
Modelling Computational Requirements of Mobile Robotic Systems Using
Zones and Processing Windows

TR-UNL-CSE-2007-0016
Ala′ Qadi Steve Goddard

Computer Science & Engineering
University of Nebraska–Lincoln

Lincoln, NE 68588-0115
{aqadi, goddard}@cse.unl.edu

Jiangyang Huang
Itron, Inc

West Union, SC 29696
jiangyang.huang@itron.com

Shane Farritor
Mechanical Engineering

University of Nebraska–Lincoln
Lincoln, NE 68588-0656

sfarritor@unl.edu

Abstract

Mobile robotic systems must sense constraints imposed by
a dynamically changing environment and predictably react
to those changes in real-time. Complexity arises in mo-
bile robotic systems because the computing platform travels
through the environment with which the system is interact-
ing. These systems have spatio-temporal requirements in the
sense that correct behavior is defined in terms of both space
and time. The focus of this paper is mobile robotic plat-
forms that must sense their environment and avoid obsta-
cles as they navigate from one point to another. We present
a design and analysis methodology for these platforms that
integrates spatio-temporal attributes with fixed priority real-
time scheduling through the use of zone and processing win-
dow abstractions.

1. Introduction
Mobile robotic systems must sense constraints imposed

by a dynamically changing environment and predictably re-
act to those changes in real-time. Mobile robotic systems
add yet one more level of complexity in that the comput-
ing platform travels through the environment with which the
system is interacting. These systems have spatio-temporal
requirements in the sense that correct behavior is defined in
terms of both space and time. As real-time systems, com-
putations must be completed within established response
times, but they may also have varying temporal require-
ments. As spatial systems, the computations performed and
their timeliness will be dependent on (i) the location of the
platform in its environment, (ii) the velocity with which the
platform is moving, and (iii) the existence of objects in the
environment.

We present a design and analysis methodology for these
platforms that integrates spatio-temporal attributes with
fixed priority real-time scheduling. To support dynamic en-
vironments, we divide the path the mobile platform traverses
into zones and associate with each zone a processing win-

dow. The spatial dimensions of each zone are dependent on
the platform’s sensing capabilities and the existence of ob-
stacles in the zone. The processing window represents the
time interval required to scan a zone and plan a safe path
through that zone. To ensure schedulability, lower bounds
for the processing window are derived that account for both
the task set and attributes of the sensors needed to navigate.
The speed at which the platform can travel is limited by
physical attributes of the platform and the minimal feasi-
ble processing window (since this limits the sampling rate
of sensors). The challenge, however, is that the obstacles in
the environment also limit platform speed, minimal process-
ing windows, or both simultaneously. Thus, we present a
technique for adjusting platform speed and processing win-
dows such that the maximum speed less than or equal to the
desired speed is maintained while adjusting the processing
window to maintain schedulability of the platform’s real-
time tasks.

The main contributions of this paper are as follows:
• an abstract analysis methodology for mobile robotic

systems that integrates spatio-temporal attributes with
fixed priority real-time scheduling; and

• an algorithm for adjusting platform speed and process-
ing windows such that the maximum speed less than or
equal to the desired speed is maintained or maximized
while adjusting the processing window to maintain
schedulability of the platform’s real-time tasks without
upgrading the platform processor.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses background and related work. Section 3
presents our zone and processing window abstractions. Sec-
tion 4 integrates the spatio-temporal attributes of zones and
processing windows with real-time scheduling. Section 5
shows how the presence of obstacles in the environment af-
fects the maximum platform speed, the processing window,
or both. Then an algorithm to automatically make these ad-
justments is presented. Our design and analysis methodol-
ogy for mobile robotic systems is evaluated via simulation

1



in Section 6 and on a real platform in Section 7. Finally, a
short conclusion is presented in Section 8.

2. Background and Related Work

This section provides a summary of the background and
related work. Section 2.1 provides a summary of back-
ground information and Section 2.2 provides a summary of
related work.

2.1 Background

The term real-time is often used in the robotics commu-
nity to signify some sort of reactivity to external events, or
a capability to respond to environmental changes [6, 12, 4].
In fact, most robotic systems are intended to be “real fast”
as opposed to real-time. The execution time of their sys-
tem services and internal operations are designed to be as
fast as possible in order to minimize the average execution
times. Such systems may successfully operate in real-time,
and provide a cost-effective solution for certain applications.
However, in many uncertain situations, the robotic system
might be overloaded and cannot complete some tasks within
their deadlines, which can result in an undesired system be-
havior.

Thus, the software architecture for the overall control of
a sophisticated robotic system must have real-time charac-
teristics. In other words, a real-time robotic system is ex-
pected to not only work correctly but also respond to exter-
nal events deterministically. It is desired to havedeterminis-
tically fast response to urgent events. All tasks are required
to meet their respective timing requirements. Even when the
system is overloaded by unexpected events and meeting all
deadlines is impossible, it is expected to guarantee the dead-
lines of selected critical tasks. Real-time analysis and design
can significantly improve the quality of service delivered by
the mobile robotic system, and allows the designer to sepa-
rate the concern of the system’s logical correctness from the
concern to meet the system’s timing constraints (i.e., tem-
poral correctness).

A real-time system is a system that is required to com-
plete its work and deliver its services on a timely basis. The
main difference between a real-time system and a normal
system is that a real-time system is not just required to pro-
duce the correct output, but to produce the correct output on
time. Before introducing the periodic real-time model, we
present some essential terms used in real-time systems.

Task: A sequential piece of code that is executed repeat-
edly with some pattern.

Job: An instance of an execution of a task.
Release time of a job: The time instant the job becomes

ready to execute.
Deadline of a job: The time instant by which the job must

complete execution.
Relative deadline of a job: Deadline minus the release

time of the job.

There are two primary types of timing constraints in real-
time systems:hard andsoft. In hard real-time systems, a
late job is not allowed because it may cause disastrous con-
sequences. Late completion of a job that has a soft deadline
is allowed because a few misses of soft deadlines do not
produce serious harm.

The most widely used and accepted real-time model is
the periodic task model as defined by Liu and Layland [15].
According to the periodic task model, the real-time system
is defined by a set of tasksT = {T1, T2, . . . , Tn}. Every
task releases jobs at a constant interval for each task. The
task is defined by four parametersφ, p, e, andd :
φ is the phase of the task—the interval of time between

the instant the system started and the release of the first job
of the task;
p is the period between the release of two consecutive

jobs of a task;
e is the worst-case execution time of the job;
d is the relative deadline for the job.
In real-time systems there are two main schemes used to

dynamically schedule jobs online: Fixed Priority Schedul-
ing and Dynamic Priority Scheduling.

• Fixed Priority Scheduling: A fixed priority schedul-
ing algorithm assigns the same priority to all jobs of a
task. The priority does not change during application
execution. The scheduling decision is made based on
the task priority. When a task is released, alljobs for
this task can only be delayed by higher priority tasks or
interrupts. A well known fixed priority algorithm is the
rate monotonic priority assignment(RM) [15]. This
algorithm assigns task priorities based on the rate the
tasks execute. The task with the highest rate of execu-
tion is given the highest priority. The task with lowest
rate of execution is given the lowest priority.

• Deadline driven scheduling: Deadline driven
scheduling is a dynamic scheduling algorithm that as-
signs priorities to tasks according to the deadline of
their current requests. At each time instant, the sched-
uler assigns a priority to each ready-to-execute job and
allocates the highest priority job to the processor. This
method of assigning priorities to tasks is a dynamic one
and it is different from fixed priority algorithms. One
of the well known dynamic scheduling algorithms is
the earliest deadline first(EDF) scheduling algorithm
[15]. In EDF scheduling, at any time instant, it assigns
the highest priority to jobs with the earliest absolute
deadline. EDF is known to be anoptimal scheduling
algorithm for the class of dynamic scheduling algo-
rithms. For a given set ofm tasks with an optimal
deadline driven scheduling algorithm, the task set is
feasible if and only if

U =
m∑

i=1

ei/pi ≤ 1.

2



The deadline driven scheduling algorithm is able to achieve
full processor utilization.

2.2 Related Work

Applying traditional real-time systems scheduling the-
ory to robotic applications is not a new concept. Exam-
ples of applying the real-time scheduling to robotics can be
found in [7, 9, 22, 3, 17, 18, 23, 2, 16, 10, 13, 14]. Of
these, rate monotonic (RM) [15] scheduling was used in
[9, 22, 3, 17]; earliest deadline first (EDF) [15] scheduling
was used in [17, 23]; and feedback based scheduling tech-
niques in [22, 10, 14]. The work in [16, 13] used real-time
scheduling theory to assign tasks to robots in a team of mo-
bile robots. While these papers applied real-time schedul-
ing theory to a robotic application, none of them consid-
ered the execution requirements of the platform’s sensing
and planning as a factor in the platform’s velocity calcula-
tions. Moreover, the current literature does not address the
issues of using fixed priority scheduling within any form of
processing window for mobile platforms whose workload
changes with the environment. The remainder of this sec-
tion provides a brief summary of some of the contributions
made by the most significant, or most closely, related work.

The earliest example of applying some form of real-time
scheduling to the field of robotics is the seminal work by
Dertouzos [7] in which he proved the optimality of EDF
in underloaded conditions. It appears that George and
Kanayama [9] were the first researchers to apply canonical
RM scheduling to an autonomous mobile robotic applica-
tion.

Wargui et al. [22] used real-time scheduling theory to
address communication time delays in the sensing, control
and action feedback loops of the control system in a mobile
robot. The mobile robot is seen as a system with message
queues controlled through a multiplex communication link.
The delays are included in the derivation of a scheduling
bound for RM scheduling.

Beccari et al. [3] presented rate modulation scheduling
techniques for adaptation of soft real-time loads to avail-
able computation capacity in the context of autonomous
robot control architectures. Their methods are based on the
knowledge of worst-case execution time of tasks and are fo-
cused on period adjustment of soft real-time tasks within a
range of admissible rates.

Prasad and Burns [18] proposed a pre-runtime method
for ranking services on an autonomous vehicle system.
Their method assigns a value for each service based on
many factors including the time the service completes, the
history of invocations of the service, importance of the ser-
vice, and state of the computer system that the services are
being run on.

Baccelli et al. [2] used petri nets and marked graphs to
analyze the temporal correctness of periodic real-time tasks
under preemptive fixed priority scheduling. They applied
their work to a specific software environment dedicated to

the design, verification and the implementation of robotic
control systems (ORCCAD).

Miyata et al. [16] developed a task assignment system for
a team of robots handling flexible materials. Their task as-
signment algorithm used task templates to divide the work
done by robots into tasks and assigned the tasks to robots
based on the number of free robots and task priorities. How-
ever, their work did not consider hard deadlines or real-time
scheduling theory. Neither did it relate any of the real-time
requirements to the robots’s velocity.

Li et al. [13] proposed a method that converts robotic ap-
plications into strategies that can be modelled with acyclic
task graphs implemented as periodic tasks. They then pre-
sented an algorithm to distribute the periodic tasks to a team
of mobile robots.

Lin et al. [14] present a feedback-based real-time adap-
tive scheduling method for an autonomous vehicle that is
used to spray herbicide in agriculture production. They used
the idea of feedback control to adjust the speed of the vehi-
cle based on the a deadline miss ratio and CPU utilization
of the vehicle system.

While many of the previously mentioned papers applied
real-time scheduling theory to a robotic application, none of
these papers considered the execution requirements of the
robots sensing and planning as a factor in the robot’s veloc-
ity calculations. The current literature does not address the
issues of using fixed priority scheduling of processing win-
dows for mobile platforms whose workload changes with
the environment.

The closest work to this paper, other than our own, is by
Hassan et al. [10]. Their work considers the variability of the
system load and temporal requirements. They use a feed-
back control scheduler (FCS) and a flexible server (FS) for
a hybrid mobile robotic system (deliberative and reactive).
The FCS scheduler permits the adaptation of the temporal
requirements. However, their work does not relate velocity
calculations to the robot’s sensing abilities or changes in the
environment.

In [21] we used real-time scheduling theory to address
the challenge of a lead robot controlling the placement of
less capable Robotic Safety Markers (RSMs) [21]. We ex-
tended the functionality of the RSM system by adding the
capability of the RSMs to follow the lead robot in [11]. In
[19], we showed how real-time scheduling analysis could
be applied to a specific mobile robotic application in which
the periods of tasks were dependent on the speed at which
the robot was moving. This paper generalizes and extends
the technique first applied in [19] by creating the zone and
processing window abstractions, and then using those ab-
stractions to perform a more general scheduling analysis.

3 Zones and Processing Windows

A mobile robotic platform collects data from its sensors
to build a map of its environment. This data is then com-

3



bined with mission goals to plan a path to its next destina-
tion. The speed and direction of the platform, represented by
a velocity vector, is dependent on the number of obstacles in
the environment and how soon the platform must reach its
destination. To integrate the spatio-temporal attributes of
the platform with fixed priority real-time scheduling theory,
we have created zone and processing window abstractions,
which are presented in Section 3.1. Section 3.2 then presents
a technique to correct distance errors that occur due to the
asynchronous nature of scanning the environment while the
platform is moving through a zone. In the remainder of this
paper, the (shorter) term platform will be used to denote a
mobile robotic platform.

3.1 The Abstractions

The platform’s intended area of exploration is divided
into subareas calledzonesso that we can isolate the com-
putational and spatial (speed) requirements for each zone
and perform the analysis separately on each zone. We de-
fine a zone as the area for which the platform collects and
processes sensor information, creates a map for the area and
plans its path through the area. Each zone is associated with
one desired speed for the platform.

The zone boundary is defined by the region of explo-
ration in which the platform can build a map and safely gen-
erate a path trajectory using previously collected sensor in-
formation. Figure 1(a) shows an example of the zone bound-
ary where the platform starts collecting sensor data at point
A, and does not move while collecting the sensor data. In
this case the zone boundary is defined by the sensors’ range.
In Figure 1(a) the platform uses sensors with an angle of
coverage ofθ and maximum range ofr. In Figure 1(b) the
platform starts collecting data at pointA and continues to
move while collecting sensor data. It is not until pointB
that the platform is able to build a map for its intended area
of exploration based on its sensor information. At this point
all sensor readings taken on the platform path from pointA
to pointB must be converted relative to pointB. Therefore
the zone boundary is reduced. The zone in Figure 1(c) is fur-
ther reduced because a safety area has been added for extra
precautions due to sensor errors and braking distance. An-
other factor that affects the zone boundary is the existence
of objects that limits visibility beyond the object.

In the two dimensional zones shown in Figure 1, the zone
is a circular section due to the sensor distribution and cov-
erage. Therefore each zone boundary can be defined by an
angle and a radius. From Figure 1(c) we can see that the
zone radiusDi is equal to the sensor ranger minus the dis-
tance the platform moved from pointA to pointB minus the
width of the safety stopping distanceSM . ThereforeDi can
be calculated from Equation (1), whereAB is the distance
the platform moved from pointA to pointB.

Di = r −AB − SM (1)

In this context, the zone can be any two or three-

dimensional shape depending on the distribution and range
of sensors on the platform. For ease of demonstration we
will only consider two dimensional zones in which all plat-
form sensors provide a two dimensional map. Extension to
three dimensions follows the same concepts used in our two
dimensional zone model.

We define the point (in space and time) that the platform
finishes planning its path and speed for zoneZi as plan-
ning pointFi. BecauseFi describes both spatial and tem-
poral information,planning pointFi is denoted by the tuple
(tFi , L

F
i ) wheretFi represents the time instant the platform

arrives at the pointFi andLF
i represents the platform po-

sition information at pointFi. LF
i is also a tuple whose

parameters depend on the nature of the required position
information and the coordinate system used. In our case,
our mobile robotic system involves a robot that moves in
a two-dimensional cartesian coordinate system. Therefore
for the rest of this paperLF

i will be denoted by the tuple
(xF

i , y
F
i , ψ

F
i ) wherexF

i andyF
i represent the platform’sx

andy coordinates respectively andψF
i represent the plat-

form’s orientation angle. If we expand theLF
i tuple in the

tuple(tFi , L
F
i ) we can represent planning pointFi in a two

dimensional cartesian coordinate system by the four param-
eter tuple(tFi , x

F
i , y

F
i , ψ

F
i ).

Each zoneZi is bounded by the two planning points:Fi

andFi+1. The platform collects sensor data through zone
Zi. The platform’s planing for the next zoneZi+1 must be
finished by the end of the next planning point,Fi+1. There-
fore the platform must finish collecting data, build an envi-
ronment map and plan for the next zone,Zi+1, before the
platform starts moving through zoneZi+1.

We define thezone processing windowW as the time
interval from the instant the platform starts collecting data
to the moment the platform finishes planning for the zone.
ThereforeWi = [tFi , t

F
i+1), and the processing window du-

rationw can be calculated from Equation (2).

wi = tFi+1 − tFi (2)

Figure 2(a) demonstrates the division of the platform’s
path into zones and the division of the associated processing
time. If the platform operates at the maximum possible rate
then the platform must start collecting sensor information a
soon as it finishes planning for the previous zone. As illus-
trated in Figure 2(a), the platform must start scanning zone
Zi+1 at pointFi.

In Figure 2(a) the platform starts scanning the next zone
as soon as it finishes planning for the current zone. In this
case the platform is collecting data, building a surround-
ing map and planning as fast as possible. While using this
approach guarantees that the platform is achieving the best
navigational performance, scanning and planning at this fast
rate might not be necessary if we can scan at a lower rate
and maintain the desired speed. Instead of scanning as fast
as possible, we can scan at a rate that is necessary to safely
maintain the platform’s desired speed. Scanning at a lower
rate provides extra time for the processer to execute other

4



(a) Motionless (b) In motion (c) In motion, safety area included

Figure 1. Zone Abstraction: Zone Boundary

(a) Zone concept: Maximal Scanning (b) Zone concept: Minimal Scanning

Figure 2. Division of robot’s path into zones

5



tasks, which might not have been possible to execute with a
maximum scanning rate. At a planning point, the platform
has a map describing its intended area of exploration until
the boundary of the zone. If we assume a static environ-
ment then the platform does not need to start scanning until
a point somewhere before the end of the zone. This new
point must ensure that the next planning point is at most at
the zone boundary.

In this scenario we do not start scanning the next zone at
the moment we finished scanning the current zone. There-
fore we need to introduce the definition of adata collection
point to distinguish between the instant the platform starts
scanning zone,Zi, and the instant the platform finishes plan-
ning for the previous zoneZi−1 because they might not
be the same. We define the point (in space and time) at
which the platform starts collecting data about its environ-
ment from its sensors for zoneZi as data collection point
Bi. Using the same methodology used to represent plan-
ning points, data collection pointBi can be represented by
the tuple(tBi , L

B
i ), whereLB

i can be represented by the tu-
ple (xB

i , y
B
i , ψ

B
i ). In a two dimensional cartesian coordi-

nate system we can representBi by the four parameter tuple
(tBi , x

B
i , y

B
i , ψ

B
i ).

Figure 2(b) demonstrates this case where the platform
does not start scanning as soon as the planning for the cur-
rent zone is done, rather it starts scanning at data collection
pointBi for zoneZi. In this caseWi = [tBi , t

F
i ), and the

processing window durationw can be calculated from Equa-
tion (3).

wi = tFi − tBi (3)

We definezone slack time, tslack, as the time interval be-
tweenFi andBi+1, and the distance moved during this time
interval aszone slack distance, Sslack. If the platform starts
data collection for the next zone directly after it finished
planing for the current zone thentslack = 0, Sslack = 0.
In this case the platform will be collecting sensor data and
planning as fast as possible; Figure 2(a) demonstrates an ex-
ample of this case. If the platform does not employ maximal
scanning then the values fortslack andSslack will not be
equal to zero. Equations for calculating the values oftslack

andSslack are presented in Section 5.1.2.
The calculation of the desired speed for each zone will

be discussed in Section 5.1.2

3.2 Detected Distance Correction

The platform receives each scanning sensor signal while
moving toward the target. By the time the platform starts
processing the scan signals and planning its move, the plat-
form would have moved further from the points where it col-
lected the signals. This means that the distances recorded at
the data collection point are not the same when the platform
arrives at the planning point. The difference between the
actual distances from its surroundings and the recorded dis-
tances from scan signals is dependent on the displacement
of the platform since it collected the signals, which in turn

Figure 3. Sensor Signal Correction

is dependent on the platform’s velocity and path. This error
in the distances and angles can be corrected using standard
coordinate transformations. From direct coordinate trans-
formations [5] we can derive Equations (4)—(8) to correct
the scan distances

dB
ix = dB

i · cos(βB
i ) (4)

dB
iy = dB

i · sin(βB
i ) (5)[

dF
ix

dF
iy

]
=

[
cos(ψFB

i ) − sin(ψFB
i )

sin(ψFB
i ) cos(ψFB

i )

]
·
[
dB

ix

dB
iy

]
+

[
xBF

i

yBF
i

]
(6)

dF
i =

√
dF

ix + dF
iy (7)

βF
i = tan 2(dF

ix, d
F
iy) (8)

whereLB
i = (xB

i , y
B
i , ψ

B
i ) is the point where the sensor

signal was received,LF
i = (xF

i , y
F
i , ψ

F
i ) is the planning

point, dB
i is the distance to the detected object from point

LB
i , dF

i is the distance to the detected object from the plan-
ning pointLF

i , dB
ix, d

B
iy are the distance components ofdB

i

on thex, y axis respectively,dF
ix, d

F
iy are the distance com-

ponents ofdF
i on thex, y axis respectively,βB

i , β
F
i are the

angles between the vectorsdB
i , d

F
i and the platform axis of

orientation respectively,xBF
i = xB

i −xF
i , y

BF
i = yB

i −yF
i

andψFB
i = ψF

i − ψB
i is the final orientation angle of the

platform as shown in Figure 3.

4 Deriving Feasible Processing Windows

For a processing window to be feasible, two conditions
must hold. First, the processing window interval must meet
the sensor parameter requirements. Second, a sufficient
scheduling condition for the scheduling algorithm used must
be satisfied. We conjecture that any mobile robotic platform
will have a set of tasksT = {Tw ∪Thp∪Tlp}, whereTw

is the set of tasks associated with zone processing,Thp is
a (possibly empty) set of periodic tasks with higher priority
thanTw andTlp is a (possibly empty) set of periodic tasks
with lower priority thanTw. In Section 4.1 we present a

6



general form of the equation used to compute a lower bound
for a feasible processing window length. In Section 4.2 we
derive bounds on the zone processing window for fixed pri-
ority scheduling and combine both bounds.

4.1 Sensor Impact on Processing Window Length

The zone processing window of the platform is depen-
dent on sensor parameters representing delays between sen-
sor readings/invocations, data arrival time, number of sen-
sors, sensor range and sensitivity, and sensor tasks’ execu-
tion times. Equation (9) is a general equation for deriving
the minimum feasible bound on the zone processing win-
dow lengthw. The feasibility functiong is a function that is
dependent on the sensor(s) and the associated task(s).n is
the number of task inTw,E is the set of execution times for
the tasks inTw and∆ is the set of delays that might exist
between the execution of sensor tasks inTw.

w ≥ g(n,E,∆) (9)

For sensors with adjustable ranges,∆ can be further divided
into a set of independent delays,∆I, that must exist regard-
less of any other sensor parameters and a set of delays,∆R,
that depend on sensor ranges limitations. Since∆R is de-
pendent on the sensor ranges, we can insert the set of effec-
tive ranges of platform sensors,R, directly as a parameter in
the functiong. Unfortunately the functiong is application
dependant and must be derived separately for each applica-
tion. In Section 7 we derive the functiong for the platform
we chose for evaluation.

w ≥ g(n,E,∆I,R) (10)

4.2 Fixed Priority Bound Derivation

In this section we derive a lower bound on the periods
for the tasks running on the processor based on fixed prior-
ity scheduling and time demand analysis [1]. In this work
we assume that the tasks inThp are independent and pre-
emptive with deadlines equal to periods. Throughout the
remainder of this paper we will assume, without loss of gen-
erality, that the tasks in task setT are ordered according to
their priority such that ifi < j theni has a higher priority
thanj.

For any task inThp, the lower bound on the period can
be calculated from Equation (11), wherepj is the period and
ej is the worst case execution time of taskTj .

pj ≥ ej +
j−1∑
i=1

⌈
pj

pi

⌉
· ei (11)

Becausepj

pi
≤
⌈

pj

pi

⌉
≤ pj

pi
+ 1 we can substitutepj

pi
+ 1

for
⌈

pj

pi

⌉
to get a looser, more pessimistic bound, such that

pj ≥ ej +
j−1∑
i=1

(
pj

pi
+ 1
)
· ei

pj ≥ ej + pj

j−1∑
i=1

ei

pi
+

j−1∑
i=1

ei

pj

(
1−

j−1∑
i=1

ei

pi

)
≥

j∑
i=1

ei

pj ≥
∑j

i=1 ei

1−
∑j−1

i=1
ei

pi

(12)

Using Equation (12) we can calculate a lower bound for
each task period inThp that results in a schedulable task
set. For the task setTw, however, Equation (11) cannot be
directly extended to derive a lower bound for the process-
ing window w. Instead we must combine Equation (10)
and Equation (11) to account for compulsory delays be-
tween tasks inTw because certain types of sensors, such
as sonar or ultrasonic sensors, must have a minimum delay
between sending any two signals due to signal interference
or crosstalk. Thus, Equation (13) combines both bounds.

w ≥ g(n,E,∆I,R) +
∑

Tj∈Thp

⌈
w

pj

⌉
· ej (13)

Equation (13) is a conservative overestimate of the lower
bound onw because not every task inThp will interfere
with each task inTw every time it is released. Using the
same substitution we used in Equation (11) we get Equa-
tion (14).

w ≥
g(n,E,∆I,R) +

∑
Tj∈Thp

ej

1−
∑

Tj∈Thp

ej

pj

(14)

If Tlp 6= ∅ then we calculate the processing window
by assigning the tasks inTlp periods that are integer mul-
tiples ofw. Thus, assumingTlp containsm tasks, we will
calculate a lower bound on the period for the tasks inTlp,
plp = α · w whereα is an integer number.

Using Equation (11) forplp we get

α·w ≥
∑

Tj∈Tlp

ej+

⌈
α · w
w

⌉
·g(n,E,∆I,R)+

∑
Tj∈Thp

⌈
α · w
pj

⌉
· ej

(15)

Becauseα·w
pj

≤
⌈

α·w
pj

⌉
≤ α·w

pj
+ 1 we can substitute

α·w
pj

+ 1 for
⌈

α·w
pj

⌉
to get a looser, more pessimistic bound,

such that

α · w ≥
∑

Tj∈Tlp

ej + dαe · g(n, E, ∆I, R) +
∑

Tj∈Thp

(
α · w
pj

+ 1

)
· ej

(16)

α ≥
1

w

∑
Tj∈Tlp

ej +
dαe · g(n, E, ∆I, R)

w

7



+
1

w

∑
Tj∈Thp

(
α · w
pj

+ 1

)
· ej (17)

Becauseα is an integer can substitutedαe for α. Thus

α ≥
1
w

∑
Tj∈Tlp,Thp

ej

1− g(n,E,∆I,R)
w +

∑
Tj∈Thp

ej

pj

(18)

Substituting forw from Equation (14), we get Equa-
tion (19).

α ≥
∑

Tj∈Tlp,Thp
ej∑

Tj∈Thp
ej

(19)

But since we limitedα to integer values we must take the
ceiling of the right side of Equation (19). Therefore

α ≥

⌈∑
Tj∈Tlp,Thp

ej∑
Tj∈Thp

ej

⌉
(20)

This method minimizesw while calculating a bound on
the period for the tasks inTlp. However, it is possible to
achieve a lower period of the tasks inTlp if we assign a
higher value forw. To do that, we fix the value ofα and
solve Equation (17) forw and take the minimum value ofw
that satisfies both Equation (16) and Equation (14).

In this section we computed sufficient lower bounds for
periods and processing windows such that the tasks inTw,
Thp andTlp can be guaranteed to meet their deadlines.

5 Environmental Impact on Speed and Sam-
pling Rates

The platform depends on sensors to plan its path and to
determine the presence of obstacles and their distance. The
maximum speed at which the platform can travel is related
to the rate the environment signals can be scanned and pro-
cessed. If the platform moves faster than the sensor signals
can be processed, then the motion will be unsafe because
there might be an obstacle in the path that will be undetected
at that rate. In Section 5.1.2 we derive upper bounds on the
platform’s speed throughout a zone with ideal assumptions
with regards to speed transition time, in Section 5.2 we relax
the ideal assumptions and derive approximation formulas
for the speed transition time and in Section 5.3 we present
an algorithm for adjusting the zone processing window to
increase platform speed.

5.1 Zone Speed Choice

The speed of the platform for a zone is dependent on the
radius of the zone, the zone-processing window, the speed
of the platform in the previous zone and the existence of
obstacles in the zone. We derive the calculation of the up-
per bound on the desired speed for the zone,vmaxi, in two
distinct cases: an obstacle free environment and an environ-
ment in which obstacles exist.

Figure 4. Maximal scanning with no obstacles

5.1.1 Obstacle Free Environment

We first calculate the upper bound on the zone speed for the
maximal sensor scanning scenario (i.e., scanning as fast as
possible). Figure 4 demonstrates this scenario. Initially the
platform starts scanning its intended area of exploration at
pointB0 = (0, xB

0 , y
B
0 , ψ

B
0 ). Because it takes the platform

w time units to finish collecting the sonar data and planning
the path, it is not safe for the platform to start moving until
t = w. Therefore the first planning pointF0 will have the
same position coordinates as the first data collection point
B0: F0 = (w, xB

0 , y
B
0 , ψ

B
0 ). Beyond the first zone, planning

points for the current zone and data collection points for the
next zone will have the same time and position,Bi+1 = Fi.

In each zone the platform can travel a maximum distance
equal to the zone radiusDi before entering another zone.
The platform also must spend at leastw time units in the
zone because that is the time interval the platform takes for
collecting sensor data and planning the path for zoneZi.
Therefore if we assume constant speed through zoneZi, the
maximum speed the platform can travel safely through zone
Zi while being able to collect sensor data and plan for zone
Zi+1 can be calculated from Equation (21).

vmax =
Di

wi+1
(21)

The zone radiusDi can be calculated from Equation (1).
If we assume the platform is traveling at the maximum pos-
sible speedvmax then the distance the platform moves be-

8



tween pointsBi andFi is equal tovmax · wi. Therefore the
zone radius can be calculated from Equation (22).

Di = r − vmax · wi − SM (22)

Substituting Equation (22) in Equation (21) and solving for
vmax we get

vmax =
r − vmax · wi − SM

wi+1
. (23)

if we assume a constant processing windowwi = wi+1 = w
then Equation (23) becomes Equation (25)

vmax =
r − vmax · w − SM

w
(24)

=
r − SM

w
− vmax =

r − SM

2 · w
. (25)

If at any plan pointFi we change the zone processing
window wi or change the sensor detection rangeri, then
Equation (23) becomes

vmaxi =
ri − vi−1 · wi − SM

wi+1
, (26)

wherevmaxi is the speed for zoneZi, wi+1 is the process-
ing window forZi+1, ri, vi andwi are the sensor detection
distance, speed and processing window forZi respectively.

If the platform does not employ maximal scanning then
the values ofSslack andtslack can be calculated from Equa-
tion (27) and Equation (28) respectively. It is clear from
Figure 2(b) that the zone slack distance is less than the zone
radius by a distance ofvi · wi+1 because the platform must
scan for the next zoneZi+1 before it enters the zone (i.e.,
while the platform is still traveling in zoneZi) in order to
achieve continuous motion.

Sslack = r − (vi · wi+1 + vi−1 · wi + SM ) (27)

tslack =
Sslack

vi
(28)

5.1.2 Obstacles Exist

If an obstacle exits then the distance the platform can safely
move is not the zone radius, but rather the distance between
the obstacle and the platform,Xobs. Therefore ifXobs < Di

the platform speed can be calculated from

vmaxi =
Xobs

wi+1
. (29)

If the platform is not using maximal scanning then the
platform might switch to maximal scanning if it encounters
an obstacle because it needs to maintain a higher speed or
scan in a different direction in order to explore alternative
paths, as shown in Figure 5.

Figure 5 demonstrates the relation between zones, sens-
ing range, zone processing window and the extra dis-
tance the platform moves without scanning the surroundings

Figure 5. Exitance of obstacles in the environment

(zone slack distanceSslack) in the exitance of obstacles. In
this scenario the platform’s original path to its target point
is a straight line. The platform starts scanning the path area
using an initial value for its sensing range and processing
window. The platform scans as slowly as possible to be able
to use spare processing capacity for other tasks running on
the processor. But as the platform faces its first obstacle in
the path, the platform needs to scan at a faster rate because
more scans are needed at shorter obstacle distances to de-
termine the alternative path. As the platform starts scanning
at a faster rate, the zones overlap more and the zone slack
distance that the platform moves without scanning becomes
smaller or non-existent. In this scenario the platform faced
more obstacles in its alternative path. Therefore it needed to
keep scanning at a higher rate until it reached a path clear
from obstacles after the fourth obstacle.

5.2 Speed Transition Time

In the previous section we considered the ideal case in
which the robot can switch between two speeds instanta-
neously. In a real system the speed transition time interval

9



is not zero and the speed function takes the form of a decay-
ing or a rising exponential function instead of a step func-
tion. Therefore if we have an obstacle, the final maximum
speed would not be given by Equation (29), rather the final
maximum speed will be given by Equation (30), where
f(vmaxi, vi−1, wi) is a function that describes the speed

during the transition time interval.

Xobs = f(vmaxi, vi−1, wi+1) (30)

vmaxi can be calculated by solving Equation (30) forvmaxi.
If we assume that the system traverses the environment at a
constant speed unless it switches between two speeds then
we can derive the formula for the functionf .

The initial platform speedV1, distance to the obstacle
Xobs and processing window lengthw are known, while
both final speedV2 and the instant the speed reachedV2 are
both unknown. Therefore the distance to the obstacleXobs

is given by Equation (31), whereτ is the instant the plat-
form reduces its speed andv(t) be the platform velocity as
a function of time. Because the platform will only change
its speed at a planning point,τ will be at the beginning of a
processing window.

Xobs =

τ+w∫
τ

v(t)dt. (31)

Let ts denote the instant the speed reaches its final value
V2. Letvs(t) be the speed during the transition time interval
[τ, τ+ts) given as a function of time. We get Equation (32).

Xobs =

τ+ts∫
τ

vs(t)dt+

τ+w∫
τ+ts

V2dt (32)

Since the initial and final velocities are variables for each
processing window, they can be parameters ofvs(t). There-
fore the speed during the transition interval[τ, τ + ts) can
be given asvs(t, V1, V2) , whereV1 is the initial speed and
V2 is the final speed. Because the existence of an obstacle
in the environment will imply reducing speedV2 = vmaxi

and the initial velocity will be equal to the platform velocity
in the pervious zone,V2 = vmaxi. Therefore Equation (32)
becomes

Xobs =

τ+ts∫
τ

vs(t, vi−1, vmaxi)dt+

τ+w∫
τ+ts

vmaxidt (33)

From Equation (33) we deduce the formula for the function
f

f(vmaxi, vi−1, wi+1) =

τ+ts∫
τ

vs(t, vi−1, vmaxi)dt

+

τ+wi+1∫
τ+ts

vmaxidt

(34)

Figure 6. Ideal response

In Section 5.2.1 we derive an exponential approximation
formula for the functionf . In Section 5.2 we derive an lin-
ear approximation formula for the functionf , and in Section
5.2.3 we compare both models.

5.2.1 Exponential Approximation Model

A good controller design aims at eliminating oscillatory
components and overshoot in the response signal and
achieving a smooth rising exponential response until steady
state is reached (or a smooth decaying exponential from a
steady state) as shown in Figure 6. We will use this response
to calculate speed transition time. Figure 6 describes a func-
tion with the conditionsv(0) = 0, V (∞) = V2, since we
know that the function is exponential, the response function
can be modelled by Equation (35).

v(t) = V2 · (1− e−Q·t), Q > 0 (35)

Where Q is a parameter determined by fitting the speed con-
troller response data to Equation (35).

If the initial speed was not zero, butV1, and the speed
transition occurred at time instantτ , Equation (35) becomes
Equation (36)

v(t) = V1 + V2 · (1− e−Q·(t−τ)), Q > 0 (36)

In the case of reducing speed, the response function has
the conditionsv(−∞) = V 1, V (∞) = 0 and we want
v(0) ' V 1. Equation (37) models the response to these
conditions.

v(t) = V1 · (1−A · eF ·t), F > 0, 0 < A < 1 (37)

If the speed transition occurs at timeτ , then Equation (37)
becomes

v(t) = V1 · (1−A · eF ·(t−τ)), F > 0, 0 < A < 1 (38)

ParametersA,F are determined by fitting the speed con-
troller response data to Equation (38).

10



Substituting for vs(t) in Equation (32) from Equa-
tion (38) we get Equation (39).

Xobs =

τ+ts∫
τ

V1 · (1−AeF (t−τ))dt+

τ+w∫
τ+ts

V2dt

= V1 ·
(
ts +

A · (1− eF ·ts)
F

)
+ V2 · (w − ts)

(39)

At the time instantts + τ the speed reachesV2. Substi-
tuting ts + τ in Equation (38) we get

V2 = V1 · (1−AeF ·(ts)) ⇒ ts =
1
F
· ln
(

1
A

(
1− V2

V1

))
(40)

Substitutingts from Equation (40) in Equation (39) we get
Equation (41).

Xobs =
1
F
·
(

(V1 − V2) · ln
(

1
A

(
1− V2

V1

))
+

V2 · (1 + wF ) + V1 · (1 +A)
) (41)

Equation (41) can be solved forV2 using a numerical iter-
ative methods only, which are too computationally expen-
sive for a real-time system. Therefore in the next section
we drive a linear approximation model with a deterministic
solution.

5.2.2 Linear Approximation Model

A linear approximation of the speed function during the
transition time generates a deterministic equation that can
be solved to find the value of the desired speed. Figure 7
shows the linear approximation for the speed which is com-
puted using Equation (42).

v(t, V1, V2) =


(

V2 −V1
ts

)
· t −τ ·

(
V2−V1

ts

)
+ V1

V1 6= V2, V1, V2 > 0
V1 V2 = V1, V1, V2 > 0

(42)
Substituting Equation (42) in Equation (31) we get Equa-
tion (43).

Xobs =

τ+ts∫
τ

(
V2 − V1

ts

)
· t − τ ·

(
V2 − V1

ts

)
+ V1 dt+

τ+w∫
τ+ts

V2 dt.

(43)

The transition instantτ adds only a shift to the equation
and does not change the outcome. Therefore we can substi-
tuteτ = 0 in Equation (43) to get Equation (44)

Xobs =

ts∫
0

(
V2 − V1

ts

)
· t+ V1 dt+

w∫
ts

V2 dt

Figure 7. Exponential and linear approximation of transi-

tion time

=
(V2 − V1)ts

2
+ V1ts + V2(w − ts) (44)

If we fit the platform controller response data into a linear
equation of the formx = mt+b we can find the slope value
m. From Equation (42),m = (V2 − V1)/ts =⇒ ts =
(V2 − V1)/m. Substituting the value ofts in Equation (44)
we get

Xobs =
−V 2

2

2m
+ V2

(
w +

V1

m

)
− V 2

1

2m
(45)

Solving Equation (45) forV2 we get Equation (46)

V2 = V1 + wm±
√

2V1wm+ w2m2 − 2Xobsm (46)

Only one solution of Equation (46) will be in our desired
range of0 ≤ V2 ≤ V1.

5.2.3 Linear vs Exponential

Figure 8 shows a comparison between the desired speed
value with an initial speed of 50 cm/s using the exponen-
tial model, linear model, and zero transition time (ideal)
to model the speed transition function. The solutions for
the exponential model equation were obtained iteratively for
each point on the graph using Newton’s method in Matlab.

The values in Figure 8 are calculated for a corrected ob-
stacle distance range of one meter (The corrected obstacle
distance = obstacle distance -safe stopping distance.) Ac-
tual speed data from the same platform that we used for
our experimental evaluations1 was fit to Equation (38) and
Equation (42) using the method of least squares in Matlab.

We can see from Figure 8 that the linear model provides
a good approximation for transition time. We have used the

1Please refer to Section 7 for more details about the platform used in
the experiments.

11



Figure 8. Transition time model comparison

linear approximation model in our experiments because of
its deterministic calculation time. While it is possible to ob-
tain offline solutions for the exponential model for a set of
initial speeds and a range of obstacle distances with a fixed
processing window, it would be difficult if the processing
window length was variable because we have to generate
a table for each range ofw. Considering that the differ-
ence between the exponential and linear models is within an
acceptable range, it will be more feasible to use the linear
model instead of a lookup table for the exponential model.

5.3 Processing Window Adjustment

The speed of the platform and the duration of the pro-
cessing window are interdependent. In the previous section,
we assumed a fixed processing window and computed lim-
its on the speed at which the platform can move through the
environment. In this section, we show that an alternative is
to adjust the processing window in an attempt to travel as
fast as possible around an obstacle.

The processing window is adjusted according to the al-
gorithm shown in Figure 9, but only at planning points. The
algorithm starts by setting the sensor detection ranger to
the maximum sensor detection range. The upper bound on
the platform speedvmax is set as if no obstacles exist in the
platform’s path (as explained in Section 5.1.2). The initial
value is set to its desired speed as long as that value is less
than or equal tovmax .

At the end of the zone processing window, there will be
two cases: either there is an obstacle in the path or the path
is obstacle free.

Case 1: An obstacle exists.Even though the existence
of an obstacle will probably cause the value ofvmax to drop,
the desired speed might still be less than or equal tovmax .
If so, set the speed of the platform to the desired speed.

However, if the desired speed is greater thanvmax and
there is a possibility to increase the speed by reducing the
sensor detection distance (which in turn reduces sensor de-

Task e (ms) p (ms) Priority
Dead Reckoning 5 17 1

PID 1 50 2

Table 1. Task parameters

lays and thereforew), then a new value is calculated forw.
Next a new speed is calculated for the platform, and the zone
slack time,tslack, is set to zero.

Case 2: No obstacle exists.If no obstacle exists and the
current speed is equal to the desired speed, there is no need
to make a change. The algorithm simply follows the process
described in the previous sections to computevmax andw.

If the current speed is less than the desired speed, we
have to try to maximize the platform’s speed by choosing
the optimal value for the detection ranger that would result
in the maximum increase in speed. However, if the calcu-
lated value forr is not within a valid range, we use the low-
est sensor rangermin that will give the maximum possible
speed (less than or equal to the desired speed). Each timer
is adjusted, zone slack timetslack must be calculated based
on the new values forr andw.

6 Simulation

Before implementing the algorithm on a real mobile
robotic platform we have constructed a simulation to evalu-
ate the performance speed adjustment algorithm using Mat-
lab. The simulation assumes the linear speed transition
model presented in 5.2.2, earlier simulation results that as-
sumes ideal speed transition conditions (i.e., no speed tran-
sition time when switching between speeds) have been pub-
lished in [20]. The simulation uses the parameters of an
autonomous mobile robot that was used as the lead robot in
the Robotic Safety Marker project [8, 21, 19]. The robot has
24 sonar sensors arranged in a ring. Using these sensors the
robot builds a map of its environment and determines the
distance to any obstacles in its path.

Each sonar sensor is associated with two tasks with dif-
ferent delays between their execution: a sonar send task that
sends the sonar signal from the sensor and a sonar receive
task that checks the sensor for the received signal and cal-
culates the distance to the objects in the sensor direction. In
addition, two more tasks are associated with the zone pro-
cessing window: 1) a map task generates a map for the plat-
form’s surroundings based on the sensor data, 2) a plan task
that processes the generated map and plans the platforms
path and speed for the next zone. Deriving lower bounds on
the periods for these tasks was discussed in [19], but with-
out the processing window abstraction. Moreover, due to
differences in hardware between the current platform and
the robot used in [19], the feasibility functiong for the sonar
sensors is slightly different from the feasibility function pre-
sented in [19]. For the current sonar senor set, the feasibility

12



Figure 9. Speed-processing window adjustment algorithm

Ideal Speed Transition Without processing window adjustment With processing window adjustment
ttotal (s) 96.48 73.17
v̄ (cm/s) 38.20 48.02
v̄/vdesired (%) 76.40% 96.04%
tslacktotal (s) 50.14 66.28
tslack (s) 4.69 6.83
tslacktotal/ttotal(%) 51.97% 90.57%
Linear Speed Transi-
tion

Without processing window adjustment With processing window adjustment

ttotal (s) 102.26 75.31
v̄ (cm/s) 35.16 43.52
v̄/vdesired (%) 70.30% 87.04%
tslacktotal (s) 47.55 64.29
tslack (s) 4.11 6.28
tslacktotal/ttotal(%) 46.50% 85.52%

Table 2. Simulation results summary

13



Figure 10. Test with no processing window adjustments

functiong is given by Equation (47)

g(n,E,∆I,R) = n·(esend+erecv+τ+
2 · r
340

)+emap+eplan

(47)
n is the number of sonar sensors used;τ is the delay used to
eliminate crosstalk between a received sonar signal and the
next sonar send signal;esend is the execution time of a sonar
send task;erecv is the execution time of a sonar receive task;
emap is the the map execution time of the map task,eplan is
the execution time of the plan task andr is the sonar sensor
range. The set of higher priority tasks,Thp, are given in
Table 1. These tasks are aPID task that controls the robot
motors and aDead Reckoningtask that calculates the robot’s
coordinates based on dead reckoning techniques.

The simulation environment is event based and simulates
a 30m x 22.5m space where the robot moves. The space
matrix is projected onto a visualization image where each
pixel represents 1 cm x 1 cm of space.

Because one of the goals of this research is the automatic
adjustment of speed and processing windows for each zone,
no obstacle avoidance algorithm was used. Instead the robot
follows a path that maintains a safe distance of 60 cm from
obstacles. This scenario demonstrates how the existence of
obstacles in the platform’s path affects the zone processing
window and speed.

The desired speed for the robot in this simulation is 50

Figure 11. Test with processing window adjustments

cm/s. The robot is using 10 sonar sensors out of its 24 sen-
sors to build its environment map (a smaller number of sonar
sensors is used in order to reduce crosstalk effects).

Figures 10 and 11 show the simulation of the robot mov-
ing along the path showing both zones and actual sonar
range on the robot’s path. Figure 10 shows the simulation
of the robot traversing the path without using the speed ad-
justment, while Figure 11 shows the simulation of the robot
traversing the path using the processing window adjustment.
The figures show location of the robot at each data collec-
tion pointBi while the zones start and finish at the planning
pointsFi. The figures also show robot velocity and process-
ing window plotted against the x-coordinate of the path.

We can see in Figure 11 that the robot adjusts its sonar
range as it gets closer to the obstacle in order to adjust its
processing window and maximize its speed. The simulation
also shows that the robot switches its scanning rate to max-
imal scanning as it faces an obstacle.

Table 2 shows a comparison between both cases in terms
of total timettotal needed to traverse the path, average speed
v̄, the ratio of average speed to the desired speedv̄/vdesired,
total slack timetslacktotal over the whole path,tslack av-
erage slack time over the whole path, andtslacktotal/ttotal

is the ratio of the total slack time to the total time needed to
complete the path. The result shows that the processing win-
dow adjustment algorithm improved the average speed for

14



the robot over the whole path by 16.74% relative to the de-
sired speed assuming a linear for approximating speed tran-
sitions and 19.96% assuming ideal speed transitions [20].
The simulation result also shows that there is more slack
time gained by using the processing window adjustment al-
gorithm.

7 Experimental Results

Figure 12. Test Progress Pictures
We also evaluated the processing window adjustment al-

gorithm on the actual robot described in Section 6. The test
scenario is similar to the simulated scenario, but we have
adopted a linear approximation of the speed transition func-
tion of Equation (30), described in detail in Section 5.2.2,
to account for the speed switching delay due to robot hard-
ware.

Because one of the goals of this research is the automatic
adjustment of speed and processing windows for each zone,
the platform was steered manually through its path, moving
closer to objects than the path planning algorithm would.

Figure 12 shows a series of pictures taken during the ac-
tual test demonstrating the progress of the robot in its path
to the target. Figure 13 shows the actual path the platform
took to its target point with speed adjustments, but no pro-
cessing window adjustment. Figure 15 shows the platform’s
path to its target, which is approximately the same as the
path in Figure 13, but this time we allowed both the speed
and the processing window to be adjusted, using the algo-
rithm in Figure 9. Figures 13 and 15 also show the zones
on the robot’s path. Figures 14 and 16 are the same as Fig-
ures 13 and 15 respectively but they show the both zones
and actual sonar range on the robot’s path (Recall from Sec-
tion 3.1 that the zones are smaller than the sensing range
due to added safety area and motion during sensing). We
can see from the figures that the platform reduces its speed
as it encounters an obstacle in order to meet its processing
deadlines. Figure 15 demonstrates the improvement gained
from the processing window adjustment algorithm in terms
of higher platform speed in the obstacle region; the speed in

Figure 13. Zones plotted on robot path with no processing

window adjustments

Figure 14. Zone and sonar range plotted on robot path

with no processing window adjustments

these intervals when the platform detects a nearby obstacle
is higher than their counterpart in Figure 13.2

We can see in Figure 13 that the zones are all the same
size because there is no processing window adjustment. We
note that when the robot gets closer to the obstacles, the
robot scans at faster a rate. Thus the zone slack distance and
time become either shorter or equal to zero. In Figure 15

2Note that the coordinates where the platform detects the obstacle and
reduces its speed are not exactly the same because the platform paths are
approximately the same but not exactly the same.

15



Without processing window adjustment With processing window adjustment
ttotal (s) 85.20 63.53
v̄ (cm/s) 29.74 36.09
vactual (cm/s) 29.97 36.85
v̄/vdesired (%) 59.48% 72.18%
vactual/vdesired(%) 59.97% 73.7%
tslacktotal (s) 25.07 32.72
tslack (s) 1.65 .76
tslacktotal/ttotal(%) 39.46% 51.79%

Table 3. Experimental results summary

Figure 15. Zones plotted on robot path with processing

window adjustments

we see that zones become smaller as the robot gets closer
to the obstacle since the robot reduces the sonar range and
processing window in order to increase the robot’s speed.
As the robot gets closer to the end of its path, the zones go
back to their initial size as the path clears from obstacles and
the robot is able to adjust the processing window back to its
initial size while maintaining the desired speed.

Table 3 shows a comparison between both cases in terms
of total timettotal needed to traverse the path, average cal-
culated speed̄v (calculated by processing window adjust-
ment), average actual speedvactual (measured from the mo-
tors), ratio of average calculated speed to the desired speed
v̄/vdesired, the ratio of the average actual speed to the de-
sired speedvactual/vdesired, total slack timetslacktotal over
the whole path,tslack average slack time over the whole
path, andtslacktotal/ttotal is the ration of the total slack
time to the total time needed to complete the path. These

Figure 16. Zone and sonar range plotted on robot path

with processing window adjustments

results show that the speed adjustment algorithm provided
about 14% improvement relative to the desired speed. The
speed improvement in the experiment was less than than the
improvement in the simulation because we have accounted
for the speed transition delay by adopting a linear approxi-
mation to Equation (30). The simulation result also shows
that there is more slack time gained by using the processing
window adjustment algorithm. However, the gain in slack
time was smaller than the simulation case due to the fact the
obstacles were closer to the path than the simulation and the
safety marginSM is smaller than than simulation scenario.

8. Conclusion

We presented a method for integrating the sensor and
speed requirements of a mobile robotic platform with real-
time fixed priority scheduling. To do this, new abstractions
called zones and processing windows were created. Then a
method of analyzing the processing requirements for each
zone and ensuring the schedulability of real-time tasks on
the platform was presented. We have shown that by ad-
justing sensor sampling rates the performance of the mobile
robotic system can be improved in terms of maintaining a
desired speed while allowing more tasks to be executed on
the platform processor.

16



References

[1] N. Audsley, A. Burns, M. Richardson, and K. T. A.
Wellings. Applying new scheduling theory to static prior-
ity pre-emptive scheduling.Software Engineering Journal,
8(5):284–292, September 1993.

[2] F. Baccelli, B. Gaujal, and D. Simon. Analysis of preeptive
periodic real-time systems using the (max,plus) algebra with
applications in robotics.IEEE Transactions On Control Sys-
tems Technology, 10(3):368–380, May 2002.

[3] G. Beccari, S. Caselli, M. Reggiani, and F. Zanichelli. Rate
modulation of soft real-time tasks in autonomous robot con-
trol systems. InProceedings of the 11th Euromicro Confer-
ence on Real-Time Systems ECRTS, pages 153–158, York,
U.K., June 1999.

[4] J. Borenstein and Y. Koren. Real-time obstacle avoidance for
fact mobile robots.IEEE Transactions on Systems, Man and
Cybernetics, 19(6):1179–1187, September-October 1989.

[5] J. J. Craig.Introduction To Robotics: Mechnics and Control.
Prentice Hall, third edition edition, 2005.

[6] A. Das, R. Fierro, V. Kumar, B. Southall, J. Spletzer, and
C. Taylor. A real-time vision-based control of a nonholo-
nomic mobile robot. InProceedings of 2001 IEEE Interna-
tional Conference on Robotics and Automation, pages 1714–
1719, 2001.

[7] M. Dertouzos. Control robotics: The procedural control of
physical processes. InProceedings of the IFIP Congress,
pages 807– 813, 1974.

[8] S. Farritor and M. Rentschier. Robotic highaway saftey
marker. In C. Mellish, editor,ASME International Mechan-
ical Engineering Congress and Exposition, Montreal, May
2002.

[9] R. George and Y. Kanayama. A rate monotonic schedular for
the real-time control of autonomous robots. InProceedings
of the 1996 IEEE International Confernce on Robotics and
Automation, Minneapolis, Minnesota, April 1996.

[10] H. Hassan, J. Simo, and A. Crespo. Enhancing the flexibility
and the quality of service of autonomous mobile robotic ap-
plications. InProceedings of the 14th Euromicro Conference
on Real-Time Systems ECRTS, 2002.

[11] J. Huang, S. Farritor, A. Qadi, and S. Goddard. Localiza-
tion and follow-the-leader control of a heterogeneous group
of mobile robots, ieee/asme transactions on mechatronics.
IEEE/ASME Transactions on Mechatronics, 11(2):205215,
March 2006.

[12] R. Kumar, B. Kimiaghalam, and A. Homaifar. Reactive real
time behavior for mobile robots in unknown environments. In
Proceedings of IEEE International Symposium on Industrial
Electronics, pages 693–697, 2004.

[13] H. Li, J. Sweeney, K. Ramamritham, R. Grupen, and
P. Shenoy. Real time support for mobile robotics. InPro-
ceedings of the 9th IEEE Real-Time and Embedded Technol-
ogy and Applications Symposium (RTAS), pages 10–18, May
2003.

[14] S. Lin, G. Manimaran, and B. L. Steward. Feedback-based
real-time scheduling in autonomous vehicle systems. InPro-
ceedings of 10th IEEE Real-Time and Embedded Technol-
ogy and Applications Symposium, pages 316 – 323, Tornto,
Canada, May 2004.

[15] C. Liu and J. W. Layland. Scheduling algorithms for multi-
programming in a hard-real-time environment.Journal of the
ACM, 20(1):46–61, 1973.

[16] T. A. N. Miyata, J. Ota and H. Asama. Cooperative transport
by multiple mobile robots in unknown static environments
associated with real-time task assignment.IEEE Transac-
tions On Robotics and Automation, 18(5):769–780, October
2002.

[17] M. Piaggio, A. Sgorbissa, and R. Zaccaria. Preemptive ver-
sus non-preemptive real time scheduling in intelligent mobile
robotics. Journal of Experimental and Theoretical Artificial
Intelligence, 12(2):235–245, September-October 2000.

[18] D. Prasad and A. Burns. A value-based scheduling approach
for real-time autonomous vehicle control.Robotica, 18:273–
279, 2000.

[19] A. Qadi, S. Goddard, J. Huang, and S. Farritor. A perfor-
mance and schedulability analysis of an autonomous mobile
robot. In Proceedings of The 17th Euromicro Conference
on Real-Time Systems, pages 239– 248, Palma de Mallorca,
Spain, July 2005.

[20] A. Qadi, S. Goddard, J. Huang, and S. Farritor. Dynamic
speed and sensor rate adjustement for mobile robotic sys-
tems. InProceedings of The 19th Euromicro Conference on
Real-Time Systems, pages 239– 248, Pisa, Italy, July 2007.

[21] J. Shi, S. Goddard, A. Lal, and S.Farritor. A real-time model
for the robotic highway safety marker system. InProceedings
of the 10th IEEE Real-Time and Embedded Technology and
Application Symposium, pages 331–440, Toronto, CA, May
2004.

[22] M. Wargui, M. Tadjine, and A. Rachid. A scheduling
approach for decentralized mobile robot control. InPro-
ceedings of the 1997 IEEE/RSJ International Conference on
system Intelligent Robots and Systems, pages 1138–1143,
September 1997.

[23] M. Zaera., M. Esteve, C. Palau, J. Guerri, F. Martineza, and
P. de Cordoba. Real-time scheduling and guidance of mo-
bile robots on factory floors using monte carlo methods under
windows nt. InProceedings of 8th IEEE International Con-
ference on Emerging Technologies and Factory Automation,
pages 67–74, 2001.

17


