
Deriving Speed Limits and Sensor Sampling Rates for Mobile
Robotic Systems

Technical Report TR-UNL-CSE-2006-0015
Updated Version (January 2007)

Ala′ Qadi Steve Goddard
Computer Science & Engineering
University of Nebraska–Lincoln

Lincoln, NE 68588-0115
{aqadi, goddard}@cse.unl.edu

Jiangyang Huang Shane Farritor
Mechanical Engineering

University of Nebraska–Lincoln
Lincoln, NE 68588-0656

{jyhuang, sfarritor}@unl.edu

Abstract

Mobile robotic systems must sense constraints imposed by a dynamically changing environment and
predictably react to those changes in real-time. Complexity arises in mobile robotic systems because
the computing platform travels through the environment with which the system is interacting. These
systems have spatio-temporal requirements in the sense that correct behavior is defined in terms of both
space and time. The focus of this paper is mobile robotic platforms that must sense their environment
and avoid obstacles as they navigate from one point to another. We present a design and analysis
methodology for these platforms that integrates spatio-temporal attributes with fixed priority real-time
scheduling through the use of zone and processing window abstractions.

1. Introduction

Mobile robotic systems must sense constraints imposed by a dynamically changing environment and

predictably react to those changes in real-time. A mobile robotic systems adds yet one more level

of complexity in that the computing platform travels through the environment with which the system

is interacting. These systems have spatio-temporal requirements in the sense that correct behavior is

defined in terms of both space and time. As real-time systems, computations must be completed within

established response times, but they may also have varying temporal requirements. As spatial systems,

the computations performed and their timeliness will be dependent on (i) the location of the platform

in its environment, (ii) the velocity with which the platform is moving, and (iii) the existence of objects

in the environment.

The focus of this paper is mobile robotic platforms that must must sense their environment and avoid

obstacles as they navigate from one point to another. We present a design and analysis methodology

1



for these platforms that integrates spatio-temporal attributes with fixed priority real-time scheduling.

To support dynamic environments, we divide the path the mobile platform traverses into zones and

associate with each zone a processing window. The spatial dimensions of each zone are dependent on

the platform’s sensing capabilities and the existence of obstacles in the zone. The processing window

represents the time interval required to scan a zone and plan a safe path through that zone. To ensure

schedulability, lower bounds for the processing window are derived that account for both the task set

and attributes of the sensors needed to navigate. The speed at which the platform can travel is limited

by physical attributes of the platform and the minimal feasible processing window (since this limits the

sampling rate of sensors). The challenge, however, is that the obstacles in the environment also limit

platform speed, minimal processing windows, or both simultaneously. Thus, we present a technique

for adjusting platform speed and processing windows such that the maximum speed less than or equal

to the desired speed is maintained while adjusting the processing window to maintain schedulability of

the platform’s real-time tasks.

The term real-time is often used in the autonomous robotics community to signify some sort of

reactivity to external events, or a capability to respond enough to environmental changes [6, 12, 4]. In

fact, most robotic systems are intended to be “real fast” as opposed to real-time. The execution time of

their system services and internal operations are designed to be as fast as possible in order to minimize

the average execution times. Such systems may successfully operate in real-time, and provide a cost-

effective solution for certain applications. But in many uncertain situations, the robotic system might be

overloaded and cannot complete some tasks within certain deadlines, which can result in an undesired

system behavior.

Thus, the software architecture for the overall control of a sophisticated robotic system must have

real-time characteristics. In other words, a real-time robotic system is expected to not only work cor-

rectly but also respond to external events deterministically. It is desired to havedeterministicallyfast

response to urgent events. All tasks are required to meet their respective timing requirements. Even

when the system is overloaded by unexpected events and meeting all deadlines is impossible, it is

expected to guarantee the deadlines of selected critical tasks. Real-time analysis and design can signif-

icantly improve the quality of service delivered by the mobile robotic system, and allows the designer

2



to separate he concern of the system’s logical correctness from the concern to meet the system’s timing

constraints (i. e., temporal correctness).

The remainder of this paper is organized as follows. Section 2 discusses related work. Section 3

presents our zone and processing window abstractions. Section 4 integrates the spatio-temporal at-

tributes of zones and processing windows with real-time scheduling. Section 5 shows how the presence

of obstacles in the environment affects the maximum platform speed, the processing window, or both.

Then an algorithm to automatically make these adjustments is presented. Our design and analysis

methodology for mobile robotic systems is evaluated via simulation in Section 6 and on a real platform

in Section 7. Finally, a short conclusion is presented in Section 8.

2. Related Work

Applying traditional real-time systems scheduling theory to robotic applications is not a new concept.

Examples of applying the real-time scheduling to robotics can be found in [7, 9, 22, 3, 17, 18, 23, 2,

16, 10, 13, 14]. Of these, rate monotonic (RM) [15] scheduling was used in [9, 22, 3, 17]; earliest

deadline first (EDF) [15] scheduling was used in [17, 23]; and feedback based scheduling techniques in

[22, 10, 14]. The work in [16, 13] used real-time scheduling theory to assign tasks to robots in a team

of mobile robots. While these papers applied real-time scheduling theory to a robotic application, none

of them considered the execution requirements of the platform’s sensing and planning as a factor in the

platform’s velocity calculations. Moreover, the current literature does not address the issues of using

fixed priority scheduling within any form of processing window for mobile platforms whose workload

changes with the environment. The remainder of this section provides a brief summary of some of the

contributions made by the most significant, or most closely, related work.

The earliest example of applying some form of real-time scheduling to the field of robotics is the

seminal work by Dertouzos [7] in which he proved the optimality of EDF in underloaded conditions. It

appears that George and Kanayama [9] were the first researchers to apply canonical RM scheduling to

an autonomous mobile robotic application.

Wargui et al. [22] used real-time scheduling theory to address communication time delays in the

sensing, control and action feedback loops of the control system in a mobile robot. The mobile robot is

3



seen as a system with message queues controlled through a multiplex communication link. The delays

are included in the derivation of a scheduling bound for RM scheduling.

Beccari et al. [3] presented rate modulation scheduling techniques for adaptation of soft real-time

loads to available computation capacity in the context of autonomous robot control architectures. Their

methods are based on the knowledge of worst-case execution time of tasks and are focused on period

adjustment of soft real-time tasks within a range of admissible rates.

Prasad and Burns [18] proposed a pre-runtime method for ranking services on an autonomous vehicle

system. Their method assigns a value for each service based on many factors including the time the

service completes, the history of invocations of the service, importance of the service, and state of the

computer system that the services are being run on.

Baccelli et al. [2] used petri nets and marked graphs to analyze the temporal correctness of peri-

odic real-time tasks under preemptive fixed priority scheduling. They applied their work to a specific

software environment dedicated to the design, verification and the implementation of robotic control

systems (ORCCAD).

Miyata et al. [16] developed a task assignment system for a team of robots handling flexible materi-

als. Their task assignment algorithm used task templates to divide the work done by robots into tasks

and assigned the tasks to robots based on the number of free robots and task priorities. However, their

work did not consider hard deadlines or real-time scheduling theory. Neither did it relate any of the

real-time requirements to the robots’s velocity.

Li et al. [13] proposed a method that converts robotic applications into strategies that can be modelled

with acyclic task graphs implemented as periodic tasks. They then presented an algorithm to distribute

the periodic tasks to a team of mobile robots.

Lin et al. [14] present a feedback-based real-time adaptive scheduling method for an autonomous

vehicle that is used to spray herbicide in agriculture production. They used the idea of feedback control

to adjust the speed of the vehicle based on the a deadline miss ratio and CPU utilization of the vehicle

system.

While many of the previously mentioned papers applied real-time scheduling theory to a robotic

application, none of these papers considered the execution requirements of the robots sensing and

4



planning as a factor in the robot’s velocity calculations. The current literature does not address the

issues of using fixed priority scheduling of processing windows for mobile platforms whose workload

changes with the environment.

The closest work to this paper, other than our own, is by Hassan et al. [10]. Their work considers the

variability of the system load and temporal requirements. They use a feedback control scheduler (FCS)

and a flexible server (FS) for a hybrid mobile robotic system (deliberative and reactive). The FCS

scheduler permits the adaptation of the temporal requirements. However, their work does not relate

velocity calculations to the robot’s sensing abilities or changes in the environment.

In [21] we used real-time scheduling theory to address the challenge of a lead robot controlling the

placement of less capable Robotic Safety Markers (RSMs) [21] . We extended the functionality of the

RSM system by adding the capability of the RSMs to follow the lead robot in [11]. In [19], we showed

how real-time scheduling analysis could be applied to a specific mobile robotic application in which the

periods of tasks were dependent on the speed at which the robot was moving. This paper generalizes

and extends the technique first applied in [19] by creating the zone and processing window abstractions,

and then using those abstractions to perform a more general scheduling analysis.

3 Zones and Processing Windows

A mobile robotic platform collects data from its sensors to build a map of its environment. This data

is then combined with mission goals to plan a path to its next destination. The speed and direction of the

platform, represented by a velocity vector, is dependent on the number of obstacles in the environment

and how soon the platform must reach its destination. To integrate the spatio-temporal attributes of the

platform with fixed priority real-time scheduling theory, we have created zone and processing window

abstractions, which are presented in Section 3.1. Section 3.2 then presents a technique to correct dis-

tance errors that occur due to the asynchronous nature of scanning the environment while the platform

is moving through a zone. In the remainder of this paper, the (shorter) term platform will be used to

denote a mobile robotic platform.

5



(a) Motionless (b) In motion (c) In motion, safety area in-
cluded

Figure 1. Zone Abstraction: Zone Boundary

3.1 The Abstractions

The platform’s intended area of exploration is divided into subareas calledzonesso that we can

isolate the computational and spatial (speed) requirements for each zone and perform the analysis sep-

arately on each zone. We define a zone as the area for which the platform collects and processes sensor

information, creates a map for the area and plans its path through the area. Each zone is associated with

one desired speed for the platform.

The zone boundary is defined by the region of exploration in which the platform can build a map and

safely generate a path trajectory using previously collected sensor information. Figure 1(a) shows an

example of the zone boundary where the platform starts collecting sensor data at pointA, and does not

move while collecting the sensor data. In this case the zone boundary is defined by the sensors’ range.

In Figure 1(a) the platform uses sensors with an angle of coverage ofθ and maximum range ofr. In

Figure 1(b) the platform starts collecting data at pointA and continues to move while collecting sensor

data. It is not until pointB that the platform is able to build a map for its intended area of exploration

based on its sensor information. At this point all sensor readings taken on the platform path from point

A to pointB must be converted relative to pointB. Therefore the zone boundary is reduced. The

zone in Figure 1(c) is further reduced because a safety area has been added for extra precautions due

to sensor errors and braking distance. Another factor that affects the zone boundary is the existence of

objects that limits visibility beyond the object.

In the two dimensional zones shown in Figure 1(c), the zone is a circular section due to the sensor

6



distribution and coverage. Therefore each zone boundary can be defined by an angle and a radius. From

Figure 1(c) we can see that thezone radiusDi is equal to the sensor ranger minus the distance the

platform moved from pointA to pointB minus the width of the safety stopping distanceSM . Therefore

Di can be calculated from Equation (1), whereAB is the distance the platform moved from pointA to

pointB.

Di = r − AB − SM (1)

In this context, the zone can be any two or three-dimensional shape depending on the distribution

and range of sensors on the platform. For ease of demonstration we will only consider two dimensional

zones in which all platform sensors provide a two dimensional map. Extension to three dimensions

follows the same concepts used in our two dimensional zone model.

We define the point (in space and time) that the platform finishes planning its path and speed for zone

Zi asplanning pointFi. BecauseFi describes both spatial and temporal information,planning pointFi

is denoted by the tuple(tFi , L
F
i ) wheretFi represents the time instant the platform arrives at the pointFi

andLF
i represents the platform position information at pointFi. LF

i is also a tuple whose parameters

depend on the nature of the required position information and the coordinate system used. In our

case, our mobile robotic system involves a robot that moves in a two-dimensional cartesian coordinate

system. Therefore for the rest of this paperLF
i will be denoted by the tuple(xF

i , y
F
i , ψ

F
i ) wherexF

i and

yF
i represent the platform’sx andy coordinates respectively andψF

i represent the platform’s orientation

angle. If we expand theLF
i tuple in the tuple(tFi , L

F
i ) we can represent planning pointFi in a two

dimensional cartesian coordinate system by the four parameter tuple(tFi , x
F
i , y

F
i , ψ

F
i ).

Each zoneZi is bounded by the two planning points:Fi andFi+1. The platform collects sensor data

through zoneZi. The platform’s planing for the next zoneZi+1 must be finished by the end of the next

planning point,Fi+1. Therefore the platform must finish collecting data, build an environment map and

plan for the next zone,Zi+1, before the platform starts moving through zoneZi+1.

We define thezone processing windowW as the time interval from the instant the platform starts

collecting data to the moment the platform finishes planning for the zone. ThereforeWi = [tFi , t
F
i+1),

7



and the processing window durationw can be calculated from Equation (2).

wi = tFi+1 − tFi (2)

Figure 2(a) demonstrates the division of the platform’s path into zones and the division of the asso-

ciated processing time. If the platform operates at the maximum possible rate then the platform must

start collecting sensor information a soon as it finishes planning for the previous zone. As illustrated in

Figure 2(a), the platform must start scanning zoneZi+1 at pointFi.

(a) Zone concept: Maximal Scanning (b) Zone concept: Minimal Scanning

Figure 2. Division of robot’s path into zones

In Figure 2(a) the platform starts scanning the next zone as soon as it finishes planning for the current

zone. In this case the platform is collecting data, building a surrounding map and planning as fast as

possible. While using this approach guarantees that the platform is achieving the best navigational

performance, scanning and planning at this fast rate might not be necessary if we can scan at a lower

rate and maintain the desired speed. Instead of scanning as fast as possible, we can scan at a rate that

is necessary to safely maintain the platform’s desired speed. Scanning at a lower rate provides extra

8



time for the processer to execute other tasks, which might not have been possible to execute with a

maximum scanning rate. At a planning point, the platform has a map describing its intended area of

exploration until the boundary of the zone. If we assume a static environment then the platform does

not need to start scanning until a point somewhere before the end of the zone. This new point must

ensure that the next planning point is at most at the zone boundary.

In this scenario we do not start scanning the next zone at the moment we finished scanning the

current zone. Therefore we need to introduce the definition of adata collection pointto distinguish

between the instant the platform starts scanning zone,Zi, and the instant the platform finishes planning

for the previous zoneZi−1 because they might not be the same. We define the point (in space and

time) at which the platform starts collecting data about its environment from its sensors for zoneZi

as data collection pointBi. Using the same methodology used to represent planning points, data

collection pointBi can be represented by the tuple(tBi , L
B
i ), whereLB

i can be represented by the

tuple(xB
i , y

B
i , ψ

B
i ). In a two dimensional cartesian coordinate system we can representBi by the four

parameter tuple(tBi , x
B
i , y

B
i , ψ

B
i ).

Figure 2(b) demonstrates this case where the platform does not start scanning as soon as the planning

for the current zone is done, rather it starts scanning at data collection pointBi for zoneZi. In this case

Wi = [tBi , t
F
i ), and the processing window durationw can be calculated from Equation (3).

wi = tFi − tBi (3)

We definezone slack time, tslack, as the time interval betweenFi andBi+1, and the distance moved

during this time interval aszone slack distance, Sslack. If the platform starts data collection for the next

zone directly after it finished planing for the current zone thentslack = 0, Sslack = 0. In this case the

platform will be collecting sensor data and planning as fast as possible; Figure 2(a) demonstrates an

example of this case. If the platform does not employ maximal scanning then the values fortslack and

Sslack will not be equal to zero. Equations for calculating the values oftslack andSslack are presented in

Section 5.1.

Figure 3 demonstrates the relation between zones, sensing range, zone processing window and the

9



Figure 3. Zone demonstration in space and time

extra distance the platform moves without scanning the surroundings (zone slack distanceSslack). In

this scenario the platform’s original path to its target point is a straight line. The platform starts scanning

the path area using an initial value for its sensing range and processing window. The platform scans as

slowly as possible to be able to use spare processing capacity for other tasks running on the processor.

10



But as the platform faces its first obstacle in the path, the platform needs to scan at a faster rate because

more scans are needed at shorter obstacle distances to determine the alternative path. As the platform

starts scanning at a faster rate, the zones overlap more and the zone slack distance that the platform

moves without scanning becomes smaller or non-existent. In this scenario the platform faced more

obstacles in its alternative path. Therefore it needed to keep scanning at a higher rate until it reached a

path clear from obstacles after the fourth obstacle. The calculation of the desired speed for each zone

will be discussed in Section 5.1

3.2 Detected Distance Correction

The platform receives each scanning sensor signal while moving toward the target. By the time

the platform starts processing the scan signals and planning its move, the platform would have moved

further from the points where it collected the signals. This means that the distances recorded at the

data collection point are not the same when the platform arrives at the planning point. The difference

between the actual distances from its surroundings and the recorded distances from scan signals is

dependent on the displacement of the platform since it collected the signals, which in turn is dependent

on the platform’s velocity and path. This error in the distances and angles can be corrected using

standard coordinate transformations. Because the time between any two consecutive sensor readings

is usually short compared to the distance the platform has travelled, it is reasonable to assume that

the platform does not change its direction between any two consecutive sensor readings. From direct

coordinate transformations [5] we can derive Equations (4)—(8) to correct the scan distances

dB
ix = di · cos(βB

i ) (4)

dB
iy = di · sin(βB

i ) (5) dF
ix

dF
iy

 =

 cos(ψFB
i ) − sin(ψFB

i )

sin(ψFB
i ) cos(ψFB

i )

 ·
 dB

ix

dB
iy

+

 xBF
i

yBF
i

 (6)

dF
i =

√
dF

ix + dF
iy (7)

βF
i = tan 2(dF

ix, d
F
iy) (8)

11



Figure 4. Sensor Signal Correction

whereLB
i = (xB

i , y
B
i , ψ

B
i ) is the point where the sonar signal was received,LF

i = (xF
i , y

F
i , ψ

F
i ) is the

planning point,dB
i is the distance to the detected object from pointLB

i , dF
i is the distance to the detected

object from the planning pointLF
i , dx, dy are the distance components on thex, y axis respectively,

βB
i , β

F
i are the angles between the vectorsdB

i , d
F
i and the platform axis of orientation respectively,

xBF
i = xB

i − xF
i , y

BF
i = yB

i − yF
i andψFB

i = ψF
i −ψB

i is the final orientation angle of the platform as

shown in Figure 4.

4 Deriving Feasible Processing Windows

To derive a feasible processing window, two conditions must hold. First, the processing window

interval must meet the sensor parameter requirements. Second, a sufficient scheduling condition for the

scheduling algorithm used must be satisfied. We conjecture that any mobile cyber-physical platform

will have a set of tasksT = {Tw ∪ Thp ∪ Tlp}, whereTw is the set of tasks associated with zone

processing,Thp is a (possibly empty) set of periodic tasks with higher priority thanTw andTlp is a

(possibly empty) set of periodic tasks with lower priority thanTw. In Section 4.1 we present a general

form of the equation used to compute a lower bound for a feasible processing window length. In Section

4.2 we derive bounds on the zone processing window for fixed priority scheduling and combine both

bounds.

12



4.1 Sensor Impact on Processing Window Length

The zone processing window of the platform is dependent on sensor parameters representing delays

between sensor readings/invocations, data arrival time, number of sensors, sensor range and sensitivity,

and sensor tasks’ execution times. Equation (9) is a general equation for deriving the minimum fea-

sible bound on the zone processing window lengthw. The feasibility functiong is a function that is

dependent on the sensor(s) and the associated task(s).n is the number of task inTw, E is the set of

execution times for the tasks inTw and∆ is the set of delays that might exist between the execution of

sensor tasks inTw.

w ≥ g(n,E,∆) (9)

For sensors with adjustable ranges,∆ can be further divided into a set of independent delays,∆I, that

must exist regardless of any other sensor parameters and a set of delays,∆R, that depend on sensor

ranges limitations. Since∆R is dependent on the sensor ranges, we can insert the set of effective ranges

of platform sensors,R, directly as a parameter in the functiong.

w ≥ g(n,E,∆I, R) (10)

4.2 Fixed Priority Bound Derivation

In this section we derive a lower bound on the periods for the tasks running on the processer based

on fixed priority scheduling and time demand analysis [1]. In this work we assume that the tasks in

Thp are independent and preemptive with deadlines equal to periods. Throughout the remainder of this

paper we will assume, without loss of generality, that the tasks in task setT are ordered according to

their priority such that ifi < j theni has a higher priority thanj.

For any task inThp, the lower bound on the period can be calculated from Equation (11), wherepj

is the period andej is the worst case execution time of taskTj.

pj ≥ ej +

j−1∑
i=1

⌈
pj

pi

⌉
· ei (11)

13



Becausepj

pi
≤
⌈

pj

pi

⌉
≤ pj

pi
+ 1 we can substitutepj

pi
+ 1 for

⌈
pj

pi

⌉
to get a looser more pessimistic bound

such that

pj ≥ ej +

j−1∑
i=1

(
pj

pi

+ 1

)
· ei

pj ≥ ej + pj

j−1∑
i=1

ei

pi

+

j−1∑
i=1

ei

pj

(
1−

j−1∑
i=1

ei

pi

)
≥

j∑
i=1

ei

pj ≥
∑j

i=1 ei

1−
∑j−1

i=1
ei

pi

(12)

Using Equation (12) we can calculate a lower bound for each task period inThp that results in a

schedulable task set.

For the task setTw, however, Equation (11) cannot be directly extended to derive a lower bound for

the processing windoww. Instead we must combine Equation (10) and Equation (11) to account for

compulsory delays between tasks inTw becuase certain types of sensors, such as sonar or ultrasonic

sensors, must have a minimum delay between sending any two signals due to signal interference or

crosstalk. Thus Equation (13) combines both bounds.

w ≥ g(n,E,∆I, R) +
∑

Tj∈Thp

⌈
g(n,E,∆I, R)

pj

⌉
· ej (13)

Equation (13) is a conservative overestimate of the lower bound onw because not every task inThp

will interfere with each task inTw every time it is released. In this section we computed sufficient

lower bounds for periods and processing windows such that the tasks inThp andTw can be guaranteed

to meet their deadlines. Due to space limitations, we have not addressed the schedulability of tasks in

Tlp, but this is also done using time demand analysis.

14



5 Environmental Impact on Speed and Sampling Rates

The platform depends on sensors to plan its path and to determine the presence of obstacles and

their distance. The maximum speed at which the platform can travel is related to the rate the environ-

ment signals can be scanned and processed. If the platform moves faster than the sensor signals can

be processed, then the motion will be unsafe because there might be an obstacle in the path that will

be undetected at that rate. In Section 5.1 we derive upper bounds on the platform’s speed through-

out a zone with ideal assumptions with regards to speed transition time, in Section 5.2 we relax the

ideal assumptions and derive approximation formulas for the speed transition time and in Section

5.3 we present an algorithm for adjusting the zone processing window to increase platform speed.

Figure 5. Maximal scanning with no obstacles

5.1 Zone Speed Choice

The speed of the platform for a zone is de-

pendent on the radius of the zone, the zone-

processing window, the speed of the platform

in the previous zone and the existence of obsta-

cles in the zone. We derive the calculation of the

upper bound on the desired speed for the zone,

vmaxi, in two distinct cases: an obstacle free en-

vironment and an environment in which obsta-

cles exist.

5.1.1 Obstacle Free Environment

We first calculate the upper bound on the zone

speed for the maximal sensor scanning scenario

(i.e., scanning as fast as possible). Figure 5

demonstrates this scenario. Initially the platform starts scanning its intended area of exploration at

pointB0 = (0, xB
0 , y

B
0 , ψ

B
0 ). Because it takes the platformw time units to finish collecting the sonar

15



data and planning the path, it is not safe for the platform to start moving untilt = w. Therefore the

first planning pointF0 will have the same position coordinates as the first data collection pointB0:

F0 = (w, xB
0 , y

B
0 , ψ

B
0 ). Beyond the first zone, planning points for the current zone and data collection

points for the next zone will have the same time and position,Bi+1 = Fi.

In each zone the platform can travel a maximum distance equal to the zone radiusDi before entering

another zone. The platform also must spend at leastw time units in the zone because that is the time

interval the platform takes for collecting sensor data and planning the path for zoneZi. Therefore if we

assume constant speed through zoneZi, the maximum speed the platform can travel safely through zone

Zi while being able to collect sensor data and plan for zoneZi+1 can be calculated from Equation (14).

vmax =
Di

wi

(14)

The zone radiusDi can be calculated from Equation (1). If we assume the platform is traveling at

the maximum possible speedvmax then the distance the platform moves between pointsBi andFi is

equal tovmax · w. Therefore the zone radius can be calculated from Equation (15).

Di = r − vmax · w − SM (15)

Substituting Equation (15) in Equation (14) and solving forvmax we get

vmax =
r − vmax · w − SM

w
(16)

=
r − SM

w
− vmax =

r − SM

2 · w
(17)

If at any plan pointFi we change the zone processing windowwi or change the sensor detection

rangeri, then Equation (17) becomes

vmaxi =
ri − vi−1 · wi − SM

wi+1

, (18)

wherevmaxi+1 is the next maximum speed,wi+1 is the next processing window,wi is the current sensor

16



detection distance,vi andwi are the current speed and processing window respectively.

If the platform does not employ maximal scanning then the values ofSslack andtslack can be calcu-

lated from Equation (19) and Equation (20) respectively. It is clear from Figure 2(b) that the zone slack

distance is less than the zone radius by a distance ofvi · wi+1 because the platform must scan for the

next zoneZi+1 before it enters the zone (i.e., while the platform is still traveling in zoneZi) in order to

achieve continuous motion.

Sslack = r − (vi · wi+1 + vi−1 · wi + SM) (19)

tslack =
Sslack

vi

(20)

5.1.2 Obstacles Exist

If an obstacle exits then the distance the platform can safely move is not the zone radius, but rather the

distance between the obstacle and the platform,Xobs. Therefore ifXobs < Di the platform speed can

be calculated from

vmaxi =
Xobs

wi

. (21)

If the platform is not using maximal scanning then the platform might switch to maximal scanning

if it encounters an obstacle because it needs to maintain a higher speed or scan in a different direction

in order to explore alternative paths, as shown in Figure 3. More analysis of this case was provided in

our earlier work in [19].

5.2 Speed Transition Time

In the previous section we considered the ideal case in which the robot can switch between two

speeds instantly. In a real system the speed transition time is not zero and the speed function takes the

form of a decaying or a rising exponential function instead of a step function. Therefore if we have

an obstacle, the final maximum speed would not be given by Equation (21), rather the final maximum

speed will be given by Equation (22), wheref(vmaxi, vi−1, wi, Xobs) is a formula that depends on the

17



speed curve during the transition time interval.

f(vmaxi, vi−1, wi, Xobs) = 0 (22)

vmaxi can be calculated by solving Equation (22) forvmaxi. In Section 5.2.1 we derive an exponential

approximation formula for the functionf . In Section 5.2.1 we derive an exponential linear formula for

the functionf , and in Section 5.2.3 we compare both models.

5.2.1 Exponential Approximation Model

A good controller design aims at eliminating oscillatory components and overshoot in the response

signal and achieving a smooth rising exponential response until steady state is reached (or a smooth

decaying exponential from a steady state). Figure 6 shows the response of a well designed controller

eliminating overshoot and oscillation response. We will use this response to calculate speed transition

time. Figure 6 describes a function with the conditionsv(0) = 0, V (∞) = V2, since we know that the

function is exponential, the response function can be modelled by Equation (23).

v(t) = V2 · (1− e−Q·t), Q > 0 (23)

If the initial speed was not zero, butV1, and the speed transition occurred at time instantτ , Equa-

tion (23) becomes Equation (24)

v(t) = V1 + V2 · (1− e−Q·(t−τ)), Q > 0 (24)

In the case of reducing speed, the response function has the conditionsv(−∞) = V 1, V (∞) = 0

and we wantv(0) ' V 1. Equation (25) models the response to these conditions.

v(t) = V1 · (1− A · eF ·t), F > 0, 0 < A < 1 (25)

18



Figure 6. Ideal response

If the speed transition occurs at timeτ , then Equation (25) becomes

v(t) = V1 · (1− A · eF ·(t−τ)), F > 0, 0 < A < 1 (26)

ParametersA,F are determined by fitting the speed controller response data to Equation (26).

The speed transition time introduces more complexity in finding the final desired speed of the plat-

form. The initial platform speedV1, distance to the obstacleXobs and processing window lengthw are

known, while both final speedV2 and the instant the speed reachedV2 are both unknown. The distance

to the obstacleXobs is given by Equation (27), whereτ is the instant the platform reduces its speed.

Because the platform will only change its speed at a planning point,τ will be at the beginning of a

processing window.

Xobs =

τ+w∫
τ

v(t)dt. (27)

Let ts denote the instant the speed reaches its final valueV2. Since the platform reduces its speed

when it faces an obstacle, we can use Equation (26) forv(t) during the transition time interval[τ, τ+ts).

19



For the rest of the processing window,[τ + ts, τ + w), v(t) is equal to the final platform speedV2.

Substituting forv(t) and the integration limits in Equation (27), we get Equation (28).

Xobs =

τ+ts∫
τ

V1 · (1− AeF (t−τ))dt+

τ+w∫
τ+ts

V2dt

= V1 ·
(
ts −

A · (1− eF ·ts)

F

)
+ V2 · (w − ts) (28)

At the time instantts + τ the speed reachesV2. From Equation (25) we get

V2 = V1 · (1− AeF ·(ts−τ)) ⇒ ts =
1

F
· ln
(

1

A

(
1− V2

V1

))
+ τ (29)

τ is a shifting factor. Therefore we can substituteτ = 0 in Equation (29) to get Equation (30).

ts =
1

F
· ln
(

1

A

(
1− V2

V1

))
(30)

Substitutingts from Equation (30) in Equation (28) we get Equation (31).

Xobs =
1

F
·
(

(V1 − V2) · ln

(
1

A

(
1− V2

V1

))
+ V2 · (1 + wF ) + V1 · (1 + A)

)
(31)

Equation (31) can be solved forV2 using a numerical iterative method only.

5.2.2 Linear Approximation Model

While the exponential model discussed in Section 5.2.1 provides a good approximation for the speed

transition curve, the resulting equation can only be solved by iterative numerical methods, which are too

computationally expensive for a real-time system. A linear approximation of the speed function during

the transition time generates a deterministic equation that can be solved to find the value of the desired

speed. Figure 7 shows the linear approximation for the speed which is computed using Equation (32).

20



Figure 7. Exponential and linear approximation of transition time

v(t, V1, V2, τ) =



(
V2 −V1

ts

)
· t −τ ·

(
V2−V1

ts

)
+ V1

V1 6= V2, V1, V2 > 0

V1 V2 = V1, V1, V2 > 0

(32)

Substituting Equation (32) in Equation (27) we get Equation (33).

Xobs =

τ+ts∫
τ

(
V2 − V1

ts

)
· t − τ ·

(
V2 − V1

ts

)
+ V1 dt+

τ+w∫
τ+ts

V2 dt. (33)

The transition instantτ adds only a shift to the equation and does not change the outcome. Therefore

we can substituteτ = 0 in Equation (33) to get Equation (34)

Xobs =

ts∫
0

(
V2 − V1

ts

)
+ V1 dt+

w∫
ts

V2 dt

=
(V2 − V1)ts

2
+ V1ts + V2(w − ts) (34)

21



Figure 8. Transition time model comparison

If we fit the platform controller response data into a linear equation of the formx = mt + b we can

find the slope valuem. From Equation (32),m = (V2 − V1)/tsw =⇒ tsw = (V2 − V1)/m, Substituting

the value ofts in Equation (34) we get

Xobs =
−V 2

2

2m
+ V2

(
w +

V1

m

)
− V 2

1

2m
(35)

Solving Equation (35) forV2 we get Equation (36)

V2 = V1 + wm±
√

2V1wm+ w2m2 − 2Xobsm (36)

Only one solution of Equation (36) will be in our desired range of0 ≤ V2 ≤ V1.

22



5.2.3 Linear vs Exponential

Figure 8 shows a comparison between the desired speed value with an initial speed of 50 cm/s using the

exponential model, linear model, and zero transition time (ideal) to model the speed transition function.

The solutions for the exponential model equation were obtained iteratively for each point on the graph

using Newton’s method in Matlab.

The values in Figure 8 are calculated for a corrected obstacle distance range of one meter(The cor-

rected obstacle distance = obstacle distance -safe stopping distance.) Actual speed data from the same

platform that we used for our experimental evaluations1 was fit to Equation (26) and Equation (32)

using the method of least squares in Matlab.

We can see from Figure 8 that the linear model provides a good approximation for transition time. We

have used the linear approximation model in our experiments because of its deterministic calculation

time. While it is possible to obtain offline solutions for the exponential model for a set of initial speeds

and a range of obstacle distances with a fixed processing window, it would be difficult if the processing

window length was variable because we have to generate a table for each range ofw. Considering that

the difference between the exponential and linear models is within an acceptable range, it will be more

feasible to use the linear model instead of a lookup table for the exponential model.

5.3 Processing Window Adjustment

The speed of the platform and the duration of the processing window are interdependent. In the

previous section, we assumed a fixed processing window and computed limits on the speed at which

the platform can move through the environment. In this section, we show that an alternative is to adjust

the processing window in an attempt to travel as fast as possible around an obstacle.

The processing window is adjusted according to the algorithm shown in Figure 9, but only at planning

points. The algorithm starts by setting the sensor detection ranger to the maximum sensor detection

range. The upper bound on the platform speedvmax is set as if no obstacles exist in the platform’s path

(as explained in Section 5.1). The initial value is set to its desired speed as long as that value is less

than or equal tovmax .

1Please refer to Section 7 for more details about the platform used in the experiments.

23



Figure 9. Speed-processing window adjustment algorithm

At the end of the zone processing window, there will be two cases: either there is an obstacle in the

path or the path is obstacle free.

Case 1: An obstacle exists.Even though the existence of an obstacle will probably cause the value

of vmax to drop, the desired speed might still be less than or equal tovmax . If so, set the speed of the

platform to the desired speed.

However, if the desired speed is greater thanvmax and there is a possibility to increase the speed by

reducing the sensor detection distance (which in turn reduces sensor delays and thereforew), then a

new value is calculated forw. Next a new speed is calculated for the platform, and the zone slack time,

tslack, is set to zero.

Case 2: No obstacle exists.If no obstacle exists and the current speed is equal to the desired

speed, there is no need to make a change. The algorithm simply follows the processing described in the

previous sections to computevmax andw.

If the current speed is less than the desired speed, we have to try to maximize the platform’s speed

by choosing the optimal value for the detection ranger that would result in the maximum increase in

24



Task e (ms) p (ms) Priority
Dead Reckoning 5 17 1

PID 1 50 2
Table 1. Task parameters

Without processing window adjust-
ment

With processing window adjustment

ttotal (s) 96.48 73.17
v̄ (cm/s) 38.20 48.02
v̄/vdesired (%) 76.40% 96.04%

Table 2. Simulation results summary

speed. However, if the calculated value forr is not within a valid range, we use the lowest sensor range

rmin that will give the maximum possible speed (less than or equal to the desired speed). Each timer

is adjusted, zone slack timetslack must be calculated based on the new values forr andw.

6 Simulation

Before implementing the algorithm on a real mobile robotic platform we have constructed a simu-

lation to evaluate the performance speed adjustment algorithm using Matlab. The simulation assumes

ideal speed transition conditions (i.e., no speed transition time when switching between speeds). The

simulation uses the parameters of an autonomous mobile robot that was used as the lead robot in the

Robotic Safety Marker project [8, 21, 19]. The robot has 24 sonar sensors arranged in a ring. Using

these sensors the robot builds a map of its environment and determines the distance to any obstacles in

its path. Each sonar sensor is associated with two tasks with different delays between their execution: a

sonar send task that sends the sonar signal from the sensor and a sonar receive task that checks the sen-

sor for the received signal and calculates the distance to the objects in the sensor direction. In addition,

two more tasks are associated with the zone processing window: 1) a map task generates a map for the

platform’s surroundings based on the sensor data, 2) a plan task that processes the generated map and

plans the platforms path and speed for the next zone. Deriving lower bounds on the periods for these

tasks was discussed in [19], but without the processing window abstraction. Moreover, due to differ-

ences in hardware between the current platform and the robot used in [19], the feasibility functiong

for the sonar sensors is slightly different from the feasibility function presented in [19]. For the current

25



sonar senor set, the feasibility functiong is given by Equation (37)

g(n,E,∆I, R) = n · (esend + erecv + τ +
2 · r
340

) + emap + eplan (37)

n is the number of sonar sensors used;τ is the delay used to eliminate crosstalk between a received

sonar signal and the next sonar send signal;esend is the execution time of a sonar send task;erecv is the

execution time of a sonar receive task;emap is the the map execution time of the map task, andeplan is

the execution time of the plan task. The set of higher priority tasks,Thp, are given in Table 1. These

tasks are aPID task that controls the robot motors and aDead Reckoningtask that calculates the robot’s

coordinates based on dead reckoning techniques.

The simulation environment is event based and simulates of 30m x 22.5m space where the robot

moves. The space matrix is projected onto a visualization image where each pixel represents 1 cm x 1

cm of space.

Because one of the goals of this research is the automatic adjustment of speed and processing win-

dows for each zone, no obstacle avoidance algorithm was used. Instead the robot follows a path that

maintains a safe distance of 60 cm from obstacles. This scenario demonstrates how the existence of

obstacles in the platform’s path affects the zone processing window and speed.

The desired speed for the robot in this simulation is 50 cm/s. The robot is using 10 sonar sensors out

of its 24 sensors to build its environment map (a smaller number of sonar sensors is used in order to

reduce crosstalk effects).

Figures 10(a) and 10(b) show the simulation of the robot moving along the path showing both zones

and actual sonar range on the robot’s path. Figure 10(a) shows the simulation of the robot traversing

the path without using the speed adjustment, while Figure 10(b) shows the simulation of the robot

traversing the path using the processing window adjustment. The figures show a schematic of the robot

at each data collection pointBi while the zones start and finish at the planning pointsFi. The figures

also show robot velocity and processing window plotted against the x-coordinate of the path.

We can see in Figure 10(b) that the robot adjusts its sonar range as it gets closer to the obstacle in

order to adjust its processing window and maximize its speed. The simulation also shows that the robot

26



(a) Test with no processing window adjustments (b) Test with processing window adjustments

Figure 10. Simulation results

switches its scanning rate to maximal scanning as it faces an obstacle.

Table 2 shows a comparison between both cases in terms of total timettotal needed to traverse the

path, average speed̄v, and the ratio of average speed to the desired speedv̄/vdesired. The result shows

that the processing window adjustment algorithm improved the average speed for the robot over the

whole path by about 20% relative to the desired speed.

7 Experimental Results

We also evaluated the processing window adjustment algorithm on the actual robot described in

Section 6. The test scenario is similar to the simulated scenario, but we have adopted a linear approxi-

mation of the speed transition function of Equation (22), described in detail in Section 5.2.2, to account

for the speed switching delay due to robot hardware.

Because one of the goals of this research is the automatic adjustment of speed and processing win-

dows for each zone, the platform was steered manually through its path, moving closer to objects than

27



Figure 11. Test Progress Pictures
Without processing window adjustment With processing window adjustment

ttotal (s) 85.20 63.53
v̄ (cm/s) 29.74 36.09
vactual (cm/s) 29.97 36.85
v̄/vdesired (%) 59.48% 72.18%
vactual/vdesired(%) 59.97% 73.7%

Table 3. Experimental results summary

the path planning algorithm would.

Figure 11 shows a series of pictures taken during the actual test demonstrating the progress of the

robot in its path to the target. Figure 12(a) shows the actual path the platform took to its target point

with speed adjustments, but no processing window adjustment. Figure 12(b) shows the platform’s path

to its target, which is approximately the same as the path in Figure 12(a), but this time we allowed

both the speed and the processing window to be adjusted, using the algorithm in Figure 9. Figures

12(a) and 12(b) also show the zones on the robot’s path. Figures 12(c) and 12(d) are the same as

Figures 12(a) and 12(b) respectively but they show the both zones and actual sonar range on the robot’s

path. We can see from the figures that the platform reduces its speed as it encounters an obstacle in

order to meet its processing deadlines. Figure 12(b) demonstrates the improvement gained from the

processing window adjustment algorithm in terms of higher platform speed in the obstacle region; the

28



(a) Zone demonstration on robot path no processing
window adjustments

(b) Zone demonstration on robot path with process-
ing window adjustments

(c) Zone and sonar range demonstration on robot
path no processing window adjustments

(d) Zone and sonar range demonstration on robot
path with processing window adjustments

Figure 12. Experimental test results

speed in these intervals when the platform detects a nearby obstacle is higher than their counterpart in

29



Figure 12(a).2

We can see in Figure 12(a) that the zones are all the same size because there is no processing window

adjustment. We note that when the robot gets closer to the obstacles, the robot scans at faster a rate.

Thus the zone slack distance and time become either shorter or equal to zero. In Figure 12(b) we see

that zones become smaller as the robot gets closer to the obstacle since the robot reduces the sonar

range and processing window in order to increase the robot’s speed. As the robot gets closer to the end

of its path, the zones go back to their initial size as the path clears from obstacles and the robot is able

to adjust the processing window back to its initial size while maintaining the desired speed.

Table 3 shows a comparison between both cases in terms of total timettotal needed to traverse the

path, average calculated speedv̄ (calculated by processing window adjustment), average actual speed

vactual (measured from the motors), ratio of average calculated speed to the desired speedv̄/vdesired and

the ratio of the average actual speed to the desired speedvactual/vdesired. These results show that the

speed adjustment algorithm provided about 14% improvement relative to the desired speed. The speed

improvement in the experiment was less than than the improvement in the simulation because we have

accounted for the speed transition delay by adopting a linear approximation to Equation (22).

8. Conclusion

We presented a method for integrating the sensor and speed requirements of a mobile robotic plat-

form with real-time fixed priority scheduling. To do this, new abstractions called zones and processing

windows were created. Then a method of analyzing the processing requirements for each zone and

ensuring the schedulability of real-time tasks on the platform was presented. We have shown that by

adjusting sensor sampling rates the performance of the mobile robotic system can be improved in terms

of maintaining a desired speed while allowing more tasks to be executed on the platform processor.

References

[1] N. Audsley, A. Burns, M. Richardson, and K. T. A. Wellings. Applying new scheduling theory to static
priority pre-emptive scheduling.Software Engineering Journal, 8(5):284–292, September 1993.

2Note that the coordinates where the platform detects the obstacle and reduces its speed are not exactly the same because
the platform paths are approximately the same but not exactly the same.

30



[2] F. Baccelli, B. Gaujal, and D. Simon. Analysis of preeptive periodic real-time systems using the (max,plus)
algebra with applications in robotics.IEEE Transactions On Control Systems Technology, 10(3):368–380,
May 2002.

[3] G. Beccari, S. Caselli, M. Reggiani, and F. Zanichelli. Rate modulation of soft real-time tasks in autonomous
robot control systems. InProceedings of the 11th Euromicro Conference on Real-Time Systems ECRTS,
pages 153–158, York, U.K., June 1999.

[4] J. Borenstein and Y. Koren. Real-time obstacle avoidance for fact mobile robots.IEEE Transactions on
Systems, Man and Cybernetics, 19(6):1179–1187, September-October 1989.

[5] J. J. Craig.Introduction To Robotics: Mechnics and Control. Prentice Hall, third edition edition, 2005.

[6] A. Das, R. Fierro, V. Kumar, B. Southall, J. Spletzer, and C. Taylor. A real-time vision-based control of
a nonholonomic mobile robot. InProceedings of 2001 IEEE International Conference on Robotics and
Automation, pages 1714–1719, 2001.

[7] M. Dertouzos. Control robotics: The procedural control of physical processes. InProceedings of the IFIP
Congress, pages 807– 813, 1974.

[8] S. Farritor and M. Rentschier. Robotic highaway saftey marker. In C. Mellish, editor,ASME International
Mechanical Engineering Congress and Exposition, Montreal, May 2002.

[9] R. George and Y. Kanayama. A rate monotonic schedular for the real-time control of autonomous robots.
In Proceedings of the 1996 IEEE International Confernce on Robotics and Automation, Minneapolis, Min-
nesota, April 1996.

[10] H. Hassan, J. Simo, and A. Crespo. Enhancing the flexibility and the quality of service of autonomous mo-
bile robotic applications. InProceedings of the 14th Euromicro Conference on Real-Time Systems ECRTS,
2002.

[11] J. Huang, S. Farritor, A. Qadi, and S. Goddard. Localization and follow-the-leader control of a hetero-
geneous group of mobile robots, ieee/asme transactions on mechatronics.IEEE/ASME Transactions on
Mechatronics, 11(2):205215, March 2006.

[12] R. Kumar, B. Kimiaghalam, and A. Homaifar. Reactive real time behavior for mobile robots in unknown
environments. InProceedings of IEEE International Symposium on Industrial Electronics, pages 693–697,
2004.

[13] H. Li, J. Sweeney, K. Ramamritham, R. Grupen, and P. Shenoy. Real time support for mobile robotics. In
Proceedings of the 9th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS),
pages 10–18, May 2003.

[14] S. Lin, G. Manimaran, and B. L. Steward. Feedback-based real-time scheduling in autonomous vehicle
systems. InProceedings of 10th IEEE Real-Time and Embedded Technology and Applications Symposium,
pages 316 – 323, Tornto, Canada, May 2004.

[15] C. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a hard-real-time environment.
Journal of the ACM, 20(1):46–61, 1973.

[16] T. A. N. Miyata, J. Ota and H. Asama. Cooperative transport by multiple mobile robots in unknown static
environments associated with real-time task assignment.IEEE Transactions On Robotics and Automation,
18(5):769–780, October 2002.

31



[17] M. Piaggio, A. Sgorbissa, and R. Zaccaria. Preemptive versus non-preemptive real time scheduling in
intelligent mobile robotics.Journal of Experimental and Theoretical Artificial Intelligence, 12(2):235–245,
September-October 2000.

[18] D. Prasad and A. Burns. A value-based scheduling approach for real-time autonomous vehicle control.
Robotica, 18:273–279, 2000.

[19] A. Qadi, S. Goddard, J. Huang, and S. Farritor. A performance and schedulability analysis of an autonomous
mobile robot. InProceedings of The 17th Euromicro Conference on Real-Time Systems, pages 239– 248,
Miami, Fl, July 2005.

[20] X. Shen. Control of robotic highway saftey markers. Master’s thesis, Mechanical Engineering, University
Of Nebraska-Lincoln, 2003.

[21] J. Shi, S. Goddard, A. Lal, and S.Farritor. A real-time model for the robotic highway safety marker system.
In Proceedings of the 10th IEEE Real-Time and Embedded Technology and Application Symposium, pages
331–440, Toronto, CA, May 2004.

[22] M. Wargui, M. Tadjine, and A. Rachid. A scheduling approach for decentralized mobile robot control.
In Proceedings of the 1997 IEEE/RSJ International Conference on system Intelligent Robots and Systems,
pages 1138–1143, September 1997.

[23] M. Zaera., M. Esteve, C. Palau, J. Guerri, F. Martineza, and P. de Cordoba. Real-time scheduling and
guidance of mobile robots on factory floors using monte carlo methods under windows nt. InProceedings
of 8th IEEE International Conference on Emerging Technologies and Factory Automation, pages 67–74,
2001.

32


