Modelling Computational Requirements of Mobile Robotic Systems Using
Zones and Processing Windows
TR-UNL-CSE-2007-0016

Ala’ Qadi Steve Goddard Jiangyang Huang
Computer Science & Engineering Itron, Inc
University of Nebraska—Lincoln West Union, SC 29696
Lincoln, NE 68588-0115 jlangyang.huang@itron.com

{agadi, goddard @cse.unl.edu

Shane Farritor
Mechanical Engineering
University of Nebraska—Lincoln
Lincoln, NE 68588-0656
sfarritor@unl.edu

Abstract dow. The spatial dimensions of each zone are dependent on
he platform’s sensing capabilities and the existence of ob-

. . .) cles in the zone. The processing window represents the
a dynamically changing environment and predictably reacﬁme interval required to scan a zone and plan a safe path
to those changes in real-time. Complexity arises in mq;

bile roboi " b h ¢ latf ¢ hrough that zone. To ensure schedulability, lower bounds
lle robotic systems because the computing piatiorm avesg, 4, processing window are derived that account for both
through the environment with which the system is mterac&;

Mobile robotic systems must sense constraints imposed

ina. Th ¢ h tio-t | . s he task set and attributes of the sensors needed to navigate.
Ing. These systems have spatio-lemporalrequirements In Hge speed at which the platform can travel is limited by

sense that correct behavior is defined in terms of both SPAGR sical attributes of the platform and the minimal feasi-
and time. The focus of this paper is mobile robotic plat;

f that ¢ thei . t and id ob tbIe processing window (since this limits the sampling rate
cl)rms tﬁ mus _se?s;e el enwrpr;r;nen atr;] a\x' 0DS 3ftsensors). The challenge, however, is that the obstacles in
cles as they navigate from one point to another. Ve Pres€in, o ironment also limit platform speed, minimal process-
a design and analysis methodology for these platforms th

int A tio-t | attribut ith fixed priorit | g windows, or both simultaneously. Thus, we present a
Integrates spatio-temporal atlributes With ix€d prionty réal~y o yiqye for adjusting platform speed and processing win-

gme S(t:)htedult|_ng through the use of zone and processing WiBows such that the maximum speed less than or equal to the
ow abstractions. desired speed is maintained while adjusting the processing
1. Introduction window to maintain schedulability of the platform’s real-

time tasks.
Mobile robotic systems must sense constraints imposed The main contributions of this paper are as follows:

by a dynamically changing environment and predictably re- o an abstract analysis methodology for mobile robotic
act to those changes in real-time. Mobile robotic systems systems that integrates spatio-temporal attributes with
add yet one more level of complexity in that the comput- fixed priority real-time scheduling; and

ing platform travels through the environment with which the e an algorithm for adjusting platform speed and process-
system is interacting. These systems have spatio-temporal ing windows such that the maximum speed less than or
requirements in the sense that correct behavior is defined in equal to the desired speed is maintained or maximized
terms of both space and time. As real-time systems, com- while adjusting the processing window to maintain
putations must be completed within established response schedulability of the platform’s real-time tasks without

times, but they may also have varying temporal require- upgrading the platform processor.
ments. As spatial systems, the computations performed and The remainder of this paper is organized as follows. Sec-

their timeliness will be dependent on (i) the location of theion 2 discusses background and related work. Section 3
platform in its environment, (ii) the velocity with which the presents our zone and processing window abstractions. Sec-
platform is moving, and (iii) the existence of objects in theion 4 integrates the spatio-temporal attributes of zones and
environment. processing windows with real-time scheduling. Section 5
We present a design and analysis methodology for thesbows how the presence of obstacles in the environment af-
platforms that integrates spatio-temporal attributes witFects the maximum platform speed, the processing window,
fixed priority real-time scheduling. To support dynamic eneor both. Then an algorithm to automatically make these ad-
vironments, we divide the path the mobile platform traversgsistments is presented. Our design and analysis methodol-
into zones and associate with each zone a processing wogy for mobile robotic systems is evaluated via simulation

in Section 6 and on a real platform in Section 7. Finally, a There are two primary types of timing constraints in real-
short conclusion is presented in Section 8. time systems:hard andsoft In hard real-time systems, a
late job is not allowed because it may cause disastrous con-
sequences. Late completion of a job that has a soft deadline
B allowed because a few misses of soft deadlines do not

2. Background and Related Work

This section provides a summary of the background arl q : h
related work. Section 2.1 provides a summary of back2r0dUCE Serious harm.

ground information and Section 2.2 provides a summary of The .mo.st widely used and_ accepteq real-ime model is
related work. the periodic task model as defined by Liu and Layland [15].

According to the periodic task model, the real-time system
is defined by a set of taské = {T3,Ts,...,T,}. Every

2.1 Background task releases jobs at a constant interval for each task. The

task is defined by four parametefsp, ¢, andd :
The term real-time is often used in the robotics commu- ; is the phase of the task—the interval of time between

nity to signify some sort of reactivity to external events, Ofe instant the system started and the release of the first job
a capability to respond to environmental changes [6, 12, 4}¢ the task:

In fact, most robotic systems are intended to be “real fast”

p

is the period between the release of two consecutive

as opposed to real-time. The execution time of their Sy?()bs of a task:

tem services and internal operations are designed to be'as
fast as possible in order to minimize the average execution
times. Such systems may successfully operate in real-time
and provide a cost-effective solution for certain application
However, in many uncertain situations, the robotic system
might be overloaded and cannot complete some tasks with

their deadlines, which can result in an undesired system be-e

havior.

Thus, the software architecture for the overall control of
a sophisticated robotic system must have real-time charac-
teristics. In other words, a real-time robotic system is ex-
pected to not only work correctly but also respond to exter-
nal events deterministically. It is desired to haleterminis-
tically fast response to urgent events. All tasks are required
to meet their respective timing requirements. Even when the
system is overloaded by unexpected events and meeting all
deadlines is impossible, it is expected to guarantee the dead-
lines of selected critical tasks. Real-time analysis and design
can significantly improve the quality of service delivered by
the mobile robotic system, and allows the designer to sepa-
rate the concern of the system’s logical correctness from the
concern to meet the system’s timing constraints (i.e., tem-
poral correctness).

A real-time system is a system that is required to com-
plete its work and deliver its services on a timely basis. The
main difference between a real-time system and a normal
system is that a real-time system is not just required to pro-
duce the correct output, but to produce the correct output on
time. Before introducing the periodic real-time model, we
present some essential terms used in real-time systems.

Task A sequential piece of code that is executed repeat-
edly with some pattern.

Johr An instance of an execution of a task.

Release time of a jobrhe time instant the job becomes
ready to execute.

Deadline of a job The time instant by which the job must
complete execution.

Relative deadline of a jobDeadline minus the release
time of the job.

e Deadline driven scheduling

e is the worst-case execution time of the job;

d is the relative deadline for the job.
S "In real-time systems there are two main schemes used to
dynamically schedule jobs online: Fixed Priority Schedul-
ing and Dynamic Priority Scheduling.

Fixed Priority Scheduling: A fixed priority schedul-

ing algorithm assigns the same priority to all jobs of a
task. The priority does not change during application
execution. The scheduling decision is made based on
the task priority. When a task is released,jalis for

this task can only be delayed by higher priority tasks or
interrupts. A well known fixed priority algorithm is the
rate monotonic priority assignmeRM) [15]. This
algorithm assigns task priorities based on the rate the
tasks execute. The task with the highest rate of execu-
tion is given the highest priority. The task with lowest
rate of execution is given the lowest priority.

Deadline driven
scheduling is a dynamic scheduling algorithm that as-
signs priorities to tasks according to the deadline of
their current requests. At each time instant, the sched-
uler assigns a priority to each ready-to-execute job and
allocates the highest priority job to the processor. This
method of assigning priorities to tasks is a dynamic one
and it is different from fixed priority algorithms. One
of the well known dynamic scheduling algorithms is
the earliest deadline firsEDF) scheduling algorithm
[15]. In EDF scheduling, at any time instant, it assigns
the highest priority to jobs with the earliest absolute
deadline. EDF is known to be aptimal scheduling
algorithm for the class of dynamic scheduling algo-
rithms. For a given set ofn tasks with an optimal
deadline driven scheduling algorithm, the task set is
feasible if and only if

U= iei/pi <1
i=1

The deadline driven scheduling algorithm is able to achievihe design, verification and the implementation of robotic

full processor utilization. control systems (ORCCAD).
Miyata et al. [16] developed a task assignment system for
2.2 Related Work a team of robots handling flexible materials. Their task as-

signment algorithm used task templates to divide the work

Applying traditional real-time systems scheduling thedone by robots into tasks and assigned the tasks to robots
ory to robotic applications is not a new concept. Exambased on the number of free robots and task priorities. How-
ples of applying the real-time scheduling to robotics can beéver, their work did not consider hard deadlines or real-time
found in [7, 9, 22, 3, 17, 18, 23, 2, 16, 10, 13, 14]. Ofscheduling theory. Neither did it relate any of the real-time
these, rate monotonic (RM) [15] scheduling was used ifequirements to the robots’s velocity.

[9, 22, 3, 17]; earliest deadline first (EDF) [15] scheduling Li et al. [13] proposed a method that converts robotic ap-
was used in [17, 23]; and feedback based scheduling tegblications into strategies that can be modelled with acyclic
niques in [22, 10, 14]. The work in [16, 13] used real-timelask graphs implemented as periodic tasks. They then pre-
scheduling theory to assign tasks to robots in a team of meented an algorithm to distribute the periodic tasks to a team
bile robots. While these papers applied real-time scheduf mobile robots.

ing theory to a robotic application, none of them consid- Lin et al. [14] present a feedback-based real-time adap-
ered the execution requirements of the platform’s sensirtiye scheduling method for an autonomous vehicle that is
and planning as a factor in the platform’s velocity calculaused to spray herbicide in agriculture production. They used
tions. Moreover, the current literature does not address tlige idea of feedback control to adjust the speed of the vehi-
issues of using fixed priority scheduling within any form ofcle based on the a deadline miss ratio and CPU utilization
processing window for mobile platforms whose workloadf the vehicle system.

changes with the environment. The remainder of this sec- While many of the previously mentioned papers applied
tion provides a brief summary of some of the contributionseal-time scheduling theory to a robotic application, none of
made by the most significant, or most closely, related workhese papers considered the execution requirements of the

The earliest example of applying some form of real-timeobots sensing and planning as a factor in the robot’s veloc-
scheduling to the field of robotics is the seminal work byity calculations. The current literature does not address the
Dertouzos [7] in which he proved the optimality of EDFissues of using fixed priority scheduling of processing win-
in underloaded conditions. It appears that George ardbws for mobile platforms whose workload changes with
Kanayama [9] were the first researchers to apply canonictide environment.

RM scheduling to an autonomous mobile robotic applica- The closest work to this paper, other than our own, is by
tion. Hassan et al. [10]. Their work considers the variability of the

Wargui et al. [22] used real-time scheduling theory taystem load and temporal requirements. They use a feed-
address communication time delays in the sensing, contrighck control scheduler (FCS) and a flexible server (FS) for
and action feedback loops of the control system in a mobilg hybrid mobile robotic system (deliberative and reactive).
robot. The mobile robot is seen as a system with messag@e FCS scheduler permits the adaptation of the temporal
queues controlled through a multiplex communication linkrequirements. However, their work does not relate velocity
The delays are included in the derivation of a schedulingalculations to the robot’s sensing abilities or changes in the
bound for RM scheduling. environment.

Beccari et al. [3] presented rate modulation scheduling In [21] we used real-time scheduling theory to address
techniques for adaptation of soft real-time loads to avaikhe challenge of a lead robot controlling the placement of
able computation capacity in the context of autonomougss capable Robotic Safety Markers (RSMs) [21]. We ex-
robot control architectures. Their methods are based on thgénded the functionality of the RSM system by adding the
knowledge of worst-case execution time of tasks and are feapability of the RSMs to follow the lead robot in [11]. In
cused on period adjustment of soft real-time tasks within 9], we showed how real-time scheduling analysis could
range of admissible rates. be applied to a specific mobile robotic application in which

Prasad and Burns [18] proposed a pre-runtime methqHe periods of tasks were dependent on the speed at which
for ranking services on an autonomous vehicle systenthe robot was moving. This paper generalizes and extends
Their method assigns a value for each service based @i technique first applied in [19] by creating the zone and
many factors including the time the service completes, thgrocessing window abstractions, and then using those ab-
history of invocations of the service, importance of the selstractions to perform a more general scheduling analysis.
vice, and state of the computer system that the services are
being run on. . .

Baccelli et al. [2] used petri nets and marked graphs t§ Zones and Processing Windows
analyze the temporal correctness of periodic real-time tasks
under preemptive fixed priority scheduling. They applied A mobile robotic platform collects data from its sensors
their work to a specific software environment dedicated tto build a map of its environment. This data is then com-

bined with mission goals to plan a path to its next destinadimensional shape depending on the distribution and range
tion. The speed and direction of the platform, represented lmf sensors on the platform. For ease of demonstration we
a velocity vector, is dependent on the number of obstacleswill only consider two dimensional zones in which all plat-
the environment and how soon the platform must reach ifsrm sensors provide a two dimensional map. Extension to
destination. To integrate the spatio-temporal attributes dfiree dimensions follows the same concepts used in our two
the platform with fixed priority real-time scheduling theory,dimensional zone model.

we have created zone and processing window abstractions,We define the point (in space and time) that the platform
which are presented in Section 3.1. Section 3.2 then presefitishes planning its path and speed for zdfieas plan-

a technique to correct distance errors that occur due to théng point ;. Becauser; describes both spatial and tem-
asynchronous nature of scanning the environment while tip®ral informationplanning pointF; is denoted by the tuple
platform is moving through a zone. In the remainder of thigt!", LI") wheret!” represents the time instant the platform

paper, the (shorter) term platform will be used to denote arrives at the poinf; and Lf represents the platform po-

mobile robotic platform. sition information at pointF;. L is also a tuple whose
parameters depend on the nature of the required position
3.1 The Abstractions information and the coordinate system used. In our case,

our mobile robotic system involves a robot that moves in

The platform’s intended area of exploration is divideda two-dimensional cartesian coordinate system. Therefore
into subareas calledonesso that we can isolate the com-for the rest of this papeL! will be denoted by the tuple
putational and spatial (speed) requirements for each zofe!', vy, ") wherez! andy!” represent the platform’s
and perform the analysis separately on each zone. We dedy coordinates respectively ang’” represent the plat-
fine a zone as the area for which the platform collects arfdrm’s orientation angle. If we expand tig" tuple in the
processes sensor information, creates a map for the area anple (¢, L!") we can represent planning poift in a two
plans its path through the area. Each zone is associated witlmensional cartesian coordinate system by the four param-
one desired speed for the platform. eter tuple(t!, 'y »F).

The zone boundary is defined by the region of explo- Each zon€Z; is bounded by the two planning point&;
ration in which the platform can build a map and safely genand F;, ;. The platform collects sensor data through zone
erate a path trajectory using previously collected sensor i%;. The platform’s planing for the next zori& , ; must be
formation. Figure 1(a) shows an example of the zone bounélnished by the end of the next planning poift, ;. There-
ary where the platform starts collecting sensor data at poifdre the platform must finish collecting data, build an envi-
A, and does not move while collecting the sensor data. lnment map and plan for the next zor&, , before the
this case the zone boundary is defined by the sensors’ rangétform starts moving through zorig ;.

In Figure 1(a) the platform uses sensors with an angle of We define thezone processing windoW as the time
coverage of) and maximum range of. In Figure 1(b) the interval from the instant the platform starts collecting data
platform starts collecting data at poidt and continues to to the moment the platform finishes planning for the zone.
move while collecting sensor data. It is not until poit ThereforeW; = [t/ ¢ ,), and the processing window du-
that the platform is able to build a map for its intended areeationw can be calculated from Equation (2).

of exploration based on its sensor information. At this point F ”
all sensor readings taken on the platform path from pdint wi =t — 1t @

to point B must be converted relative to poift Therefore Figure 2(a) demonstrates the division of the platform’s
the zone boundary is reduced. The zone in Figure 1(c) is fuath into zones and the division of the associated processing
ther reduced because a safety area has been added for ey . If the platform operates at the maximum possible rate
precautions due to sensor errors and braking distance. Affren the platform must start collecting sensor information a
other factor that affects the zone bOUndary is the eXiStenggon as it finishes p|anning for the previous zone. As illus-
of objects that limits visibility beyond the object. trated in Figure 2(a), the platform must start scanning zone

In the two dimensional zones shown in Figure 1, the zong, ., at pointF;.
is a circular section due to the sensor distribution and cov- | Figure 2(a) the platform starts scanning the next zone
erage. Therefore each zone boundary can be defined by #1soon as it finishes planning for the current zone. In this
angle and a radius. From Figure 1(c) we can see that thgse the platform is collecting data, building a surround-
zone radiusD; is equal to the sensor rangeninus the dis- jng map and planning as fast as possible. While using this
tance the platform moved from poiritto point B minus the - approach guarantees that the platform is achieving the best
width of the safety stopping distansk,. ThereforeD; can nayigational performance, scanning and planning at this fast
be calculated from Equation (1), whers3 is the distance rate might not be necessary if we can scan at a lower rate
the platform moved from poind to pointB. and maintain the desired speed. Instead of scanning as fast

D;=r—AB — Sy L as posgible, we can scan at a rate that is necessary to safely
maintain the platform’s desired speed. Scanning at a lower

In this context, the zone can be any two or threerate provides extra time for the processer to execute other

Sensor
Scanning Sensor Range Sensor Range Safety Area Sensor Range
Range Zone Zone
== RowiPsh Sensor — - Robot Path - zone
Scanning \71 safetyArea
Zone Range — — RobotPath
Zone Radius
Al B >
—_—— —_——
Zone
(a) Motionless (b) In motion (c) In motion, safety area included
Figure 1. Zone Abstraction: Zone Boundary
Sensor z z,
Scanning Sensor Range Sensor N Sensor Range
Range 2 Zone Scanning Zone
x Planning Point Range * i .
Robot Path © Data Collection Point
Zone
Start 0
Point St Tex « o= & & T:;?nett
Point LUF L,Ef L‘qF I_ZJB sz
y-coordinate 4\
y-coordinate
x-coordinate S, S,
I lack)
slack sac x-coordinate
s t,2
°
(P D 3
0 tF 1 __
) . . dx % . . dx
tF x —axis velocity compenent v_ = — 2 X —axis velocity compenentv_=—
o o dt o * [2 0 S dt
§ E) g z
- tF) [F
2 t P e e
© x
5]
]
8 - T
~ o~
: |
L TR A N

(a) Zone concept: Maximal Scanning

(b) Zone concept: Minimal Scanning

Figure 2. Division of robot’s path into zones

tasks, which might not have been possible to execute with a Dg‘b‘jg‘gd
maximum scanning rate. At a planning point, the platform

has a map describing its intended area of exploration until
the boundary of the zone. If we assume a static environ-
ment then the platform does not need to start scanning until
a point somewhere before the end of the zone. This new
point must ensure that the next planning point is at most at

the zone boundary.)

In this scenario we do not start scanning the next zone at) 0
the moment we finished scanning the current zone. There- Planning Point 3yBF
fore we need to introduce the definition oflata collection 3 '

point to distinguish between the instant the platform starts <«—F—%----------------—- ‘
scanning zon€Z;, and the instant the platform finishes plan- Pl
ning for the previous zon&;_; because they might not
be the same. We define the point (in space and time) at
which the platform starts collecting data about its environ- Figure 3. Sensor Signal Correction
ment from its sensors for zor& as data collection point

Collection
Point

B;. Using the same methodology used to represent plalf- dependent on the platform’s velocity and path. This error
ning points, data collection poirit; can be represented by in the.d|stances and angles can be c.orrected using standard
the tuple(¢Z, L), whereL can be represented by the tu_coordlnate transformations. From direct coordinate trans-
5 b H : . : . formations [5] we can derive Equations (4)—(8) to correct
ple (z7,y;,47). In a two dimensional cartesian coord|-the scan distances
nate system we can represéhtby the four parameter tuple
(t7, 2Py, vP). df, = df - cos(87) @)
Figure 2(b) demonstrates this case where the platform B — 4P . sin(3P) ®)
does not start scanning as soon as the planning for the cur- _ Y . e 5 B
rent zone is done, rather it starts scanning at data collecti%ndlg] = { cos(¥y) —sin(ty; %) } : { di } + { i]
point B; for zone Z;. In this caséV; = [tF,tF), and the w sin(yi7) - cos(¥i7) diy
processing window duration can be calculated from Equa- (6)
tion (3). df = \/d, +df, @)
Wi = tf - tiB ©)) F F F
Bi :tan2(diz7diy) (8)
We definezone slack timée .., as the time interval be- 5 B B B]
tweenF; andB,.1, and the distance moved during this imeVhereL;” = (=, yi 7F¢z') is ;he Ppowg where the sensor
interval aszone slack distance... If the platform starts Signal was receivedl; = (x;,y; ,¢;) is the planning
data collection for the next zone directly after it finishecpo'”t'Fdi_ is the distance to the detected object from point
planing for the current zone thefy,ex = 0, Seiaer = O LL , d; is th? d|than%e to the de_tected object from the plan-
In this case the platform will be collecting sensor data anBiN POINtL;, d;, d;;, are the distance componentsdf
planning as fast as possible; Figure 2(a) demonstrates an 8 thez, y axis respectivelyd;, , d}, are the distance com-
ample of this case. If the platform does not employ maximalonents ofif" on thez, y axis respectively3?, 3f" are the
scanning then the values oy, and Sy Will not be angles between the vectat§, dI' and the platform axis of
equal to zero. Equations for calculating the values,pf,, ~ orientation respectively;?* = z2 — 2", yBF = B —yF
andS,qcr are presented in Section 5.1.2. andyf'P = oI — 4P is the final orientation angle of the
The calculation of the desired speed for each zone willatform as shown in Figure 3.
be discussed in Section 5.1.2

4 Deriving Feasible Processing Windows
3.2 Detected Distance Correction

]) i _ For a processing window to be feasible, two conditions
The platform receives each scanning sensor signal whifgyst hold. First, the processing window interval must meet
moving toward the target. By the time the platform startg,e sensor parameter requirements. Second, a sufficient

processing the scan signals and planning its move, the plat; . o . .
form would have moved further from the points where it COI_@Ehedulmg condition for the scheduling algorithm used must

lected the signals. This means that the distances recorde&’%}sat'Sf'ed' We conjecture that any mobile robotic platform
the data collection point are not the same when the platfori!! have a set of task¥’ = {Tw U Thp UTip }, whereTy,
arrives at the planning point. The difference between thi§ the set of tasks associated with zone processdihg, is
actual distances from its surroundings and the recorded diz{Possibly empty) set of periodic tasks with higher priority
tances from scan signals is dependent on the displacem#mnT,, andT) is a (possibly empty) set of periodic tasks
of the platform since it collected the signals, which in turrwith lower priority thanT,,. In Section 4.1 we present a

general form of the equation used to compute a lower bound
for a feasible processing window length. In Section 4.2 we i1
derive bounds on the zone processing window for fixed pri- > e, + Z <pj n 1> e

ority scheduling and combine both bounds. Pi ; Di
=1

j—1 j—1
. . e

4.1 Sensor Impact on Processing Window Length p; > e +p; Z p; + Z e

i=1 " =1
The zone processing window of the platform is depen- j=1 J
. €;

dent on sensor parameters representing delays betweensen- p; | 1 — Z — = Z €;

sor readings/invocations, data arrival time, number of sen- iz1 Pi i=1

sors, sensor range and sensitivity, and sensor tasks’ execu- 5—1 e;

tion times. Equation (9) is a general equation for deriving pj = T sy la Z}_ll o (12)
=1 pi

the minimum feasible bound on the zone processing win-

dow lengthw. The feasibility functiory isafu_nction thaF is Using Equation (12) we can calculate a lower bound for
dependent on the sensor(s) and the associated taski). ¢4ch task period iy, that results in a schedulable task
the numbgr of task nva,, Eis the set of execution .tlmes fpr set. For the task s&.,, however, Equation (11) cannot be
the tasks irlT'y, andA is the set of delays that might exist irectly extended to derive a lower bound for the process-
between the execution of sensor task¥ig. ing window w. Instead we must combine Equation (10)
and Equation (11) to account for compulsory delays be-
tween tasks iy, because certain types of sensors, such
as sonar or ultrasonic sensors, must have a minimum delay
between sending any two signals due to signal interference
or crosstalk. Thus, Equation (13) combines both bounds.

w > g(n, B,A) 9

For sensors with adjustable rangéscan be further divided
into a set of independent delays/, that must exist regard-
less of any other sensor parameters and a set of deldys,
that depend on sensor ranges limitations. SiAdeis de- w

pendent on the sensor ranges, we can insert the set of effec- w>g(n, E,ALR)+ > {-‘ e; (13)
tive ranges of platform sensoiR, directly as a parameter in T,€Tnp | 17

the functiong. Unfortunately the functiory is application . ,))
dependant and must be derived separately for each appli a-Equation (13) is a conservative overestimate of the lower

tion. In Section 7 we derive the functignfor the platform qund onw bec_ause not every t_a$" By, Wil mter_fere
we chose for evaluation. with each task ifT', every time it is released. Using the

same substitution we used in Equation (11) we get Equa-

w > g(n, B, AL R) (10) tona

g, B, AL R) 4+ cp, €

4.2 Fixed Priority Bound Derivation L= > e, =

(14)

In this section we derive a lower bound on the periods If Ty, # @ then we calculate the processing window
for the tasks running on the processor based on fixed pridsy assigning the tasks i), periods that are integer mul-
ity scheduling and time demand analysis [1]. In this workiples ofw. Thus, assuming, containsm tasks, we will
we assume that the tasksTh,, are independent and pre- calculate a lower bound on the period for the taskTjp,
emptive with deadlines equal to periods. Throughout thg;, = o - w wherea is an integer number.
remainder of this paper we will assume, without loss of gen- Using Equation (11) fop;, we get
erality, that the tasks in task s&tare ordered according to
their priority such that ifi < j theni has a higher priority a-w > Y eﬁ{M-‘ g(n, E,ALR)+ Y. {O"w-‘ y
thanj. T, €T w T eThp | P

For any task ifT'yp, the lower bound on the period can (15)

be calculated from Equation (11), whergis the period and Becauseaﬁ < [%W < % + 1 we can substitute

 is the worst case execution time of tabk N o
K -+ 1for h—“’ to get a looser, more pessimistic bound,
J J
j-1 D such that
i > e+ E L1 e 11 .
b= =1 ’Vpi-‘ ! () a-w > Z ej + [a] - g(n, E,AI,R) + Z <a ‘w+1>.ej
= T;€Tp T;€EThp Pj
. 1
Because < P’—J} < Bi 4 1 we can substituté&: + 1 (16)
pi pi pi bi 1 [a—l) g(nz E7 AIv R)
ax o Yo A A TALT
w w

for P’—JW to get a looser, more pessimistic bound, such that -
Pi j€TIp

7

1 o w
b > () a7) S
7,€Thp Ra"ge\

by
Zone Z, ,‘ .

(18) !

v, | s
Start & &) Target
Point 8 ¥ 7 Point
Y e f j
5 o 1 LB 7

Sensor Range
Zone

x Planning Point

© Data Collection Point

_— Platform Path

Becausey is an integer can substitufer] for a.. Thus

1
1 e
o> w ZTjeTlp,Thp J

- _ g(n,E,AILR) €5
1 w + ZTjEThp Dj

Substituting forw from Equation (14), we get Equa- \
tion (19). Lf=L,f=L ‘.\ ‘
(0% > M (19) y-coordinate \.—'
a ZTJ‘GThp €
But since we limited to integer values we must take the R
ceiling of the right side of Equation (19). Therefore 0
3
tOF th
) e
o> ZTJETIP,Thp J (20) z oo] .
Z Tj eThp e J = X —axis velocity component v *E
(] [S T
This method minimizesy while calculating a bound on E 3 /
the period for the tasks iy,. However, it is possible to S
achieve a lower period of the tasks Ty, if we assign a g TS
higher value forw. To do that, we fix the value af and 2 R I
solve Equation (17) fow and take the minimum value af b
that satisfies both Equation (16) and Equation (14).

In this section we computed sufficient lower bounds for Figure 4. Maximal scanning with no obstacles
periods and processing windows such that the tasid&n .
Thp and Ty, can be guaranteed to meet their deadlines. 5-1.1 Obstacle Free Environment

We first calculate the upper bound on the zone speed for the

5 Environmental Impact on Speed and Sam- maximal sensor scanning scenario (i.e., scanning as fast as
pling Rates possible). Figure 4 demonstrates this scenario. Initially the
platform starts scanning its intended area of exploration at

. H _ B B B H

The platform depends on sensors to plan its path and BNt Bo = (0,75, 45, ¢y’). Because it takes the platform
determine the presence of obstacles and their distance. THdiMe units to finish collecting the sonar data and planning
maximum speed at which the platform can travel is related’® Path, itis not safe for the platform to start moving until
to the rate the environment signals can be scanned and pfg= w- Therefore the first planning poi will have the
cessed. If the platform moves faster than the sensor signRM€ Position goo}rgdln%tes as the first data collection point
can be processed, then the motion will be unsafe becauBe’ Fo = (w, 25, yy', g). Beyond the first zone, planning
there might be an obstacle in the path that will be undetect&ints for the current zone and data collection points for the
at that rate. In Section 5.1.2 we derive upper bounds on tfgXt zone will have the same time and positii,, = F;.
platform’s speed throughout a zone with ideal assumptions . .
with regards to speed transition time, in Section 5.2 we relax N €ach zone the platform can travel a maximum distance
the ideal assumptions and derive approximation formulgdual to the zone radiub; before entering another zone.
for the speed transition time and in Section 5.3 we preseff'® Platform also must spend at leasttime units in the
an algorithm for adjusting the zone processing window té°N€ because that is the time interval the platform takes for

increase platform speed. collecting sensor data and planning the path for zdne
Therefore if we assume constant speed through Zpntne
5.1 Zone Speed Choice maximum speed the platform can travel safely through zone

Z; while being able to collect sensor data and plan for zone

The speed of the platform for a zone is dependent on che”+1 can be calculated from Equation (21).
radius of the zone, the zone-processing window, the speed D;
of the platform in the previous zone and the existence of Umaz =
obstacles in the zone. We derive the calculation of the up-
per bound on the desired speed for the zaneg,.;, in two The zone radiu®; can be calculated from Equation (1).
distinct cases: an obstacle free environment and an envirdfiiwe assume the platform is traveling at the maximum pos-
ment in which obstacles exist. sible speed,, ., then the distance the platform moves be-

(21)
Wi41

— —Platform Path X

Planning Point

tween pointsB; andF; is equal tov,, ., - w;. Therefore the ‘ SensorRange || 2ot et

zone radius can be calculated from Equation (22).

D=7~ Vpmaz - w; — Sumr (22)

Substituting Equation (22) in Equation (21) and solving fc
Umaz W€ get
" — Umax - Wi — S]\/[

Vmaz = . (23)
Wi+1

% Target
7)) 1 Point
AN

if we assume a constant processing windew= w; 1 = w
then Equation (23) becomes Equation (25)

Vimaw = T = Umnaz ~ W — SJ\I (24)
w
-5 - Su
= ! M — Umax = ! M . (25)
w 2w

If at any plan pointF; we change the zone processing j
window w; or change the sensor detection rangethen ¥

Equation (23) becomes

=
4
E

T = Vi—1 Wi — Sm
)

(26)

Umazxi = w
1+1

wherev,,q.; is the speed for zong;, w;,1 is the process-
ing window for Z; 4, ;, v; andw; are the sensor detection
distance, speed and processing windowAprespectively.

If the platform does not employ maximal scanning the
the values of5,;,.1 andt,,..; can be calculated from Equa-
tion (27) and Equation (28) respectively. It is clear fror
Figure 2(b) that the zone slack distance is less than the z
radius by a distance of; - w;; because the platform must
scan for the next zong; ., before it enters the zone (i.e.,
while the platform is still traveling in zon&;) in order to
achieve continuous motion.

Figure 5. Exitance of obstacles in the environment

(zone slack distancé,;,.x) in the exitance of obstacles. In

Sstack =1 — (Vi * Wit1 + Vio1 Wi + Sur) (27 this scenario the platform’s original path to its target point

Slack is a straight line. The platform starts scanning the path area

bstack = v (28) using an initial value for its sensing range and processing

window. The platform scans as slowly as possible to be able

51.2 Obstacles Exist to use spare processing capacity for other tasks running on

_ _ the processor. But as the platform faces its first obstacle in
If an obstacle exits then the distance the platform can safefife path, the platform needs to scan at a faster rate because
move is not the zone radius, but rather the distance betweﬁﬂ)re scans are needed at shorter obstacle distances to de-
the obstacle and the platford,,s. Therefore itX,,s < D; termine the alternative path. As the platform starts scanning

the platform speed can be calculated from at a faster rate, the zones overlap more and the zone slack
X distance that the platform moves without scanning becomes
_ obs . . .
Umazi = (29) smaller or non-existent. In this scenario the platform faced
1+1

more obstacles in its alternative path. Therefore it needed to
If the platform is not using maximal scanning then thekeep scanning at a higher rate until it reached a path clear
platform might switch to maximal scanning if it encounter§rom obstacles after the fourth obstacle.
an obstacle because it needs to maintain a higher speed or
scan in a different direction in order to explore alternativés.2 Speed Transition Time
paths, as shown in Figure 5.
Figure 5 demonstrates the relation between zones, sens-In the previous section we considered the ideal case in
ing range, zone processing window and the extra disvhich the robot can switch between two speeds instanta-
tance the platform moves without scanning the surroundinggously. In a real system the speed transition time interval

is not zero and the speed function takes the form of a decay
ing or a rising exponential function instead of a step func-
tion. Therefore if we have an obstacle, the final maximumv®

speed would not be given by Equation (29), rather the final 8|
maximum speed will be given by Equation (30), where 70r
f (Wmazs, vi—1, w;) is @ function that describes the speed 60|
during the transition time interval.) S N
Xobs = f(vmawiz Vi—1, wiJrl) (30) “r i

Umaz; CAN be calculated by solving Equation (30) %9y, ;- ,
If we assume that the system traverses the environment at /
constant speed unless it switches between two speeds the :
we can derive the formula for the functighn % 10 2
The initial platform speed/, distance to the obstacle
Xobs and processing window length are known, while
both final speed’; and the instant the speed reach@dare Figure 6. Ideal response
both unknown. Therefore the distance to the obstaClg
is given by Equation (31), where is the instant the plat-
form reduces its speed andt) be the platform velocity as
a function of time. Because the platform will only chang
its speed at a planning point,will be at the beginning of a
processing window.

&
S

(Transition time)

In Section 5.2.1 we derive an exponential approximation
formula for the functionf. In Section 5.2 we derive an lin-
ear approximation formula for the functighhand in Section

e5.2.3 we compare both models.

5.2.1 Exponential Approximation Model

T+w
KXops = v(t)dt. (31) A good controller design aim; at eliminating ospillatory
components and overshoot in the response signal and
achieving a smooth rising exponential response until steady

Let ¢, denote the instant the speed reaches its final val§2t€ is reached (or a smooth decaying exponential from a
Va. Letu, (t) be the speed during the transition time intervapteady state) as shown in Figure 6. We will use this response

[, 7+1,) given as a function of time. We get Equation (32) 10 calculate speed transition time. Figure 6 describes a func-
tion with the conditions(0) = 0,V () = V4, since we

T

THLs THw know that the function is exponential, the response function
Xops = / v, (t)dt + / Vaodt (32) can be modelled by Equation (35).
’ T v(t) =Va- (1-¢79"),Q >0 (35)

Since the initial and final velocities are variables for each
processing window, they can be parameters,¢f). There- Where Q is a parameter determined by fitting the speed con-
fore the speed during the transition interjalr 4 ¢,) can troller response data to Equation (35).
be given as, (¢, V1, V) , whereV; is the initial speed and If the initial speed was not zero, b, and the speed
V5 is the final speed. Because the existence of an obstadfgnsition occurred at time instant Equation (35) becomes
in the environment will imply reducing speé@ = v,,.,; Equation (36)
and the initial velocity will be equal to the platform velocity B _Q-(t—7)
in the pervious zond/s = v,,..;- Therefore Equation (32))=+ Ve (1-e),@>0 (36)

becomes In the case of reducing speed, the response function has
THts THw the conditionsv(—o0) = V1,V (c0) = 0 and we want
Xops = / Vs (t, Vi1, Vmazs)dt + / Umazidt (33) v(0) =~ V1. Equation (37) models the response to these
conditions.
T T+1s
From Equation (33) we deduce the formula for the function
f vt)=Vi-(1-A-ef)F>00<A<1 (37)
THte If the speed transition occurs at timethen Equation (37)
f (Vmawi> Vie1, Wig1) = / Vs (t, Vim1, Umaz;) dt becomes
T N (34) v(t)=Vi-(1—A-e") F>0,0<A<1 (38)
+ / Umazidt ParametersA, F' are determined by fitting the speed con-
+ 1t troller response data to Equation (38).

10

Linear

Substituting forv,(t) in Equation (32) from Equa- Approximation
tion (38) we get Equation (39).

Exponential

T+ts T4+w Vv, e 4
Xops = / Vi-(1—Aef=)dt + / Vadt -
T T4+ts
A-(1=eFts i
—Vl-(tﬁ(Fe)>+v2~(w—ts) .
(39) |

At the time instant, + 7 the speed reachds. Substi-
tutingts + 7 in Equation (38) we get

|
T

T &

‘/2 _ Vl . (1 _ AeF-(ts)) = ts — l .In l 1— E (Transition time interval)
F A 1
40 w (Processing window)

Substitutingt, from Equation (40) in Equation (39) we get

. Figure 7. Exponential and linear approximation of transi-
Equation (41). 9 P PP

tion time

1 1 Va
ot (- (L (). G
bs =T (1— V2 1 " an = 5 + Vits + Vo(w — ts) (44)

Var(1+wF)+Vi-(1+ A)) If we fit the platform controller response data into a linear
equation of the formx = mt + b we can find the slope value
Equation (41) can be solved féf using a numerical iter- m. From Equation (42)m = (V2 — Vi)/t, = ts =
ative methods only, which are too computationally expenV2 — V1)/m. Substituting the value af, in Equation (44)
sive for a real-time system. Therefore in the next sectiowe get
we drive a linear approximation model with a deterministic

X 12 2
solution. Xops = Vs + Vo (w+ ny_w (45)
2m m 2m

5.2.2 Linear Approximation Model Solving Equation (45) fol’; we get Equation (46)

A linear approximation of the speed function during the —
transition time generates a deterministic equation that can V2 = Vi +wm = V2Viwm +w?m? — 2Xopm - (46)

be solved to find the value of the desired speed. Figure
shows the linear approximation for the speed which is comgrrlllyeogfg io{;mznvof Equation (46) will be in our desired
puted using Equation (42). 9 shsW

5.2.3 Linear vs Exponential
(—VQ—“) T (—VQ;S‘“) +Vi

ts Figure 8 shows a comparison between the desired speed
u(t, Vi, V2) = Vi# Vo, Vi,V2 >0 value with an initial speed of 50 cm/s using the exponen-
Vi Vo=Vi, V1,V >0 tial model, linear model, and zero transition time (ideal)
42) to model the speed transition function. The solutions for

Substituting Equation (42) in Equation (31) we get Equathe exponential model equation were obtained iteratively for

tion (43). each point on the graph using Newton’s method in Matlab.
e v - Vo — i THw The values in Figure 8 are calculated for a corrected ob-

Xobs = / (T) b7 (T) + Vi di+ / Va2 dt. stacle distance range of one meter (The corrected obstacle
b ‘ -+t distance = obstacle distance -safe stopping distance.) Ac-

tual speed data from the same platform that we used for

our experimental evaluatiohsvas fit to Equation (38) and

?:th'uation (42) using the method of least squares in Matlab.
We can see from Figure 8 that the linear model provides

The transition instant adds only a shift to the equation
and does not change the outcome. Therefore we can sub
tuter = 0 in Equation (43) to get Equation (44)

ts w a good approximation for transition time. We have used the
Vo =W
Xobs = / (¢ A+ Vidt+ | Vadt 1please refer to Section 7 for more details about the platform used in
0 s g the experiments.

11

Task e(ms) | p(ms) | Priority

= ‘ ‘ ‘ ‘ ‘ Dead Reckoning 5 17 1
50 S PID 1 50 2
' I Table 1. Task parameters

lays and therefore), then a new value is calculated for.
Next a new speed is calculated for the platform, and the zone
slack timetgqc., IS Set to zero.

Case 2: No obstacle existdf no obstacle exists and the
current speed is equal to the desired speed, there is no need
to make a change. The algorithm simply follows the process
described in the previous sections to compytg, andw.

, ‘ ‘ ‘ ‘ ‘ If the current speed is less than the desired speed, we
15 » B e ® “ “5 have to try to maximize the platform’s speed by choosing
the optimal value for the detection rangéhat would result

in the maximum increase in speed. However, if the calcu-

lated value for- is not within a valid range, we use the low-

linear approximation model in our experiments because efst sensor rangs,,;,, that will give the maximum possible

its deterministic calculation time. While it is possible to ob-speed (less than or equal to the desired speed). Eachrtime

tain offline solutions for the exponential model for a set ofs adjusted, zone slack tintg,,.,, must be calculated based

initial speeds and a range of obstacle distances with a fixewh the new values for andw.

processing window, it would be difficult if the processing

window length was variable because we have to generate

a table for each range ab. Considering that the differ- 6§ Simulation

ence between the exponential and linear models is within an

acceptable range, it will be more feasible to use the linear

model instead of a lookup table for the exponential model. Before implementing the algorithm on a real mobile
robotic platform we have constructed a simulation to evalu-

5.3 Processing Window Adjustment ate the performance speed adjustment algorithm using Mat-
lab. The simulation assumes the linear speed transition

The speed of the platform and the duration of the promodel presented in 5.2.2, earlier simulation results that as-

cessing window are interdependent. In the previous sectiofmes ideal speed transition conditions (i.e., no speed tran-

we assumed a fixed processing window and computed lirgition time when switching between speeds) have been pub-

its on the speed at which the platform can move through tHighed in [20]. The simulation uses the parameters of an

environment. In this section, we show that an alternative @utonomous mobile robot that was used as the lead robot in

to adjust the processing window in an attempt to travel d§e Robotic Safety Marker project [8, 21, 19]. The robot has
fast as possible around an obstacle. 24 sonar sensors arranged in a ring. Using these sensors the
The processing window is adjusted according to the afobot builds a map of its environment and determines the
gorithm shown in Figure 9, but only at planning points. Thdlistance to any obstacles in its path.
algorithm starts by setting the sensor detection range Each sonar sensor is associated with two tasks with dif-
the maximum sensor detection range. The upper bound érent delays between their execution: a sonar send task that
the platform speed,,,.. is set as if no obstacles exist in thesends the sonar signal from the sensor and a sonar receive
platform’s path (as explained in Section 5.1.2). The initiatask that checks the sensor for the received signal and cal-
value is set to its desired speed as long as that value is lgsgates the distance to the objects in the sensor direction. In
than or equal t@,, 4 - addition, two more tasks are associated with the zone pro-
At the end of the zone processing window, there will be&essing window: 1) a map task generates a map for the plat-
two cases: either there is an obstacle in the path or the p&thrm’s surroundings based on the sensor data, 2) a plan task
is obstacle free. that processes the generated map and plans the platforms
Case 1: An obstacle existsEven though the existence path and speed for the next zone. Deriving lower bounds on
of an obstacle will probably cause the valuegf,,. todrop, the periods for these tasks was discussed in [19], but with-
the desired speed might still be less than or equal,{g.. out the processing window abstraction. Moreover, due to
If so, set the speed of the platform to the desired speed. differences in hardware between the current platform and
However, if the desired speed is greater than, and the robot used in [19], the feasibility functigrfor the sonar
there is a possibility to increase the speed by reducing tlsensors is slightly different from the feasibility function pre-
sensor detection distance (which in turn reduces sensor deented in [19]. For the current sonar senor set, the feasibility

w
=]

N
o

Desired Velcocity cm/s

Figure 8. Transition time model comparison

12

r=r
g(ll.E.Alsfm,\)+sz", No Obstacle
- e V=V desired
|7 z ’ de d
v, =r. /2w,
No Obstacle
V < Voesired

(

At the end of w

(At the planning point) J

Obstacle Exist

Solve X, = f(v,.,v,.w,)

forv,

1

To maximize v, Solve
g(mE, Al,r)+ 3 e,
w, = . o
-3
T p,
Vu = =v, w +8)/w,
for r, andw,

l

To maximize v

T = Tain

a Yes

g(mE,Al,r,)+ 3 e,

=
1

e
-y
7Ty, p‘

Solve X, = f(v,.,v,,,w,) fory,

g(m,E,Al,r)+ Y e,

w, =
e/

>

v =(r—v, «w,JrSI,,)/w,

No Yes

L = (1 = Wi Wi 40w, +8,)) v

=) =
Vi = Viesirea Vi = Vinax

Lgack = (1 = (Vi - W VW + 83) Y,

Figure 9. Speed-processing window adjustment algorithm

Ideal Speed Transition

Without processing window adjustment

With processing window adjustment

ttoiul (S)

v (cm/s)

'l_)/vdesi'red (%)
tslacktotal (S)

tslack (S)
tslacktotal/ttotal (%)

96.48
38.20
76.40%
50.14
4.69
51.97%

73.17
48.02
96.04%
66.28
6.83
90.57%

Linear Speed Transi
tion

Without processing window adjustment

With processing window adjustment

ttotal (S)

v (cm/s)

T)/'Udesi'r'ed (%)
tslacktotal (S)

tslack (S)
tslacktotal/ttotal(%)

102.26
35.16
70.30%
47.55
411
46.50%

75.31
43.52
87.04%
64.29
6.28
85.52%

Table 2. Simulation results summary

13

@ o
= : : ‘ ; ; £
o 10000 —— —— o 10000 1
€ €
= 5000 - q = 5000
X X
8 0 | . | . S 0 ! | | |
» 0 500 1000 1500 2000 2500 3000 7 0 500 1000 1500 2000 2500 3000
x-coordinate cm x-coordinate cm
(2] T T T T T 1%} T T T T
g E 0 I]
3 500 1 § 500
g 0 L L L L _ g 0 L L L L
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
° x-coordinate cm ” x-coordinate cm
g 50 T T T T g 50 T T T T
8 U i—‘ Li U 8
E 0 L L L ! L 6 0 L L L L
> 0 500 1000 1500 2000 2500 3000 > 0 500 1000 1500 2000 2500 3000
0 x-coordinate cm 0 x-coordinate cm
oy T o~ omre, == peer (Y
= e oo @

500 - LT .

y-coordinate cm
y-coordinate cm/s

2000

L L L L L L L L
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000

x-coordinate cm x-coordinate cm
Figure 10. Test with no processing window adjustments Figure 11. Test with processing window adjustments
functiong is given by Equation (47) cm/s. The robot is using 10 sonar sensors out of its 24 sen-

9.y sors to build its environment map (a smaller number of sonar
g(n, E,AI, R) = n-(€send+€reco T+ o=)+€map+epian SENSOrs is used in order to reduce crosstalk effects).
340 . . .
(47) Figures 10 and 11 show the simulation of the robot mov-

n is the number of sonar sensors uset the delay used to ing along the path showing both zones and actual sonar
eliminate crosstalk between a received sonar signal and tf@nge on the robot's path. Figure 10 shows the simulation
next sonar send signa;...q is the execution time of a sonar of the robot traversing the path without using the speed ad-
send taske, ..., is the execution time of a sonar receive taskiUStment, while Figure 11 shows the simulation of the robot
emap 1S the the map execution time of the map task,, is traversing the path using the processing window adjustment.
the execution time of the plan task anis the sonar sensor The figures show location of the robot at each data collec-
range. The set of h|gher priority tasi{fhp, are given in tion pointBZ- while the zones start and finish at the planning
Table 1. These tasks arePdD task that controls the robot PointsE;. The figures also show robot velocity and process-
motors and dead Reckonintask that calculates the robot’s ing window plotted against the x-coordinate of the path.
coordinates based on dead reckoning techniques. We can see in Figure 11 that the robot adjusts its sonar

The simulation environment is event based and simulatégnge as it gets closer to the obstacle in order to adjust its
a 30m x 22.5m space where the robot moves. The spapeocessing window and maximize its speed. The simulation
matrix is projected onto a visualization image where eac#lso shows that the robot switches its scanning rate to max-
pixel represents 1 cm x 1 cm of space. imal scanning as it faces an obstacle.

Because one of the goals of this research is the automatic Table 2 shows a comparison between both cases in terms
adjustment of speed and processing windows for each zorwf total timet,.;,; needed to traverse the path, average speed
no obstacle avoidance algorithm was used. Instead the rohgthe ratio of average speed to the desired sp¢eg. i, cq,
follows a path that maintains a safe distance of 60 cm fronotal slack timet q.x101q; OVEr the whole pathi,,., av-
obstacles. This scenario demonstrates how the existenceepfge slack time over the whole path, andcx oz /ttotal
obstacles in the platform’s path affects the zone processiigthe ratio of the total slack time to the total time needed to
window and speed. complete the path. The result shows that the processing win-

The desired speed for the robot in this simulation is 5@dow adjustment algorithm improved the average speed for

14

the robot over the whole path by 16.74% relative to the de- Figure 13. Zones plotted on robot path with no processing
sired speed assuming a linear for approximating speed tre = o0 -

sitions and 19.96% assuming ideal speed transitions [2(3 £ s "_LL‘ m
. . . n E
The simulation result also shows that there is more slac”= Ly 0[] 50l 1 1 1 I
. 0 200 400 B0 ann 1000 1200 1400 1600
time gained by using the processing window adjustment a 20 : : . : : , : , ,
. %5 sl — Fotual Processi
gorithm.
o c
E g 1 1 1 1 1 1 1 1 1
. 0 200 400 B00 i) 1000 1200 1400 1600
7 Experimental Results & ——
“oant — Foual \elosity
;
TUJ 0 1 1 1
= 0 200 400 B00 i) 1000 1200 1400 1600
*-coordinate cm
—— Robat Path
400 - _] — Ffone
200 -
e
[
E =200 -
T
o
3
L 400t
-600
-500 -
1 1 1 1 1 1 1 1 1

0 200 400 £00 800 1000 1200 1400 1600
x-coordinate cm

Figure 12. Test Progress Pictures
We also evaluated the processing window adjustment ¢
gorithm on the actual robot described in Section 6. The test
scenario is similar to the simulated scenario, but we have Figure 14. Zone and sonar range plotted on robot path
adopted a linear approximation of the speed transition func I N —

—— Sonar Range
—-- Zone

tion of Equation (30), described in detail in Section 5.2.2
to account for the speed switching delay due to robot hari
ware.

Because one of the goals of this research is the automa
adjustment of speed and processing windows for each zor of
the platform was steered manually through its path, movin
closer to objects than the path planning algorithm would.

Figure 12 shows a series of pictures taken during the a
tual test demonstrating the progress of the robot in its pa
to the target. Figure 13 shows the actual path the platfor 00}
took to its target point with speed adjustments, but no prc
cessing window adjustment. Figure 15 shows the platform w0 ST
path to its target, which is approximately the same as tt om0 w0 0 80 100 120 140 1600
path in Figure 13, but this time we allowed both the spee eoorsneieem
and the processing window to be adjusted, using the algo-
rithm in Figure 9. Figures 13 and 15 also show the zones
on the robot's path. Figures 14 and 16 are the same as F[Qese intervals when the platform detects a nearby obstacle
ures 13 and 15 respectively but they show the both zonésshigher than their counterpart in Figure 3.
and actual sonar range on the robot's path (Recall from Sec- We can see in Figure 13 that the zones are all the same
tion 3.1 that the zones are smaller than the sensing ran§@e because there is no processing window adjustment. We
due to added Safety area and motion during Sensing)_ voete that when the robot gets closer to the obstacles, the
can see from the figures that the platform reduces its spef@pPot scans at faster a rate. Thus the zone slack distance and
as it encounters an obstacle in order to meet its processifigie become either shorter or equal to zero. In Figure 15
deadlines. Figure 15 demonstrates the improvement gallleuzNote that the coordinates where the platform detects the obstacle and

fl’om the processing Winde adjustment algorithm in termﬁaduces its speed are not exactly the same because the platform paths are
of higher platform speed in the obstacle region; the speed #pproximately the same but not exactly the same.

T
Ll
AUO\I\\\

200

y-coordinate cm
: N
S
3

IS
S
3

15

Without processing window adjustment With processing window adjustment

tiotal (S) 85.20 63.53

v (cm/s) 29.74 36.09

Vactual (CM/S) 29.97 36.85

T/ Vdesired (%) 59.48% 72.18%

m/vdesimd(%) 59.97% 73.7%

tsiackiotal (S) 25.07 32.72

tsiack (S) 1.65 .76

tsiacktotal/ttotal(%0) 39.46% 51.79%

Table 3. Experimental results summary

Figure 15. Zones plotted on robot path with processing

Figure 16. Zone and sonar range plotted on robot path

v 4000 T T T T = — Robot Patn
_ - —— Sonar Range
el W jj ﬂ
I et i s DRI
% 0 200 400 600 800 1000 1200 1400 1600 1800
T T T T T
Bl A
o]
£ ol ! ! ! ! ! ! !
% 0 200 400 600 600 1000 1200 1400 1600 1800 £
T 2
L?S 50k J — cual Velocity £-
£ ‘ [t 1 == Desired Velcofty 8
Sy | | | I 1 | T T 3
3 0 200 400 600 800 1000 1200 1400 1600 1800)
y-coordinate cm
400+ — Rohot Path
— Zone
2 ‘

I
1800

L I I L
800 1000 1200 1400 1600

x-coordinate cm

L I I
0 200 400 600

y-coordinate cm

results show that the speed adjustment algorithm provided
about 14% improvement relative to the desired speed. The
speed improvement in the experiment was less than than the
improvement in the simulation because we have accounted
for the speed transition delay by adopting a linear approxi-

mation to Equation (30). The simulation result also shows

that there is more slack time gained by using the processing
window adjustment algorithm. However, the gain in slack

time was smaller than the simulation case due to the fact the
obstacles were closer to the path than the simulation and the

we see that zones become smaller as the robot gets cloggfety marginS,, is smaller than than simulation scenario.
to the obstacle since the robot reduces the sonar range and

processing window in order to increase the robot’s speed.

As the robot gets closer to the end of its path, the zones .

back to their initial size as the path clears from obstacles a% Conclusion

the robot is able to adjust the processing window back to its

initial size while mamtamlng the desired speed. . We presented a method for integrating the sensor and
Table 3 shows a comparison between both cases in te;%}?

\ \ \
0 200 400 600 800 1000 1200 1400 1600 1800

y-coordinate cm

. eed requirements of a mobile robotic platform with real-
of total timet,.;,; Nneeded to traverse the path, average ¢

lated d lculated b : ind diust ime fixed priority scheduling. To do this, new abstractions
cu ate spee (C"’; cul ated by processing c\ijm ovtvha IUStcalled zones and processing windows were created. Then a
ment), average actua SPegfl;.ql (measured from 1€ MO” method of analyzing the processing requirements for each
tors), ratio of average calculated speed to the desired sp

-) e and ensuring the schedulability of real-time tasks on
U/Vdesired, the ratio of the average actual speed to the dgpa 1atform was presented. We have shown that by ad-
sired Speeaactual /Udesiredv total slack timeslacktotal over

the whole path7 average slack time over the th)Iejusting sensor sampling rates the performance of the mobile
PatNZsiack ag . robotic system can be improved in terms of maintaining a
path, andtsqckiorar/tiotar iS the ration of the total slack

. : desired speed while allowing more tasks to be executed on
time to the total time needed to complete the path. Theﬁﬁe platform processor

16

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

N. Audsley, A. Burns, M. Richardson, and K. T. A.
Wellings. Applying new scheduling theory to static prior-
ity pre-emptive schedulingSoftware Engineering Journal

8(5):284-292, September 1993. [15]

F. Baccelli, B. Gaujal, and D. Simon. Analysis of preeptive
periodic real-time systems using the (max,plus) algebra with
applications in roboticslEEE Transactions On Control Sys- [16]
tems Technologyl0(3):368-380, May 2002.

G. Beccari, S. Caselli, M. Reggiani, and F. Zanichelli. Rate
modulation of soft real-time tasks in autonomous robot con-
trol systems. IrProceedings of the 11th Euromicro Confer-[1
ence on Real-Time Systems ECRp&es 153-158, York,
U.K., June 1999.

J. Borenstein and Y. Koren. Real-time obstacle avoidance for
fact mobile robotsIEEE Transactions on Systems, Man andy1g]
Cybernetics19(6):1179-1187, September-October 1989.

J. J. Craig.Introduction To Robotics: Mechnics and Control

Prentice Hall, third edition edition, 2005. [19]

A. Das, R. Fierro, V. Kumar, B. Southall, J. Spletzer, and
C. Taylor. A real-time vision-based control of a nonholo-
nomic mobile robot. IrProceedings of 2001 IEEE Interna-
tional Conference on Robotics and Automatipages 1714—

1719, 2001. [20]

M. Dertouzos. Control robotics: The procedural control of
physical processes. IRroceedings of the IFIP Congress
pages 807- 813, 1974.

[21]
S. Farritor and M. Rentschier. Robotic highaway saftey
marker. In C. Mellish, editorASME International Mechan-
ical Engineering Congress and Expositjddontreal, May
2002.

R. George and Y. Kanayama. A rate monotonic schedular fd22]
the real-time control of autonomous robots. Rroceedings

of the 1996 IEEE International Confernce on Robotics and
Automation Minneapolis, Minnesota, April 1996.

H. Hassan, J. Simo, and A. Crespo. Enhancing the flexibilit
and the quality of service of autonomous mobile robotic ap
plications. InProceedings of the 14th Euromicro Conference
on Real-Time Systems ECRP802.

J. Huang, S. Farritor, A. Qadi, and S. Goddard. Localiza-
tion and follow-the-leader control of a heterogeneous group
of mobile robots, ieee/asme transactions on mechatronics.
IEEE/ASME Transactions on Mechatronickl(2):205215,
March 2006.

R. Kumar, B. Kimiaghalam, and A. Homaifar. Reactive real
time behavior for mobile robots in unknown environments. In
Proceedings of IEEE International Symposium on Industrial
Electronics pages 693-697, 2004.

H. Li, J. Sweeney, K. Ramamritham, R. Grupen, and
P. Shenoy. Real time support for mobile robotics. Piro-
ceedings of the 9th IEEE Real-Time and Embedded Technol-
ogy and Applications Symposium (RTA&ges 10-18, May
2003.

17

S. Lin, G. Manimaran, and B. L. Steward. Feedback-based
real-time scheduling in autonomous vehicle system®rin
ceedings of 10th IEEE Real-Time and Embedded Technol-
ogy and Applications Symposiupages 316 — 323, Tornto,
Canada, May 2004.

C. Liu and J. W. Layland. Scheduling algorithms for multi-
programming in a hard-real-time environmedaurnal of the
ACM, 20(1):46-61, 1973.

T. A. N. Miyata, J. Ota and H. Asama. Cooperative transport
by multiple mobile robots in unknown static environments
associated with real-time task assignmehEEE Transac-
tions On Robotics and Automatioh8(5):769—-780, October
2002.

M. Piaggio, A. Sgorbissa, and R. Zaccaria. Preemptive ver-
sus non-preemptive real time scheduling in intelligent mobile
robotics. Journal of Experimental and Theoretical Atrtificial
Intelligence 12(2):235-245, September-October 2000.

D. Prasad and A. Burns. A value-based scheduling approach
for real-time autonomous vehicle contr&obotica 18:273—
279, 2000.

A. Qadi, S. Goddard, J. Huang, and S. Farritor. A perfor-
mance and schedulability analysis of an autonomous mobile
robot. In Proceedings of The 17th Euromicro Conference
on Real-Time Systemgages 239— 248, Palma de Mallorca,
Spain, July 2005.

A. Qadi, S. Goddard, J. Huang, and S. Farritor. Dynamic
speed and sensor rate adjustement for mobile robotic sys-
tems. InProceedings of The 19th Euromicro Conference on
Real-Time Systempages 239— 248, Pisa, Italy, July 2007.

J. Shi, S. Goddard, A. Lal, and S.Farritor. A real-time model
for the robotic highway safety marker systemPlmceedings

of the 10th IEEE Real-Time and Embedded Technology and
Application Symposiunpages 331-440, Toronto, CA, May
2004.

M. Wargui, M. Tadjine, and A. Rachid. A scheduling
approach for decentralized mobile robot control. Rro-
ceedings of the 1997 IEEE/RSJ International Conference on
system Intelligent Robots and Systempages 1138-1143,
September 1997.

] M. Zaera., M. Esteve, C. Palau, J. Guerri, F. Martineza, and

P. de Cordoba. Real-time scheduling and guidance of mo-
bile robots on factory floors using monte carlo methods under
windows nt. InProceedings of 8th IEEE International Con-
ference on Emerging Technologies and Factory Automation
pages 67-74, 2001.

