thart,, + d,,, as specified by Equation (1). Observe

that

vt e [t1, Do(1)] : lag,(t) = Su(te,t) — sp(te,t)
= Salta,t]) + (t — ) fo — su(ta t])
= Sy (tas t]) — sp(tes th) + (t — t1) fu

= lag,(t)) + (t —t]) fa

(12)



The intuitive deadline assignment equatiop(1) = D, () + d,, can be derived from Equation (1) such

that the remaining lag of requedt, at timet,, is transferred to request,, as follows.

=t, +d, — 7 by Equation (12)
f /
—t, +d, — lag,(Dx(1)) + (tz — ?w(l))fx + (tn —ta) fa by Equation (9) (13)
—t, +d, — lag,(Ds(1)) "‘}:Etn —D;() fo
=ty +dp — (t, — Dy(1))  sincef, = F andlag, (D, (1)) = 0
=D,(l)+d,

If requestA,, arrives after timeD,(() (i.e.,t, > D,(l)), then Equation (1) should be used to assign a
deadline to job/,,; sincelag,(t,) = 0 (and hence, the system lag is also zero).

Thus, the auxiliary variablé is introduced to record the point in time at which the system lag reaches
zero. Initiallyé = 0. Each time the last aperiodic job in the system terminates, the expected finish time of that
job, D,(1), is recorded a8 = D, (1). Using the auxiliary variablé, the deadline of joly;; for each newly

arriving aperiodic request; at timet; is computed using Equation (14).
Dz(l) = max(@, ti) + di (14)

See Section 4.3.4 for an example using Equation (14) to set the deadline of an aperiodic request.
To summarize, Equations (1), (8), (10), and (14) for computing deadlines of aperiodic requests are com-

bined in Equation (15) to form a single expression for computing deadlir@zs:efw(Ai).

max(@,ti) + dl(tl) if j=1
max(t;; + d;(t;;), Di(7 — 1) 4+ y; (t;5 if 1 >1
Di(j) = ( J . ( ]) . (j )+ wi( ])) . J . (15)
te + (Di(j) — ta) if A, arrives at,,
Dy (1) + (Di(j) — Da (1) % if A, terminates at/

When the task set is schedulable, the second line of Equation (15) can be redixgg-tol ) + y;(t;;) since

job J;; of T} is released as soon as jdl_; has executed fay time units.

4.3. Examples

This section provides an extended example composed of subsections that illustrate each concept separately
with a common context. The fraction of the CPU allocated to aperiodic request proceséing i&4 and

the system assigned quantum for aperiodic requests is 1@ (e10). Neither values will change during the

life of the system. Initially, the weight summation of all aperiodic reques# is 70, which will change over

time.
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Figure 1: Execution pattern when no change in share allocations occur.
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Figure 2: Deadline adjustments when a new aperiodic request arrives.

4.3.1. Nominal execution of4; and A,

Attime 100A4; and A join the system withv; = 20 andws = 10. The summation of weights in the system,

W, now changes from 70 to 100. By Equation (2), the fraction of the processor allocated to each request is
fi = 2504 = 0.08 and fo = 49.0.4 = 0.04 respectively. Using Equation (5}4; and A, are mapped to

RBE tasksl] = (1,125,10,125) and7, = (1,250, 10, 250). If no request enters or leaves the system after
time 100,4; and A, will follow the execution pattern shown in Figure 1.

4.3.2. A New Aperiodic Request Arrives

To illustrate deadline adjustment when a new aperiodic request arrives, adsuangves at time 250 with
w, = 100. W now changes from 100 to 200. Consequently the fractions of the CPU capacity allocated to

Ay, Ag, and A, at time 250 are set using Equation (2) as follows:

_ g 20

F=_"04=004

h=3 200 ’
w9 ~ 10

— 2fF = _—04=0.02

f= 200 ’
wy ~ 100

= —LE—_040=0.2.

o =35 500040 =0

The RBE specifications are then changed usiiig defined by Equation (BY, = (1,250, 10, 250), Ty =
(1,500, 10, 500), T, = (1,50, 10,50). Finally, the deadlines of pending aperiodic requests are modified.
DeadlinesD;(2) and D»(()1 are modified as follows and illustrated in Figure 2;(2) = 250 + (350 —

250) - 298 = 450, Dy(()1 = 250 + (350 — 250) - 233 = 450.
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Figure 3: Deadline adjustment when an aperiodic request terminates.
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Figure 4: Deadline adjustment when an aperiodic request joins the system with no aperiodic requests pending.

4.3.3. An Aperiodic Request Terminates

Assume aperiodic requedt, terminated at some point between time 350 and time 475, with no other changes
in the set of aperiodic requests, and deadlines were adjusted accordinghy/with100. Then at time 670,
assume aperiodic reque4t terminates. At this point, the summation of weights in the sysiémg¢hanges

from 100 to 80. Leti’’ = 80 represent the new weight summation. The fraction of the CPU allocated to
requestd, is changed tof}, = %F = %0.4 = 0.05 and the deadline afl; needs to be changed. Using

Equation (15), the new deadline is

f

Dy(2) = Di(5) + (Da(2) — Dl<5>>7?
2
=775+ (900 — 775)% = 875.

Figure 3 illustrates this change.

4.3.4. Deadline Assignment with Variabled

Assume the last aperiodic request terminates and leaves the system at td@. The deadline ofd, is
recorded byd = D, (l) = 855. If a new aperiodic request,, with weightw,, = 50 arrives at times43, it

will take over theF' = 0.4 fraction of the CPU allocated to aperiodic processing. The RBE specification of
A, will be T,, = (1,25,10,25) and its first deadline i®),,(1) = maz(843,855) + 25 = 880 as shown in
Figure 4.

5 Schedulability and Bounding Lag

A task set is schedulable if there exists a schedule such that no task instance misses its deadline. Thus, if

Demand(L) represents the total processor demand in an interval of lehgthtask set is schedulable if



L > Demand(L) for all L > 0. Section 5.1 summarizes a prior result from [19] that bounds the processor
demand of RBE tasks in an interval. Section 5.2 bounds the processor demand created by aperiodic requests.
Section 5.3 combines the results of the first two subsections to create a sufficient schedulability condition for
atask se? = A U R whereA is the set of aperiodic tasks at any time 0 andR = {(z1,y1,d1,c1), ...

(Tn, Yn, dn, cn) } is the set of real-time RBE tasks. Section 5.4 presents an least upper bound on the lag of any

aperiodic request that holds when the task set is schedulable.

5.1. Bounding Demand for RBE Tasks

Lemma 5.1 was presented as Lemma 4.1 in [19] to bound the processor demand of a RBEitashk
interval. It is reproduced here (in a slightly different form) since it is used in the sufficient condition of

Theorem 5.6 for the set of tasésconsidered in this work.
Lemma 5.1. For a RBE taskl; = (x;, yi, di, ¢i),

0 if ¢ € [0,d;)

(16)
L%inci if t € [d;, 0]

Vt >0, dbf(t) = {

is a least upper bound on the number of units of processor time required to be available in the ifitefyal
to ensure that no job d¢f; misses a deadline i), L].

5.2. Bounding Demand for Aperiodic Requests

The demand bound function defined by Equation (16) assumes that the task may begin executing at time
and will continue to execute for the life of the system with fixed RBE parameters. Aperiodic requests enter
and leave the system dynamically, which results in changing RBE parameters during the life of an aperiodic
requests,.

Let ¢; denote the arrival time of aperiodic requeist T, = ¥(A;), andD;(1) be the deadline time of the
last jobJ;; of T; representing aperiodic request Under these assumptions, the processor demarit for
the intervald0, ¢;) and(D;(1), oo] is 0 since the first job is not released until timeand the last job;; of 7;
completes by timeé);({). It should be the case, since we are trying to give each aperiodic reduagortion
of the CPU capacity equal tfj(¢) that the processor demand createdlbys never greater thayﬁtli fi(t)dt
forall ! € [t;, D;(1)]. Lemma 5.2 shows that this is indeed the case. Observe that fyherf;(¢) is constant
over the intervalt;, [], thenftli fi(t)dt = (I —t;) fi, which yields the expected demand for a fixed interval and

processor share.

Lemmab.2. LetT; = ¥ (A;) represent the aperiodic requedt € A(t). If no job of T} released before time

to > 0 requires processor time in the intervia), /] to meet a deadline in the intervib, ], then

l
V1> to, dbfi([to.l]) = | fi(t)dt (17)
to



is an upper bound on the processor demand in the inteltyal] created byl wherei(A;) is defined by
Equation(5) and f;(¢) is defined by Equatio(®).

Proof: See the appendix of proofs, Section A. O

Clearlyty = 0 satisfies the requirement specified fpin Lemma 5.2. Thus, with the simple substitution

of to = 0 andl = L, Corollary 5.3 follows immediately from Lemma 5.2.

Corollary 5.3. LetT; = ¢(A;) represent the aperiodic requedt € A(t). The processor demand created by

T; will never exceed its processor share. That is,

o L
VL >0, @f,(0,L]) = / fi(t)dt
0

is an upper bound on the processor demand in the intgtvdl] wherewy (A;) is defined by Equatiofb) and
fi(t) is defined by Equatio(®).

Lemma 5.2 bounds the processor demand created by a single aperiodic requests in an interval. The
following lemma extends this result to bound the processor demand created by all aperiodic requests in an

interval.

Lemma 5.4. If no job of an aperiodic request released before titpe> 0 requires processor time in the

interval [ty, [] to meet a deadline in the intervib, /], then
VI >ty, (I—to)F (18)

is an upper bound on the processor demand in the inteltyal] created by the set of aperiodic requests

Proof: See the appendix of proofs, Section A. O
With the simple substitution af = 0 and! = L, Corollary 5.5 follows immediately from Lemma 5.4.

Corollary 5.5. The processor demand created by the set of aperiodic req4destt never exceed its proces-

sor share,F'. That is,
VL >0, LF

is an upper bound on the processor demand in the intefdl] created by the set of aperiodic requests
A([0, L]).



5.3. A Sufficient Schedulability Condition

The following Theorem presents a sufficient condition for determining the schedulability of the t&sk=set
AUTR whereA is the set of aperiodic tasks at any time 0 andR = {(z1,y1,d1,¢1), ... (Tn,Yn,dn,cn)}
is the set of real-time RBE tasks. Corollary 5.7 shows that the schedulability of the t&skaete evaluated

efficiently in polynomial time when all RBH parameters are equal to their respectiy@arameters.

Theorem 5.6. Let the task seT = A U R be the setd = J;°, A(t) of aperiodic tasks and the s& =
{(z1,y1,d1,¢1), ... (Tn,Yn,dn,cn)} Of RBE tasks. Preemptive EDF will succeed in schedulinf

VL >0, L>Y dbf,(L)+LF (19)
=1

whereF is the portion of the CPU capacity allocated to aperiodic requeétand dbf;(L) is as defined in
Lemma 5.1.

Proof: See the appendix of proofs, Section A. O

Corollary 5.7. Let the task sef = A U R be the setd = (J;°,.A(t) of aperiodic tasks and the set
R = {(z1,y1,d1,¢1), ... (Tn,Yn,dn,cn)} Of RBE tasks withl; = y;,1 < i < n. Preemptive EDF will
succeed in scheduling if Equation (20) holds whereF is the portion of the CPU capacity allocated to

aperiodic requestsi.

Y S Esa (20)
= Y

5.4. Bounding Lag

The goal in scheduling aperiodic requests is to approximate fair scheduling wherein each request receives time
in proportion to its associated weight. By breaking the request into a sequence of request, each ofgduration
time units, we are able to identify exact points in time at which the request will have received its processor
share. It is shown in [17] that if the task set is schedulable, the lag of aperiodic refjussguaranteed

to be less than or equal to zero at the deadline of each jab ef ¥(A;). The lag may be less than zero

when, for example, real-time RBE tasks execute at lower rates than specified or for less than their worst-
case execution times. When that happens, the aperiodic requests get more than their “expected share” of the
processor. Without using eligible times to control the rate of execution of an aperiodic request, its lag can
become negative because it receives more processor time than would otherwise be possible.

In this work, we are not interested in completely bounding fairness; we are only interested ensuring
aperiodic requests receive a minimum processor share while real-time tasks meet all deadlines. Only an upper
bound on the maximum lag that can accumulate for any aperiodic request can be derived when it is scheduled
under the RBE model since tasks are allowed to execute faster than their rate specification if processor capacity

is available. (This is a desirable feature for the application with which we are working.) One way to provide



a lower bound on processor lag (should one be needed), is to map aperiodic requests to sporadic tasks, track
eligible times, and only release jobs of aperiodic requests when they are eligible—as was done bgt Stoica
al. in [35].

As the following theorem from [17] shows, when the task set is schedulable, our approach to scheduling
aperiodic requests provides a least upper bounldgft) < ¢(1 — f;) on the maximum lag for aperiodic

requests;.

Theorem 5.8. Let the task sef’ = A U R be the setd = [ J;2, A(t) of aperiodic tasks and the s& =
{(x1,y1,d1,¢1), ... (Tn,Yn,dn,crn)} Of RBE tasks. If the task set is schedulable under preemptive EDF when

deadlines are assigned using Equat({d®), the lag of aperiodic requests is bounded such that

vt > 0,i € A(t) : lag;(t) < q(1 - f) (21)
wheref; is the minimum non-zero fraction of the processor allocated to aperiodic requesf;(kemin{ f;(¢)|t €
[ti,t]]}).

Proof: See the appendix of proofs, Section A. O

6 Discussion

We now address the two potential problems with the model that were identified in Sectipwhelq is not

a multiple of f;(¢), and {i) when the execution time of an aperiodic request is not a multipje of

6.1. What if ¢ is not a multiple of f;(¢)?

In practice, mapping (A;) defined by Equation (5) seems to works fine since the aperiodic jobs never execute

for more thang time units and the real-time jobs seldom use all of the processor capacity they reserve.

However, strictly speaking, the resulting RBE task specification may be invalid. The problent (#th is

that it does not ensure the resulting task parameters are positive integers, as assumed by the RBE model.
The obvious correction to this problem is to round ¢tendd parameters to the next higher integer values

when necessary. Let' (4;) : A; — T; mapA; to taskT; as follows:

V(A Ay — T = (24, v, di, i)

94 4 (22)
= 17 R ErEE
(LT T 1a)
Using’(A;) for the mapping, the resulting task is guaranteed a slightly smaller fragfiofithe processor:
TiCi q q wj
fl="r=c=< o =fi==——(1-F).
vi 4174 D jeAw) Wi

However, this approach may change #fiectiverelative weight with which each aperiodic request shares the
CPU. That is, using’() may result inf/ = fj’- whenw; # w;. This may or may not be a problem in practice,

depending on the system requirements.
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Figure 5: Mapping between schedule time and real time.

6.2. What if the execution time ofA,, is not a multiple of ¢?

In the mapping from an aperiodic request to a RBE task, the execution time of the request is assumed to be
a multiple ofg. The actual execution time, is unknown. Ife, is not a multiple ofq, then the deadline
assigned to the last job of the aperiodic request will be a little later than the deadline would, bsefe
known: ((%ﬂ ~q)/fi > - There is no way to compute the “correct” deadline in advance since we do not
know e,., which is only known after request, terminates.

The impact of this problem is that the request requires less processor share in the[iltgiival 1), D (1)]
than it is allocated and terminates with more (positive) lag than accounted for by Equation (10). We cannot
adjust the deadline after it is finished because doing so may violate the EDF principle. One way to solve this
“problem” is to insert[%ﬂ -q — e units of idle time into the schedule at the end of the executiofi,ofwhen
e, IS determined).

Of course we do not want the processor to be idle just so the theory of proportional share scheduling
holds! Rather than idling the processor, the system can skip the idle interval by adjustiuh¢ioele time
i.e., making a jump in schedule time. Schedule time, as it is introduced here, is similar to the concept of
virtual time used in proportional share scheduling algorithms. (Making a jump in virtual time was used in
[35] to solve the same problem.) The main difference between schedule time and virtual is that schedule
time progresses at the same rate as real time, except when an aperiodic request uses less execution time than
anticipated and schedule time advan[:%vs} -q — e, units instantaneously. For example, consider an aperiodic
request that terminates at timewith 3 left in its timer counter. Instead of keeping the processor idle for 3
time units, we adjust the schedule time frofnto t1 + 3. Then the deadlines of all pending aperiodic jobs
are updated using Equation (10). The mapping between schedule time and real time is shown in Figure 5.
Schedule time always progresses at or ahead of real time. Clearly, if all deadlines are met in schedule time,
they are also met in real time.

An alternative approach to advancing schedule time is to adopt a method similar to that used by the
resource reclaiming TBS presented in [31] or to the CBS CASH mechanism proposed in [9]. In this case,
the unused processor allocation (still available) could be transferred to the next aperiodic request (if it arrived

soon enough). However, this would result in violations of the proportional sharing principle.



7 Summary and Future Work

We have presented a task model and scheduling algorithm capable of executing RBE tasks and aperiodic
requests using a simple EDF scheduler. Neither the arrival rate nor the execution duration of aperiodic requests
must be known a priori. Our approach differs from the canonical approach in that we do not create a separate
server for aperiodic requests. Instead each aperiodic request is dynamically mapped to a RBE task that
shares the allocated processor capacity in proportion to its weight. If the sufficient schedulability condition of
Theorem 5.6 is met, the hard deadlines of all real-time tasks are guaranteed to be met while aperiodic requests
dynamically and proportionally share their allocation of processor capacity.

The primary contribution of this work is to generalize the theory of aperiodic request scheduling in hard-
real-time systems when resources are not shared. Since deadline driven scheduling of periodic and sporadic
tasks sets is a special case of scheduling RBE tasks, the theory and approach presented can be applied to
periodic and sporadic task models by enforcing an inter-release time for jobs of an aperiodic request.

Rather than a weight, a fraction of the processor capacity could be specified for each aperiodic request as
long as an admission control algorithm ensured the sum of the fractions did not exceed the portion of proces-
sor capacity allocated to aperiodic requests. Similarly, a specific quantum and period could be associated with
each request. Thus, the proportional sharing mechanism presented could be applied to a set of Total Band-
width Servers that dynamically change their size or a set of Constant Bandwidth Servers that dynamically
change their period or budget. The theory presented here can also be applied to adaptive real-time systems in
which tasks dynamically change their resource requirements.

Even as presented, our approach for scheduling aperiodic requests represents a generalization of the CBS
first proposed in [1]. Each task represents an instance of a CBS with a server bu@get ¢ and a period
Ts = fi that serves jobs for that task until the request terminates. When there exists only one aperiodic
request in the system at a time, the execution schedule created by our approach is identical to one created by a
CBS. Similarly, if each request requires at m@$ime units, the execution schedule created by our approach
is identical to one created by the original TBS presented in [30].

Recently researchers have developed mechanisms for sharing resources among real-time periodic tasks
and aperiodic servers [10, 11, 22]. Similar approaches may prove useful in relaxing the assumption made
in this work that all tasks are independent. Moreover, we hope to combine the schedulability conditions
presented in [19] for resource sharing among RBE tasks with deadlines less thapn phesimeter with a
utilization test for aperiodic request processing similar to those presented in [10, 11, 22], depending on the
synchronization protocol assumed. This should result in tighter sufficient schedulability conditions than those
presented in [10, 11, 22].

A least upper bound on the difference between the ideal processor allocation in a perfectly fair processor
allocation scheme and the actual allocation for an aperiodic request was also presented. This difference is

called lag.



In general, a lower bound on lag cannot be determined without modeling the aperiodic requests as either
periodic or sporadic tasks and setting release times for jobs of an aperiodic request. That is, the current
mapping to RBE tasks does not result in a completely fair processor scheduling algorithm. Forcing a minimal
inter-release time on jobs of an aperiodic request will result in tight bounds on fairness and the resulting model
will change from resembling a generalization of CBS to a generalization of the Constant Utilization Server
[13]. To achieve both fairness and good response times for aperiodic requests, minimum inter-release times
could be relaxed when the processor is idle, using an approach similar to that described by Liu in [24] for a
Starvation-Free Constant Utilization/Background Server.

We are investigating an alternative approach that breaks up the request of real-time jobs into multiple
requests of length. The advantages of this approach are that a lower bound on lag greater¢isaould be
attainable, all requests will be able to make proportional progress, and job release times need not be enforced.
The modified task set represents an instance of the Generalized Multiframe Task model introduced by Baruah

et al. [6] and a new (more complicated) scheduling condition must be developed.
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A Appendix of Proofs

This appendix provides the restatement and proof of all corollaries, lemmas, and theorems presented, but not
proven, in the body of the paper.

LemmaA.l. LetT; = P (A;) represent the aperiodic requedt € A(t). If no job of T} released before time
to > 0 requires processor time in the intenviag, /] to meet a deadline in the intervt, (], then

l
V1> to, dbfi(to.l]) = | fi(t)dt (23)
to

is an upper bound on the processor demand in the inteltyal] created byl wherei(A;) is defined by
Equation(5) and f;(¢) is defined by Equatio(®).

Proof: The proof of this lemma is separated into two parts. First, we show that Equation (23) is an upper
bound on the processor demand created by Taskhen its sharef;(t) never changes in the intervj, .
Second, we show the lemma also holds wlfigh) changes at any timg. € [to, (], which is done by mapping
segments of the interval to the first case.

Case 1:f;(t) never changes through the intery&y, []. This is a straightforward reduction from Lemma5.1,
which states that the tight upper bound on processor demand created by a RBEAgsKi$ = L%j TiCi.
Let f; = fi(t) be the constant share in the interval ahd= | — t,. Based on the mapping, = ¥(A;):
= 1,¢, = q,d; = y; = “in = fi Since f;(t) remains constant in the intervgy), /] and no job ofl}
released before timig requirV(Ves processor time in the interval, the demand creatdd isy

L—d;+ vy L

dbfi(L) = | v Jzici = Ly*Jq
L L
<—q=5q
Yi T

=Lfi=({-t)fi

l —
- fit)dt = dbf;([to, 1))

Thus, Equation (23) is an upper bound on the processor demand in the inftgrijatreated byl; and the
lemma holds for this case.

Case 2: f;(t) changes at time, € [to,!]. Without loss of generality, assunig is the first timef;(t)
changes in the intervady, []. The remaining portion of this proof will assume thfatt) remains constant in
the intervalt,, {]. If f;(t) changes in the interv@d,, (], then this proof can applied recursively to that interval.
There are two sub-cases to consider: wheis a deadline for a job df;, and when it is not.

Case 2at, is a deadline for a job of} in [to, ], as shown in Figure 6.

In this case, the execution @f in the interval[t,, ] can be treated as two separate portigns:t,| and
[t.,1]. From the result of Case 1, the demand created;liy the subintervalto, ¢ is bounded from above
by d/b\fi([to,tm]) since f;(t) does not change in the subinterval. Similarly, the demand creatéd imythe
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Figure 6: Dynamic deadline adjustment whercoincides with a deadline df,.
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Figure 7: Dynamic deadline adjustment wherdoes not coincide with a deadline f.

subinterval[t,, (] is bounded from above Wi([tw, 1]). Thus, the processor demand created/bin the
interval[to, [] less than or equal to

— — ta l
dbf;([to, tz]) + dbf([tz, 1)) = [ fi(t)di + t fi(t)dt

to
l —

and the lemma holds for this case.

Case 2b:t, is not a deadline for a job df} in [to, L], as shown in Figure 7.

Let D;(m + 1) > t, be the (initial) deadline of jol;,,;+1 at timet,, andD;(m) < t, be the dead-
line of job J;y,. (If t, € (t;, D;(1)), let D;(m) = t;.) Attime t,, the sharef;(¢,) changes and deadline
D;(m + 1) is recomputed using Equation (15). LBt;(m + 1) represent this recomputed deadline. Observe
thatD’;(m + 1) > ¢, when computed using Equation (15).

Thus, for this case, the intervig, (] is divided into three subinterval&y, D;(m)], [D;(m), D’;(m + 1)]
and[D';(m + 1),1]. Let f; = fi(t) fort € [to, t;] and f] = fi(t) fort € [t,1].

From Case 2a7b\fl-([t0, D;(m)]) is an upper bound on the processor demand in the intggvdD; (m)].

The demand created b, in the interval[D;(m), D;(m + 1)] is, by definition, ¢ time units. Thus,
since deadlined; (m + 1) is recomputed td’;(m + 1), the processor demand createdZyn the interval
[D;(m),D';(m + 1)]is q time units. Thus, the proof obligation is to show tﬁgfi([Di(m), D'y(m+1)]) >
q.



If ¢, represents the timg (¢) changes due to an aperiodic request joining the system then

_ D'i(m+1)
BF (i), Dim+ 1) = [ gy
t;- D’;(m+1)
~ / filtydt + / fi(t)dt
D;(m) te
= (t, — Di(m)) i + (Ds(m + 1) — t,) !
= (b = Di(m)) i+ (1 + (Dim 1) = 1) 5 1) by Equation (3

= (tz — Di(m)) fi + (Di(m + 1) — t) fi
= (Di(m+1) — Di(m)) fi

_ 4 ipny
= 5(Dilm)) - Fi(Dilm)) = gl ss fDi(m) = g

If ¢, represents the timg (¢) changes due to aperiodic requélst leaving the system then, = D, (1)
(the deadline of the last job of,) since that is when changes in processor shares take effect.

o D’;(m+1)
BF(Di, Dim+ 1) = [ iy
tl.r=Dz(l) D';(m+1)
=/ ﬁ®ﬁ+/ fittydt
D;(m) te=Dgz (1)
— (Dall) — Di(m)) i + (D's(m + 1) — Do) !
zﬁMw—QWMﬁ+U%®+uMm+D—DAm'ﬁ—DAMﬁ

by Equation (15)
= (Dz(l) = Di(m)) fi + (Di(m + 1) — Do (1)) fi
= (Di(m +1) = Di(m)) fi
= yi(Di(m)) - fi(Di(m))

R TP
= oGy M)

=4q
It follows thatcﬁ)?i([Di(m), D';(m + 1)]) is an upper bound on the processor demand in the interval
[D;(m), D';(m + 1)].
From Case Zaﬂﬁi([D’i(m + 1),1]) is an upper bound on the processor demand in the intddglm + 1), ]
sinceD’;(m + 1) meets the requirement fog (in Case 2a) and] = f;(¢t) fort € [D';(m + 1),1].
Thus, the processor demand in the intef¢@ll] created byl’; is less than or equal to

Dj;(m) D'i(m—i-l) l o
/ ﬁ®ﬁ+/ ﬁwﬁ+/ fi(t)dt = dbFs([to, 1))
to D;(m) D’;(m+1)

and the lemma holds for this and each of the other cases. O



Corollary A.2. LetT; = v(A;) represent the aperiodic requedt € A(t). The processor demand created
by T; will never exceed its processor share. That is,

- L
YL >0, Bf,(0.L) = [ fie
0

is an upper bound on the processor demand in the intdfvdl] wherey (4;) is defined by Equatio(b) and
fi(t) is defined by Equatio(®).

Proof: Clearlyty = 0 satisfies the requirement specified fgrin Lemma A.1. Thus, with the simple
substitution oft, = 0 and/ = L, Corollary A.2 follows immediately from Lemma A.1. O

Lemma A.3. If no job of an aperiodic request released before titge> 0 requires processor time in the
interval [ty, [] to meet a deadline in the intervib, /], then

VI >ty, (I—to)F (24)

is an upper bound on the processor demand in the inteftyal] created by the set of aperiodic requests
A(fto. 1]).-
Proof: By Lemma A.1, Equation (23) provides an upper bound on the processor demand created by any

requestd; € A([to,!]). Thus, demand created by all aperiodic requests in the intggval is less than or
equal to

STodfi(te )= >

ZE.A [to l 1€A( to,l]

/ S )
to e A( t)
— (I —t)F

O]

Corollary A.4. The processor demand created by the set of aperiodic requesidl never exceed its pro-
cessor shareF'. That is,

VL >0, LF

is an upper bound on the processor demand in the intefdl] created by the set of aperiodic requests
A([0, L]).

Proof: Clearlyt, = 0 satisfies the requirement specified fgrin Lemma A.3. Thus, with the simple
substitution oty = 0 and! = L, Corollary A.4 follows immediately from Lemma A.3. O

Theorem A.5. Let the task seT = A U R be the setd = |J;2, A(t) of aperiodic tasks and the set
R ={(x1,y1,d1,¢1), ... (T, Yn,dn, cn)} of RBE tasks. Preemptive EDF will succeed in schedulirify

VL >0, L>> dbf,(L)+LF (25)
=1



where " is the portion of the CPU capacity allocated to aperiodic requesiand dbf;(L) is as defined in
Lemma5.1.

Proof: To show the sufficiency of Equation (25), it is shown that the preemptive EDF scheduling algorithm
can schedule all releases of taskirwithout any job missing a deadline if the tasks satisfy Equation (25).
This is shown by contradiction.

Assume that/ satisfies Equation (25) and yet there exists a release of a t&skhat misses a deadline
at some point in time whefi is scheduled by the EDF algorithm. Ligtbe the earliest point in time at which
a deadline is missed and lgtbe the later of:

e the end of the last interval prior g in which the processor has been idle (or O if the processor has
never been idle), or

¢ the latest time prior té,; at which a task instance with deadline aftgistops executing prior te; (or
time 0 if such an instance does not execute pridy}o

By the choice of, (i) only releases with deadlines less than titpexecute in the intervaty, t4], (ii) any
task instances released befogavill have completed executing by or have deadlines afteg, and(iii) the
processor is fully utilized iritg, t4].

Thus, by a result due to Baruahal (Lemma 3.5 in reference [4]), at most

i\‘td—to—'di‘FyiJ xi

i=1 Yi

instances of tasks iR can have deadlines in the interyay, ¢4], and

" tqg —to— d; +vy; "
Z \‘ d 0 Y J T;C; — Zdbfl(td — tU)
i=1

i=1 Yi

is the least upper bound on the units of processor time required to be available in the [h$etyglio ensure
that no task release misses a deadlinggir ].

By Lemma A.3, at mostt; — to)ﬁ units of processing time are are needed to processes aperiodic requests
in the interval under deadline scheduling and, by Lemma A.1, at @ﬁ[to, tq]) time units are needed to
process any single aperiodic request in the interval.

If the tasks inZ” are scheduled with a deadline driven scheduling algorithm, such as EDF, then

STdbfi(tota) + D> dbf(fto,tal) = D dbf([te, ta]) + (ta — to)F
i€R JEA([to,ta]) i=1

is an upper bound on the processor demand in the int@gpva);]. Thus, since the processor is fully used in
the intervalfto, t;] and since a deadline is missed at titpeit follows that

Z dbfi([to, td]) + (td — to)F > (td - to).
=1



However, this contradicts our assumption thasatisfies Equation (25).

Hence if7 satisfies Equation (25), then no release of a task misses a deadline whehis scheduled
by a deadline driven algorithm such as EDF. It follows that satisfying Equation (25) is a sufficient condition
for schedulability under preemptive EDF. O

Corollary A.6. Let the task sef’ = A U R be the setd = [J;2, A(t) of aperiodic tasks and the set
R = {(z1,y1,d1,¢1)y ... (T, Yn,dn,cn)} Of RBE tasks withl; = y;,1 < i < n. Preemptive EDF will
succeed in scheduling if Equation (26) holds whereF is the portion of the CPU capacity allocated to
aperiodic requests.

n
Y E S E<n (26)
-1 Y
Proof:
" X;C; " X;C;
>S4 F<1l = VL>0, L>Y L=+ LF
— Yi — Yi
i=1 i=1
n
L .
zzf-zicﬁ-LF

i=1 Y

n
L — v , )
:Zﬂ'%‘cﬁ-LF
i=1 Yi

n
L—d; ; A
=y =—= Y e+ LE sinced; = y;
i=1 Yi

> dbfy(L) + LF.
=1
O

Theorem A.7. Let the task seT = A U R be the setd = |J;2, A(t) of aperiodic tasks and the set

R ={(x1,y1,d1,¢1), ... (Tn,Yn,dn, cn)} Of RBE tasks. If the task set is schedulable under preemptive EDF
when deadlines are assigned using Equafith), the lag of aperiodic request; is less than or equal to zero

at the deadline of each of its jobs. That is,

Vk,i:1<k<IliecAt): lag,(D;(k)) <0 (27)
wherel is the number of jobs executed for aperiodic requést
Proof: By Equation (4), the lag ofi; at time D; (k) is
lag;(Di(k)) = Si(ts, Di(k)) — si(ti, Di(k))
whereA; first becomes eligible for execution at time By Equation (3),5;(¢;, D;(k)) = ft?i(k) fi(t)dt, and

it was shown in the proof of Lemma A.1 thﬁgi((,fll) fi(t)dt = q. Therefore

D;(k)
it Dik) = [ fit)dt = ke

ti



Once ajob is released, its deadline is computed and a timer set to ensure that it never executes for more
thang time units. Once the timer expires, the job is suspended (terminated) and the next job is released. Thus,
if the task set is schedulablat leastk jobs, each of duratiog time units, will have completed execution by
time D;(k). Thereforegs;(t;, Di(k)) > kq.

It immediately follows that

lag;(Di(k)) = Si(ti, Di(k)) — si(ti, Di(k))
= kq — si(ti, Di(k))
<0

and the theorem holds. O

Theorem A.8. Let the task sef’ = A U R be the setd = (J;°, A(t) of aperiodic tasks and the set

R ={(z1,y1,d1,¢1), ... (Tn,Yn,dn,cn)} Of RBE tasks. Lab;(l) be the deadline of the last job of aperiodic
requestA; when it terminates. If the task set is schedulable under preemptive EDF when deadlines are
assigned using Equatiof15) and the execution time of aperiodic requektis a multiple ofg, the lag of
aperiodic request; is zero at timeD; (1), the deadline of its last job. That is,

Vi e A(t) : lag;(D;(l)) =0 (28)
wherel is the number of jobs of lengthexecuted for aperiodic requedt.

Proof: As shown in the proof of Theorem A.B;(t;, D;(l)) = ft?i(l) fi(t)dt = lq.

Once a job is released, its deadline is computed and a timer set to ensure that it never executes for more
thang time units. Once the timer expires, the job is suspended (terminated) and the next job is released. Thus,
if the task set is schedulablexactly! jobs, each of duration time units, will have completed execution by
time D;(1). Therefores;(t;, D;(1)) = lq.

It immediately follows that

lag;(Di(1)) = Si(ti, Di(l)) — si(ti, Di(1))
=lg—lq

and the theorem holds. O

Theorem A.9. Let the task sef’ = A U R be the setd = (J;2,.A(t) of aperiodic tasks and the set
R ={(z1,y1,d1,¢1),... (Tn,Yn,dn, cn)} Of RBE tasks. If the task set is schedulable under preemptive EDF
when deadlines are assigned using Equafith), the lag of aperiodic requests is bounded such that

VE> 0,0 € A(t) : lag,(t) < g(1 - f;) (29)

wheref; is the minimum non-zero fraction of the processor allocated to aperiodic requesf;(Femin{ f;(¢)|t €



Proof: By Theorem A.7,lag;(D;(k)) < 0,Vk : 1 < k < [ wherel is total number of jobs of aperiodic
request4;. Thus, the maximum (positive) lag for requestmust occur somewhere between two deadlines.
This occurs when job;; does not begin to execute until tini (j + 1) — ¢. If the job began to execute any
later, it would miss its deadline at tinie;(; + 1) since each job requirestime units of execution.

Thus, let timeD;(j + 1) — ¢ be the point in time at which the lag of requektis greatest. Since jol;;
does not execute in the inten@; (j), D;(j + 1) — q), the lag of requesd; at timeD;(j + 1) — g is bounded
such that

lag;(Di(j +1) —q) = Si(ti;, Di(4 + 1) — q) — si(ti, Di(j + 1) — q)
= Si(ti, Di(§)) + Si(Di(4), Di(j + 1) — q)
= (si(ti, Di(j)) + 5:(Di(4), Di(j + 1) — q))
= Si(ti, Di(4)) — si(ti, Di(5)) + Si(Di(§), Di(j + 1) — q)
—8i(Di(j), Di(j + 1) — q)
= lag;(Di(j)) + Si(Di(4), Di(j + 1) — @) — si(Di(j), Di(j + 1) — q)
= Si(Di(4), Di(j + 1) — q) — si(Di(4), Di(j + 1) — q)
= Si(D;i(4), Di(j +1) — q)
D;(j+1)—q
= / fi(t)dt
D;(j5)
< ((Di(4) —q) = Di(j + 1)) fi
= (yi(j) — a)fi

q A
< (? - Q)fz
=q(1— fi).

When the processor share remains constant during the life of request= f;(¢) andlag;(t) = q(1 — fi),
Vt € [ti, D;(1)]. Therefore (29) is a least upper bound on any request’s lag when the task set is schedulable.
O



