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Abstract

Dynamic voltage scaling (DVS) algorithms save energy by scaling down the processor frequency
when the processor is not fully loaded. Many algorithms have been proposed for periodic and aperi-
odic task models but none support the periodic and sporadic task models when the deadlines are not
equal to their periods. A DVS algorithm, called General Dynamic Voltage Scaling (GDVS), that can
be used with sporadic or periodic tasks in conjunction with the preemptive EDF scheduling algo-
rithm with no constraints on the deadlines is presented here. The algorithm is proven to guarantee
each task meets its deadline while saving the maximum amount of energy possible with processor
frequency scaling when tasks execute with their worst-case execution times. GDVS was implemented
in theµC/OS-II real-time operating system for embedded systems. Though theoretically optimal, the
actual power savings realized with GDVS depends on the type of the task set and the processor’s
DVS support. GDVS is tested and evaluated with both a real-time application and a simulated task
set. A difference exists between the theoretical power savings and the actual power savings which is
due to the limited number of frequency levels the Rabbit 2000 processor supports.

1 Introduction

Many embedded real-time systems consist of a battery operated microprocessor system with a

limited battery life. Some of these systems use rechargeable batteries (like cellular phones and

robots) while others use dry batteries. In both cases it is very important to maximize the battery

life. Dynamic Voltage Scaling (DVS) aims at reducing the power consumption of the system by
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operating the processor at a lower frequency and thus on a lower voltage.

In CMOS circuits the power consumed by a CMOS gate is proportional to the square of the

voltage applied to the circuit, as shown by Equation (1) whereCL is the gate load capacitance

(output capacitance),VDD is the supply voltage andf is the clock frequency [32]. The circuit delay

td is given by Equation (2) wherek is a constant depending on the output gate size and the output

capacitance andVT is the threshold voltage [32]. The clock frequency is inversely proportional to

the circuit delay; it is expressed usingtd and the logic depth of a critical path as in Equation (3)

whereLd is the depth of the critical path [32].

PCMOS = CLV 2
DDf (1)

td = k
VDD

(VDD − V T )2
(2)

f =
1

Ld · td (3)

It is clear form Equation (1) that reducing the supply voltage will reduce the power consumption.

However it also reduces the clock frequency, as shown by Equations (2) and (3), which slows down

the processor, meaning that jobs will be executing at a slower rate. Thus, the challenge in applying

DVS algorithms to real-time systems is to save maximum power while still meeting all temporal

requirements of the system.

In recent years significant research has been done in the area of DVS (e.g.,[2, 7, 8, 10, 12, 13, 16,

3, 18, 19, 21, 22, 25, 27, 28, 29, 30, 31, 33, 34]). These efforts have resulted in a number of DVS

algorithms supporting various task models for embedded and real-time systeys. Successful DVS

imprementations in commercial processors include Intel’s Xscale processor [9], Transmeta’s Crusoe

processor [5] and Rabbit Semiconductors’ Rabbit processor [26].

DVS algorithms in [2, 7, 8, 10, 13, 16, 3, 18, 21, 22, 27, 28, 29, 30, 34] support variations of the

Liu and Layland periodic task model [17] under RM scheduling or EDF scheduling. Algorithms pre-

sented in [18, 19, 25] considered task models that also support aperiodic requests with soft deadlines

or non-periodic tasks with hard deadlines in which job release times were known a priori.
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To date, however, no DVS algorithms support the periodic model when the deadlines are not

equal to the periods or the canonical sporadic task model defined by Mok [20] in which tasks have

a minimal inter-execution time rather than a fixed period.

Each task in a periodic task setT = {T1, T2, . . . , Tn} has three associated parameters,p, e,andd:

p is the period;

e is the worst-case execution time of the job;

d is the relative deadline for the job.

Each task in a sporadic task setT = {T1, T2, . . . , Tn} also has three associated parameters,p, e,

andd:

p is the minimum separation period between the release of two consecutive jobs of a task;

e is the worst-case execution time of the job;

d is the relative deadline for the job.

In this work, a DVS algorithm called General Dynamic Voltage Scaling (GDVS) algorithm is

presented and evaluated. GDVS supports periodic and sporadic task models executed under EDF

scheduling with no constraints in deadlines. The remainder of this paper is organized as follows.

Section 2 describes related work. Section 3 presents our DVS algorithm. Section 4 proves the opti-

mality of the algorithm in terms schedulability and theoretical power savings. Section 5 presents the

implementation and evaluation of the algorithm in a stand-alone environment and in an embedded

real-time system. We conclude with a discussion of results in Section 6.

2 Related Work

The algorithms in [2, 21, 28, 29] assume the periodic task model and rely on the principles of intra-

task DVS. That is, they adjust the processor voltage level, and hence the processor speed, based on

the execution path a task takes and commonly rely on compiler support rather than operating system

support to conserve power.

The algorithms in [7, 8, 10, 12, 13, 16, 3, 22, 25, 29, 30, 34] also assume the periodic task model

with deadlines equal to periods, but rely on an alternative approach to intra-task DVS, called inter-
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task DVS. In general, inter-task DVS algorithms determine the processor voltage on a task-by-task

basis. That is, they adjust the supply voltage at a task level such that idle time is removed from the

schedule while guaranteeing that all tasks meet their respective deadlines.

The approach used in this work falls into the category of inter-task DVS. Of the published inter-

task DVS work, the algorithm by Aydin et al. (presented as Proposition 3) in [1] and the Static

Voltage Scaling algorithm by Pillai and Shin [22] are the most closely related to our DVS approach.

The algorithms are essentially the same, albeit with very different presentations, and appear to be

simultaneously discovered. For simplicity, we refer to this algorithm as the Static Voltage Scaling

algorithm—the name provided by Pillai and Shin.

The Static Voltage Scaling algorithm is an off-line algorithm that scales the processor voltage by

a factor equal toα whereα is the minimum utilization required for the task to remain schedulable

under EDF or RM scheduling. This technique is also used in our approach to remove deterministic

idle time from the schedule, as computed using worst-case execution times (WCET) for each task,

but in a slightly different way.

The other DVS algorithms in [1] first use Static Voltage Scaling to set the base processor frequency

and then make additional on-line reductions in processor frequency (voltage) by (i) adapting to the

actual execution times and (ii) speculating on the early completion of future jobs. The second on-

line algorithm in [22] also conserves energy by first using Static Voltage Scaling to set the base

processor frequency and then further reduces the voltage level when a job executes for less than its

WCET. The third on-line algorithm in [22] saves additional energy by deferring task execution as

much as possible. Our algorithm would give the same result as the Static Voltage Scaling algorithm

if all the tasks execute periodically with deadlines equal to periods.

The algorithm presented by Shin and Choi in [29, 30] also sets the initial voltage level using

Static Voltage Scaling. They then lower the voltage level further whenever a single task is eligible

for execution. Lee et al. [3] developed their DVS algorithms using only two voltage levels and

distributing the tasks into two sets, each corresponding to one of the voltage levels:High andLow.

Their work was based on the results of Ishihara and Yasuura [10] who formulated the processor
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energy optimization problem as a discrete optimization problem that could be solved using linear

integer programming techniques.

Kawaguchi et al. [12] presented an approach to schedule a periodic task set by means of task

slicing and queues for fixed priority preemptive scheduling, which mainly makes use of the fact that

tasks often do not execute with their WCET.

Hong et al. [7, 8] proposed a synthesis technique for variable voltage core based systems contain-

ing a set of independent, asynchronous periodic tasks with arbitrary start times (phases) that were

scheduled with non-preemptive fixed priority scheduling. Zhang and Chanson present three algo-

rithms in [34] that apply DVS to a periodic task model with non-preemptable sections. This work

assumes all tasks are independent and fully preemptive.

The algorithms in [18, 19, 25] consider variations of the periodic task model that support aperiodic

requests with soft deadlines or non-periodic tasks with hard deadlines in which job release times are

known a priori. Luo and Jha [18] presented an algorithm to schedule periodic tasks, soft aperiodic

tasks and hard aperiodic tasks with precedence constraints using task graphs, cyclic scheduling and

slack steeling.

This is the first work to support DVS for both periodic and sporadic tasks with no constraints on

deadlines

3 A General DVS Algorithm

The General Dynamic Voltage Scaling (GDVS) algorithm presented here is classified as an inter-

task DVS algorithm. That is, it adjusts the processor voltage on a job-by-job basis, where a job

represents the release of a task. Recall from Equations (2) and (3) that the processor frequency is

proportional to the voltage level. As with most DVS algorithms, GDVS is defined in terms of pro-

cessor frequency, rather than voltage levels, since the relationship between the processor frequency

and task execution times can be expressed directly.

The GDVS algoritm is similar to our DVVST algorithm presented in [23] in that it maintains a

frequency-scaling factor,α, that represents the percent of the maximum processor frequency. Rather
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than using the Static Voltage Scaling algorithm of [22] to set the initial frequency level, GDVS

starts with a minimum possible frequency-scaling factor, which can be theoretically zero, and scales

the processor frequency up and down depending when jobs are released. The scaling factorα is

increased by an amount ofei/min(pi, di) when taskTi is first released. Letri be the last release

time of taskTi. GDVS reducesα at timeri +min(pi, di) by the amount ofei/min(pi, di) if the next

job if taskTi was not yet released. When taskTi later releases the job,α is increased by the same

amount. For periodic tasks withdi = pi, α does not change after the first release since the next job

is released at the deadline of the current job. The algorithm is explained in detail after we introduce

a few definitions.

Definition 1: The frequency-scaling factor,α, is defined as the ratio between the new processor

frequency and the maximum processor frequency:

α =
fnew

fmax

(4)

Corollary 1: α ≤ 1.

Proof: The maximum value that we can scale the frequency to isfmax. Therefore

α ≤ αmax =
fmax

fmax

= 1.

Definition 2: The idle-state scaling factor,αidle, is the minimum scaling factor possible that puts

the processor in a sleep mode when there is no job to execute.

Theoreticallyαidle = 0, but in many systemsαidle must be greater than zero to support platform

requirements, or to interact with external devices that trigger the release of a sporadic task. In this

section it is assumed thatαidle = 0. This assumption is relaxed in the next section when we describe

the implementation of the algorithm on a real system.

In [23] a task set called TD is defined as the task set holding all the tasks that did not release a job

at their minimum separation period. The definition of TD is modified here to fit the general case of

having deadlines not equal to periods for periodic or sporadic tasks.
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Definition 3: TD, is a subset of the task setT = {T1, T2, . . . , Tn} where for every task in TD the

scaling factorα has been reduced by an amount equal toei

min(di,pi)
.

The GDVS algorithm is shown in Figure 1. Initially,TD = T and the processor frequency is

set toαidle. When a taskTi releases a job, the algorithm immediately increases the scaling factor

α by an amount equal to ei

min(di,pi)
and removes taskTi from the setTD. If the deadline of task

is Ti is greater or equal to the period andTi does not release a job at the end of its minimum

separation periodpi the algorithm reduces the scaling factorα by an amount equal to ei

min(di,pi)
and

taskTi is added to the setTD. If the deadline is less than the period, then the algorithm always

reduces the scaling factor by ei

min(di,pi)
at ri + di whereri is the latest job release time anddi is

the deadline of the job. If the algorithm detects that no job is currently executing, then it setsα to

the minimum possible valueαidle,or in other words, it sets the processor to the idle or sleep mode.

GDVS( ):
setα = αidle andTD = T // set initial conditions
while(true){

sleep until (∃ Ti : (Ti releases a job andTi ∈TD) or
(Ti /∈TD and currenttime≥ ri + pi))

or (no task is executing)
if Ti released a job andTi ∈TD then

// scale up the processor frequency
setα = α + ei

min(di,pi)
andTD = TD - {Ti}

else ifTi /∈TD and currenttime≥ ri + min(di, pi)

// scale down the processor frequency
setα = α− ei

min(di,pi)
andTD = TD + {Ti}

else // set processor to idle mode
setα = αidle andTD = T }

Figure 1. The GDVS Algorithm.

The value ofα may depend on

the previous value ofα and since

α changes with time, we useαn

to represent thenth change toα at

time t. Equation (5) shows how, if

at all,αn is changed at timet.

αn =





αidle , t = 0 or no task is executing

αn−1 − ei

min(di,pi)
, t ≥ ri + min(di, pi) = 0 andTi /∈ TD

αn−1 + ei

min(di,pi)
, Ti is released at time t andTi ∈ TD

no change otherwise

(5)

The following example illustrates how the GDVS algorithm scales the processor frequency (volt-

age) under EDF scheduling.
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Job ri,j Di,j

EDF with-
out GDVS

EDF with GDVS

Exec In-
terval α

% of Job
Executed

Execution
Interval α

% of Job
Executed

J1,1 0 4 [0,1) 1 100% [0,2.22) .45 100%
J2,1 0 5 [1,2) 1 100% [2.22,4.44) .45 100%
J1,2 4 8 [4,5) 1 100% [4.44,5) .45 24.3%

[5,6) .25 25%
[6,7.13) .45 50.7%

J2,2 6 11 [6,7) 1 100% [7.13,8) .45 39.33%
1 [8,9.21) .5 60.67%

J3,1 8 18 [8,10) 1 66.67% [9.21,10) .5 13.13%
[12,13) 1 33.33% [12.66,15) .75 58.34%

[15,16) .5 16.66%
[16,17) .3 10%
[17,17.08) .75 1.87%

J1,3 10 14 [10,11) 1 100% [10,11.33) .75 100%
J2,3 11 16 [11,12) 1 100% [11.33,12.66) .75 100%
J1,4 17 21 [17,18) 1 100% [17.08,18.77) .55 100%
J3,2 18 28 [18,21) 1 100% [18.77,24.22) .55 100%

Table 1. Job attributes of the example task set when executed under EDF with and without GDVS.

The columns labelled ri,j and Di,j represent the release time and absolute deadlines of job Ji,j .

The scaling factor α is set at the start of each execution interval.

Example 1: Let us consider the sporadic task setT1 = (1,4),T2 = (1,5),T3 = (3,10), note that in

this exampledi = pi therefore we represented the task set with tuple(e, p). The (un-scaled) system

utilization isU = 0.75. Let us consider scheduling the jobs that were released in the interval [0, 20)

under preemptive EDF while using the GDVS algorithm to scale the processor frequency (voltage).

Assume that the tasks released jobs as follows:T1 at times 0, 4, 10, and 17;T2 at times 0, 6, and

11; andT3 at times 8 and 18. Let jobJi,j represent thejth release of taskTi. Figure 2(a) illustrates

the execution of these jobs without GDVS, and Figure 2(b) illustrates the same jobs executed with

GDVS. The specific job attributes for both executions are listed in Table 1.

Notice that in Figure 2(a) the processor is idle in the intervals [2,4), [5,6), and [13,17) under

EDF scheduling without GDVS. For this set of release times, the GDVS algorithm resulted in an

execution in which the processor was never idle during the observed period shown in Figure 2(b).

However, no task missed its deadline—a fact proven in the next section for all feasible task sets.
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(a) Executing the example task set under EDF with-
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(b) Executing the example task set under EDF with
GDVS.

Figure 2. Executing the example task set under EDF with GDVS. The x-axis in each figure repre-

sents time. In (b), the y-axis represents the frequency scaling factor α, which is set at the start

of each execution interval.

4. Theoretical Validation

This section addresses the temporal correctness and energy savings possible when task sets are

executed under EDF with GDVS. Section 4.1 presents the temporal correctness and optimality of

EDF with GDVS. Section 4.2 quantifies the power savings possible when both the processor voltage

and frequency can be scaled, as well as when only the processor frequency can be scaled. It is shown

that GDVS is optimal with respect to power savings when only the frequency can be scaled and all

tasks execute with their WCET.

4.1 Temporal Correctness

A voltage (frequency) scaling scheduling algorithm for real-time systems is correct if it guaran-

tees that all jobs meet their deadlines under a specified scheduling algorithm. Scaling the processor

frequency results in new task execution times that are proportional to the frequency-scaling fac-

tor. Theorem 1 gives an equation to calculate the processor time capacity. Theorem 2, states that

schedulability under EDF is a necessary and sufficient feasibility condition for the task sets to be

schedulable under GDVS. Before presenting these theorems, however, new definitions are required.

Definition 4: Scaled-mode execution time,es, is the execution time needed to execute a job under

a frequency-scaling factor.
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Over any time interval where the scaling factorα is constant,es can be calculated by Equation (6)

whereesi is the scaled execution time of taskTi, ei is the (normal) worst-case execution time ofTi,

andαc is the current scaling factor.

esi =
ei

αc

(6)

Definition 5: Scaling Factor Change Interval,τSi, is the time interval between two consecutive

scaling factor changesαi andαi+1.

Before we introduce the Theorem that states the necessary and sufficient condition for schedula-

bility under GDVS we need to introduce a few definitions and theorems, some of them have already

been introduced in [24].

Definition 6: Job Inter-Release Time is the time interval between the release of any job of taskTi

and the release of the next job of the same task. That is the time interval between the release of job

Ji,j and the release of jobJi,j+1.

We use the notationδi,j to denote the inter-release time between jobsJi,j andJi,j+1 whereri,j is

the release time of jobJi,j:

δi,j = ri,j+1 − ri,j (7)

Corollary 1: δi,j ≥ pi

Proof: This corollary follows directly from the definition of the periodic and sporadic task in which

tasks must have a minimum separationp between the release of jobs. Therefore the job inter-release

time cannot be less thanpi.

Corollary 2: In any job inter-release time intervalδi,j = [ri,j, ri,j+1) the processor is scaled by

an amount equal to ei

min(di,pi)
for a time amount equal tomin(di, pi).

Proof: At the instantri,j either the algorithm scales up the frequency byei

min(di,pi)
if the frequency

had been scaled down for that task—otherwise frequency has already been scaled up for that task.

The algorithm does not scale down processor frequencyei

min(ei,pi)
until ri,j +min(di, pi). Thus, since

ri,j + min(di, pi) ≤ ri,j+1 − ri,j, the processor is scaled up by ei

min(di,pi)
for everyδi,j.
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Definition 7 The Task Scaling Factor Active Timetupi
is the total time for which the processor

frequency was scaled up by a factor equal toei

min(di,pi)
in any time interval

The processor time capacity definition is introduced in [24] to provide a way of quantifying the

available processor time when frequency is being scaled. The processor time capacity quantifies the

available processor time by looking at the system as if execution times are the same but time itself

is scaled. We state the definition here again to emphasize it since we will introduce more analysis

based on it.

Definition 8: Processor Time Capacityρ is the amount of scaled time available in any real time

interval when the processor is running in scaled mode.

Over any time interval [t1,t2) whereα is constant, the processor time capacityρ or the scaled time

is the product of the length of the interval times the scaling factor as given in Equation (8).

ρ = α(t2 − t1) (8)

Figure 3(a) shows processor time capacity as a function of time for a periodic task set with one

task, if there is no voltage scaling then the processor time capacity will be equal to the current time.

Therefore the processor time capacity function is a straight line with a slope of one. However if the

deadline for the task is equal to the period then the processor time capacity function is a straight line

with a slope equal toα = ei

pi
. If the deadline is less than the period then processor time capacity

function is straight line with a slope equal toα = ei

di
in the intervals between the job release time

and the deadline of that job. Then it becomes a constant in the time interval from the deadline to

the end of the period becauseα has been reduced byα = ei

di
and since this is the only task we have

α = 0. If we have more than one task then we can sum the processor time capacity resulting from

each task to get the total processor time capacity.

Figure 3(b) shows processor time capacity as a function of time for a sporadic task set with one

task, we can see the difference between the two cases where the deadlines are equal to the periods

or less than the periods. We can see that the capacity flattens out if a task has released a job at its

minimum separation period.
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If we have more than one task then we can sum the processor time capacity resulting from each

task to get the total processor time capacity.

p 2p 3p 4p 5p 6pd d d d d

normal (no scaling)
slope = 1

GDVS (d = p)
slope = α =  e/p

GDVS(d < p)
slope = α =e/d

t (time)

ρ (processor time
      capacity)

d

(a) Processor Time Capacity Verses Time For A Single
Periodic Task

p 2p 3p 4p 5p 6pd d d d d

GDVS (d = p)
slope = α =  e/p

GDVS(d < p)
slope = α =e/d

t (time)

ρ (processor time
      capacity)

p 2p 3p 4p 5p 6pd d d d d

Release
Pattern

d

(b) Processor Time Capacity Verses Time For A Single
Sporadic Task

Figure 3. Processor Time Capacity Verses Time

Lemma 1: The processor time capacityρTi
for a taskTi in any time intervalτ = [t0, td), where

t0 is an idle instant can be calculated from Equation (9)

ρTi
=





Ni · ei td − ri,Ni
≥ min(di, pi)(

(Ni − 1) +
(

(td−ri,Ni
)

min(di,pi)

))
· ei td − ri,Ni

< min(di, pi)
(9)

whereNi is the number of jobs released by TaskTi in [t0, td) andri,Ni
is the release time of the last

job in [t0, td).

Proof: In general for any taskTi in any time interval[t0, td)

ρTi
= PostiveChange inα× Time Interval For TheChange (10)

ρTi
= αi × tupi (11)

Because the algorithm only scales down the frequency at the end ofmin(di, pi), the task scaling

factor active timetupi is going to be always a multiple ofmin(di, pi) unless the interval betweentd

and the release time of the last job ofTi, ri,Ni
, is less thanmin(di, pi). This means that we have two

cases to consider. To make a clear distinction between the two cases let us divideτ into two parts
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tinteger = [t0, ri,Ni
) andtfraction = [ri,Ni

, td) as shown in Figure 4.τ can be represented as the sum

of these two parts.

r
i,j+1

tinteger tfraction

τ

r
i,Ni

t
d

t
0 r

i,Ni
+p

i

r
i,1 r

i,j

δ
i,j 

> p
i

r
i,Ni-1

. . . . . .

Figure 4. Division Of τ into tinteger and tfraction

Case 1:td − ri,Ni
≥ min(di, pi), in this case becausetd − ri,Ni

≥ min(di, pi) then the processor

has been scaled up by ei

min(di,pi)
for min(di, pi) in tfraction. Prior to ri,Ni

, Ni − 1 jobs have been

released byTi in tinteger, because the end oftintegr is ri,Ni
. BecauseNi − 1 jobs released intinteger

we will have(Ni − 1) job inter-release times. By Corollary 2 if we have(Ni − 1) job inter-release

times intinteger the frequency will be scaled up by ei

min(di,pi)
for (Ni − 1) ·min(di, pi) time units.

Now we can calculateρTi

ρTi
= αi · tupi = αi · (tupi in tinteger + tupi in tfraction)

=
ei

min(di, pi)
· ((Ni − 1) ·min(di, pi) + min(di, pi))

=
ei

min(di, pi)
· (Ni ·min(di, pi)) = Ni · ei (12)

Case 2:td − ri,Ni
< min(di, pi) in this case becausetd − ri,Ni

< min(di, pi) then the processor

has been scaled up by ei

min(di,pi)
for the whole interval oftd − ri,Ni

. Prior tori,Ni
the the frequency

will be scaled up by ei

min(di,pi)
for (Ni − 1) ·min(di, pi) for time units the same reason as Case 1.
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Now we can calculateρ

ρTi
= αi · tupi = αi · (tupi in tinteger + tupi in tfraction)

=
ei

min(di, pi)
· ((Ni − 1) ·min(di, pi) + (td − ri,Ni

))

=

(
(Ni − 1) +

(
(td − ri,Ni

)

min(di, pi)

))
· ei

(13)

Theorem 1: The processor time capacityρ for a task setT = {T1, T2..., Tn} in any time interval

τ = [t0, td), wheret0 is an idle instant can be calculated from Equation (14).

ρ =
∑

Ti∈S1

Ni · ei +
∑

Ti∈S2

(
(Ni − 1) +

(
(td − ri,Ni

)

min(di, pi)

))
· ei (14)

whereS1 ⊆ T, S2 ⊆ T and

∀Ti ∈ S1, td − ri,Ni
≥ min(di, pi)

∀Ti ∈ S2, td − ri,Ni
< min(di, pi)

Proof: Let us divideT into two task setsS1 andS2 whereT = S1 ∪ S2 and

∀Ti ∈ S1, td − ri,Ni
≥ min(di, pi)

∀Ti ∈ S2, td − ri,Ni
< min(di, pi)

Because the processor time capacity for a task is independent of any other task, the total processor

time capacity forT = {T1, T2..., Tn} is

ρT =
∑
Ti∈T

ρTi
(15)

For task setS1, ρS1 =
∑

Ti∈S1

ρTi
, by Lemma 1,ρ for Ti can be calculated from Case 1 of Equation

(9). Therefore

ρS1 =
∑

Ti∈S1

Ni · ei

For task setS2, ρS2 =
∑

Ti∈S2

ρTi
, by Lemma 1,ρ for Ti can be calculated from Case 2 of Equation

(9). Therefore

ρS2 =
∑

Ti∈S2

(
(Ni − 1) +

(
(td − ri,Ni

)

min(di, pi)

))
· ei

14



For the whole task setT we have

ρT = ρS1 + ρS2 because T = S1 ∪ S2

ρT =
∑

Ti∈S1

Ni · ei +
∑

Ti∈S2

(
(Ni − 1) +

(
(td − ri,Ni

)

min(di, pi)

))
· ei

Corollary 3: For a periodic task withdi ≥ pi the processor time capacity in any time interval

τ = [t0, td) wheret0 is an idle instant given by Equation (16).

ρ = (td − t0) ·
n∑

i=1

ei

pi

(16)

Proof: In this case the capacity will always be given by Case 2 of Equation (14) unlesstd− ri,Ni
=

pi becausetd− ri,Ni
is going to be always≤ min(di, pi) = pi. The reason for this is that the task set

is periodic, therefore we will not have any interval greater thanpi without the release of a job. The

division of τ into tinteger andtfraction is shown in Figure 5.tinteger andtfraction can be calculated

from Equations (17) and (18) respectively. Note that the capacity is zero in the interval[t0, ri,1)

because the processor was idle att0 and will remain idle untilri,1

tinteger =

⌊
(td − t0)

pi

⌋
· pi (17)

tfraction = td − ri,Ni
=

(
(td − t0)−

⌊
(td − t0)

pi

⌋
· pi

)
(18)

tinteger tfraction

τ

p
1

p
2

p
i

p
i+1

t
d

t
0

Figure 5. Division Of τ into tinteger and tfraction
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The number of released jobsNi by taskTi in [td, t0) is
⌈

td−t0
pi

⌉
. Therefore

Ni − 1 =

⌈
td − t0

pi

⌉
− 1 =

⌊
td − t0

pi

⌋
(19)

Substituting Equations (19) and (18) in Case 2 of Equation (14) we get

ρTi
=

(⌊
td − t0

pi

⌋
+

(
(td − t0)−

⌊
td − t0

pi

⌋
· pi

)
· 1

pi

)
· ei

ρTi
=

(⌊
td − t0

pi

⌋
+

(
td − t0

pi

−
⌊

td − t0
pi

⌋))
· ei =

td − t0
pi

· ei = (td − t0) · ei

pi

If td − ri,Ni
= pi then we need to substitute in the first case of Equation (14). The number

of released jobsNi by taskTi in [td, t0) is
⌈

td−t0
pi

⌉
. [td, t0) ia an integer multiple ofpi because

td − ri,Ni
= pi therefore we can remove the the ceiling function to get

ρTi
=

td − t0
pi

· ei = (td − t0) · ei

pi

Using Equation (15) to calculate the capacity for the whole task set we get

ρ =
n∑

i=1

ρTi
=

n∑
i=1

(td − t0) · ei

pi

= (td − t0) ·
n∑

i=1

ei

pi

Corollary 4: For a periodic task withdi < pi the processor time capacity in any time interval

τ = [t0, td) wheret0 is an idle instant is given by Equation (20).

ρ =
∑

Ti∈S1

⌈
τ

pi

⌉
· ei +

∑
Ti∈S2

(⌊
τ

pi

⌋
+

(
τ −

⌊
τ

pi

⌋
· pi

)
· 1

di

)
· ei (20)

whereS1 ⊆ T, S2 ⊆ T and

∀Ti ∈ S1, td − ri,Ni
≥ min(di, pi)

∀Ti ∈ S2, td − ri,Ni
< min(di, pi)

Proof: If T is periodic anddi < pi then we have

Ni =

⌈
td − t0

pi

⌉
(21)

Ni − 1 =

⌈
td − t0

pi

⌉
− 1 =

⌊
td − t0

pi

⌋
(22)

td − ri,Ni
= (td − t0)−

⌊
(td − t0)

pi

⌋
· pi (23)

min(di, pi) = di (24)
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Substituting Equations (21), (22), (23) and (24) in (14) we get Equation (20) directly.

A necessary and sufficient condition to schedule periodic and sporadic tasks under EDF is given

in Theorem 4.2 in [11]. The theorem states that a task setT is schedulable if and only if

∀L > 0, L ≥
n∑

i=1

f

(
L− di + pi

pi

)
· ei (25)

where

f(a) =

{
bac if a ≥ 0

0 if a < 0
(26)

andL is any time interval. The least upper bound on demand by any task can be calculated form

Equation (27) presented in Lemma 4.1 of [11].

DTi
[0, L) = f

(
L− di + pi

pi

)
(27)

whereDTi
[0, L) is the least upper bound on the demand in the interval[0, L) by Ti and the function

f is defined by Equation (27).

Corollary 5: D[0, L) by a task set withdi > pi is less than or equal toD[0, L) a task set with

the same execution times anddi = pi whereD[0, L) is the least upper bound on the demand in the

interval [0, L) by the task set.

Proof: If L ≥ di − pi thenD[0, L) for a task set withdi = pi is

D[0, L) =
n∑

i=1

⌊
L− di + pi

pi

⌋
· ei =

n∑
i=1

⌊
L− pi + pi

pi

⌋
· ei =

n∑
i=1

⌊
L

pi

⌋
· ei (28)

For a task set with the same execution times anddi > pi, if L ≥ di − pi, D[0, L) is

D[0, L) =
n∑

i=1

⌊
L− di + pi

pi

⌋
· ei =

n∑
i=1

⌊
L

pi

+
pi − di

pi

⌋
· ei (29)

pi−di

pi
< 0 becausedi > pi, therefore

⌊
L

pi

+
pi − di

pi

⌋
≤

⌊
L

pi

⌋

⇒
⌊

L

pi

+
pi − di

pi

⌋
· ei ≤

⌊
L

pi

⌋
· ei

⇒
n∑

i=1

⌊
L

pi

+
pi − di

pi

⌋
· ei ≤

n∑
i=1

⌊
L

pi

⌋
· ei

⇒ D[0, L) by T with (di > pi) ≤ D[0, L) by T with (di = pi)
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If L < di − pi thenD[0, L) equals 0 for both T withdi > pi and T withdi = pi.

Theorem 2: Let T = {T1, T2, . . . , Tn} be either a periodic or a sporadic task set with no con-

straints on the deadlines, then preemptive EDF with GDVS will succeed in scheduling T if and only

if:

∀L > 0, L ≥
n∑

i=1

f

(
L− di + pi

pi

)
· ei

wheref is defined in Equation (26) and L is any interval in time.

Proof: Establishing the contrapositive shows necessity, i.e., a negative result from the equation

implies thatT is not feasible. Let us assume a negative result for the equation, that is

∃L > 0, L <

n∑
i=1

f

(
L− di + pi

pi

)
· ei (30)

But we know that if Equation (30) holds then EDF will not find a feasible schedule, therefore

GDVS combined with EDF will not find a feasible schedule.

To show the sufficiency of the theorem, we assume that Equation (25) holds, GDVS and EDF are

used to scheduleT , yet a job misses its deadline. Let jobJd be the first job to miss its deadline at

time td, let t0 denote the last processor idle instant. We note that at the worst case, we will at least

have an idle instant att = 0.

Let τ be the time interval[t0, td). If job Jd missed its deadline attd then the demand in [t0,td)

must have been greater than the processor time capacity in [t0,td). That is

processor time capacity < demand (31)

We will show that it is not possible for the demand to be greater than the processor time capacity for

all the possible cases then prove that for any combination of those cases it will not be possible for

the demand to be greater than the processor time capacity.

Case 1: Lets assume that∀i, 0 < i ≤ n, di ≤ pi andtd − ri,Ni
< min(di, pi). First we will

calculate the demand in[t0, td). Becausedi ≤ pi, no job Ji,j will demand any processor time

beyondri,j + di, ∀i, j, 0 < i ≤ n, 0 < j ≤ Ni wheren is the number of Tasks,Ni is the number

of released jobs by taski in [t0, td). Becausedi ≤ pi there is no intersection between[ri,j, ri,j + pi)
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and[ri,k, ri,k + pi),∀i, j, k, 0 < i ≤ n, 0 < j, k ≤ Ni, therefore we have only to account for the

demand in the intervals[ri,j, ri,j + di), ∀i, j, 0 < i ≤ n, 0 < j ≤ Ni − 1 and[ri,Ni
, td). Therefore

Demand in [t0, td) =Demand in [ri,j, ri,j + di) Intervals + Demand in [ri,Ni
, td)

Demand in [t0, td) =
n∑

i=1

(Ni − 1) ·Demand in [ri,j, ri,j + di) by Ti

+
n∑

i=1

Demand in [ri,Ni
, td) by Ti

Because we are only concerned with the maximum demand that can occur, we can use the upper

bound on the demand. Therefore

D[t0, td) =
n∑

i=1

(Ni − 1) ·DTi
[ri,j, ri,j + di) +

n∑
i=1

DTi
[ri,Ni

, td) (32)

using Equation (25) to calculateDTi
[ri,j, ri,j + di) andDTi

[ri,Ni
, td) we get

DTi
[ri,j, ri,j + di) = f

(
di − di + pi

pi

)
· ei = f

(
pi

pi

)
· ei = f(1) · ei = b1c = 1 · ei = ei (33)

DTi
[ri,Ni

, td) = f

(
(td − ri,Ni

)− di + pi

pi

)
· ei = f

(
1 +

(td − ri,Ni
)− di

pi

)
· ei (34)

0 < td − ri,Ni
< min(di, pi) = di by definition of this case therefore

0 < td − ri,Ni
< di

⇒ −di < td − ri,Ni
− di < 0

⇒ −di

pi

<
td − ri,Ni

− di

pi

< 0

⇒ 1− di

pi

< 1 +
td − ri,Ni

− di

pi

< 1

⇒ 0 ≤ 1 +
td − ri,Ni

− di

pi

< 1 because 0 <
di

pi

≤ 1 (35)

Equation (35) shows that0 ≤ 1 +
td−ri,Ni

−di

pi
. Therefore we can use Equation (26) to get

f

(
1 +

(td − ri,Ni
)− di

pi

)
=

⌊
1 +

(td − ri,Ni
)− di

pi

⌋

From Equation (35).Therefore we know that0 ≤ 1 +
td−ri,Ni

−di

pi
< 1. Therefore

D[ri,Ni
, td) =

⌊
1 +

td − ri,Ni
− di

pi

⌋
= 0 · ei = 0 (36)
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Substituting Equations (33) and (36) in Equation (32) we get

D[t0, td) =
n∑

i=1

(Ni − 1) · ei (37)

The processor time capacity is given by Equation (14) which reduces to Equation (38) because

∀i, 0 < i ≤ n, di ≤ pi andtd − ri,Ni
< min(di, pi).

ρ =
n∑

i=1

(
(Ni − 1) +

(
td − ri,Ni

min(di, pi)

))
· ei (38)

Substituting the processor time capacity from Equation (38) and the upper bound on demand from

Equation (37) in Equation (31) we get

n∑
i=1

(
(Ni − 1) +

(
td − ri,Ni

min(di, pi)

))
· ei <

n∑
i=1

(Ni − 1) · ei (39)

min(di, pi) = di becausedi ≤ pi , 0 < td − ri,Ni
< di by the definition of this case, therefore

0 <
td−ri,Ni

min(di,pi)
< 1. Therefore

n∑
i=1

(
(Ni − 1) +

(
td − ri,Ni

min(di, pi)

))
· ei >

n∑
i=1

(Ni − 1) · ei

Which contradicts Equation (39).

Case 2:Lets assume that∀i, 0 < i ≤ n, di ≤ pi andtd − ri,Ni
≥ min(di,Ni

, pi). As in Case 1

becausedi ≤ pi, no jobJi,j will demand any processor time beyondri,j + pi, ∀i, j, 0 < i ≤ n, 0 <

j ≤ Ni. Becausetd − ri,Ni
≥ min(di, pi) we have distinctNi · pi intervals inside[t0, td). Therefore

Demand in [t0, td) = Demand in [ri,j, ri,j + pi) Intervals

=
n∑

i=1

Ni ·Demand in [ri,j, ri,j + pi) by Ti (40)

As in Case 1 because we are only concerned with the maximum demand that can occur, we can use

the upper bound on the demand. Therefore

D[t0, td) =
n∑

i=1

Ni ·DTi
[ri,j, ri,j + pi) (41)

DTi
[ri,j, ri,j + pi) is given by Equation (33), Substituting Equation (33) in Equation (41) we get

D[t0, td) =
n∑

i=1

Ni · ei (42)
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The processor time capacity is given by Equation (14) which reduces to Equation (43) because

∀i, 0 < i ≤ n, di ≤ pi andtd − ri,Ni
≥ min(di,Ni

, pi).

ρ =
n∑

i=1

Ni · ei (43)

Substituting the processor time capacity from Equation (43) and demand from Equation (42) in

Equation (31) we get
n∑

i=1

Ni · ei <

n∑
i=1

Ni · ei

A contradiction.

Case 3:di ≥ pi In cases 1 and 2 of this proof we have proved that

∀τ > 0, τ = [t0, td), P rocessor time capacity ≥ D[t0, td)

for any task set withdi ≤ pi. By corollary 5 we have proved that if a task set hasdi > pi with the

same execution times as a task set withdi = pi then

∀τ > 0, τ = [t0, td), D[t0, td) by a task setwith (di = pi) ≥ D[t0, td) by a task set with (di > pi)

Therefore

∀τ > 0, τ = [t0, td), P rocessor time capacity ≥ D[t0, td) by a task setwith (di > pi)

which contradicts Equation (31).

General Case: Suppose that we have a mix of tasks, at any time instant the task set can be

divided into sub task sets corresponding to one the previous cases. Let us define the task setSi as

the task set corresponding to proof casei. Let τ be the time interval [t0,td) . If job Jd missed its

deadline attd then the demand in [t0,td) must have been greater than the processor time capacity in

[t0,td). That is

processer time capacity < demand

3∑
i=1

ρ for Si <

3∑
i=1

demand by Si

(44)
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We know from mathematics that if∀xi, yi, xi > yi then
n∑

i=1

xi >
n∑

i=1

yi. We have already proven in

the proof cases (1–3) that

ρ for Si > demand by Si,∀Si, 0 < i < 3

Therefore
3∑

i=1

ρ for Si >

3∑
i=1

demand by Si

which contradicts Equation (44).

Because we always have two switches per job for every job in the case ofd < p, we can account

for switching by adding the time for switching up and switching down to the execution time of the

job, therefore, the new execution time for each task is given in Equation (45).

enewi
= ei + SU + SD (45)

Whereenewi
is the execution time including the switching overhead:SU is the overhead to switch

the frequency up,SD is the overhead to switch the frequency down. One more consideration here

is the need to check if the time interval betweendi andpi is greater than the switching overhead. If

not the algorithm should not scale the frequency down.

4.2 Power Savings

The amount of power that can be saved depends on whether both frequency and voltage are scaled

or frequency alone is scaled. Some processors, such as the Crusoe processor [5], have a feed back

loop to scale voltage when the frequency is scaled. Other processors, such as the Rabbit processor

[26], can operate on multiple voltage levels but cannot scale the voltage with frequency changes.

Equation (1) shows that power is linearly proportional to the frequency and quadratically propor-

tional to the voltage. If the processor automatically scales the voltage when the frequency is scaled,

then there will be a voltage level corresponding to each frequency level. Letα be the frequency-

scaling factor andβ be the voltage-scaling factor corresponding toα. From Equation (2) it is clear

that the frequency and voltage are related, but the relation betweenα andβ depends on the gate
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threshold voltageVT and the voltage itself,V . Equation (46)[23] shows the relation betweenα and

β.

α =
(βV − VT )2

β(V − VT )2
(46)

The normalized power savings will be given by

Power Savings =
Pmax − PGDV S

Pmax

(47)

wherePmax is the average power consumed by the processor operating at frequencyfmax andPGDV S

is the average power consumed by the processor operating under the GDVS algorithm. The equa-

tions representing the power savings for GDVS are the same as the ones for the DVSST algorithm

[23], therefore Theorem 3 of [23] still applies here and GDVS will save the maximum amount of

power when only the frequency is scaled.

Theorem 3: If only the frequency can be scaled and the task set is feasibly scheduled, then the

processor will save the maximum possible amount of power under GDVS when all tasks execute with

the their WCET.

Proof: See [23].

In this paper we present another way to compare the power savings. Consider a case when we

will operate the processor at full frequency when there is a task to execute to finish it as fast as

possible and shut the processor down completely when there is no task to execute. We will refer to

this method as the OnOff algorithm. Theorem 4 shows that GDVS saves at least the same amount

of power as the OnOff method. Another reason not to use the OnOff method is that the cost of

switching to a complete sleep mode in some processors is very high. Our implementation platform—

the Rabbit 2000 processor— has this high switching overhead penalty if we switch to the idle state

using the low power oscillator as explained in Section 5.

Theorem 4: The power consumed under GDVS is less than power consumed under the On-Off

algorithm if both the frequency and voltage are scaled, and equal to it if only the frequency is scaled.

Proof: Under the On-Off algorithm the processor is operated at either maximum frequencyfmax

or zero frequency when it is off. Let us assume that the processor executes a taskT for a period of

23



time τ with utilization Uτ overτ were it is on for a period ofτon and off for a period ofτidle. Then

the average power consumed inτ is

Pon off =
1

τ
(Pidleτidle + Ponτon)

butPidle = 0 because the processor is operating at zero frequency when it is idle

Pon off =
Ponτon

τ

butPon = CfmaxV
2
max because the processor is operating at maximum frequency when it is on

Pon off =
CfmaxV

2
maxτon

τ

but τon = Uττ

Pon off =
CfmaxV

2
maxUττ

τ
= CfmaxV

2
maxUτ = PmaxUτ

From [23] the power consumed by the processor if we scale both frequency and voltage is given by

PGDV S =
1

τ

n∑
i=0

Cαiβ
2
i fmaxV

2
max · τi (48)

whereαi, βi andτi are the frequency scaling factor, voltage scaling factor and scaling factor change

interval respectively.

butPmax = CfmaxV
2
max thereforePGDV S =

Pmax

τ

n∑
i=0

αiβ
2
i · τi

but∀i, 1 ≤ i ≤ n, βi ≤ 1

⇒ β2
i ≤ 1

⇒ τiαiβ
2
i ≤ τiαi becauseτiαi ≥ 0

⇒
n∑

i=0

αiβ
2
i τi ≤

n∑
i=0

αiτi

⇒ 1

τ

n∑
i=0

αiβ
2
i τi ≤ 1

τ

n∑
i=0

αiτi because
1

τ
≥ 0

⇒ 1

τ

n∑
i=0

αiβ
2
i τi ≤ Uτ becauseUτ =

1

τ

n∑
i=0

αi τi

⇒ Pmax
1

τ

n∑
i=0

αiβ
2
i τi ≤ UτPmax

⇒ PGDV S ≤ Pon off
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This is the general case where we scale both voltage and frequency. If we only scale frequency then

β = 1, substitutingβ = 1 we getPGDV S = Pon off . If the voltage is ever scaled down, then we get

PGDV S < Pon off

Theorem 2 gives a necessary and sufficient condition for schedulability under EDF with GDVS.

Thus, GDVS does not affect the optimality of EDF scheduling for periodic and sporadic task sets.

Theorem 3 shows that, in theory, GDVS is optimal with respect to power savings when only the

frequency can be scaled and all tasks execute with their WCET. Theorem 4 shows that GDVS saves

more power than just operating the processor at maximum frequency and shutting it off when there

is no task to execute. However, in practice, it is much harder to achieve optimal power savings due

to algorithm overhead and limited frequency levels supported by many processors. The next section

discusses these implementation issues.

5. Implementation And Evaluation

The GDVS algorithm was implemented in a modified version of Jean Labrosse’sµC/OS-II (Micro

C/ OS-II) real time operating system [14]. The original version ofµC/OS-II uses the RM algorithm

to preemptively schedule up to 64 tasks. The modified version used in this study also supports EDF

scheduling of up to 64K tasks [15]. Algorithm overhead was measured using a stand-alone Rabbit

2000 test board [26]. The actual power savings realized with GDVS is a function of the task set and

the processor. The GDVS power savings where evaluated by both simulation and a specific real-time

application, the Robotic Highway Safety Marker.

Section 5.1 describes frequency scaling in the Rabbit 2000. Section 5.2 presents slight modifi-

cations to the GDVS algorithm required in practice since currently available embedded processors

have a limited number of frequency scaling levels. The overhead created by GDVS under EDF

scheduling on the Rabbit 2000 is reported in Section 5.3. Section 5.4 describes the Robotic High-

way Safety Marker and power savings realized for that application. Section 5.5 presents results for

a simulated periodic task set with deadlines less than periods.
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5.1 Frequency Scaling in the Rabbit 2000

There are two crystal oscillators built into the Rabbit 2000. The main oscillator accepts crystals

up to a frequency of 29.4912 MHz and is used to derive the clock for the processor and peripherals.

The low power clock oscillator requires a 32.768 kHz crystal, and is used to clock the watchdog

timer, a battery backed time/date clock, and a periodic interrupt. The main oscillator can be shut

down in a special low-power mode of operation, and the 32.768 kHz oscillator is then used to clock

all the things normally clocked by the main oscillator.

The main oscillator can be doubled in frequency and/or divided by 8. If both doubling and di-

viding are enabled, then there will be a net frequency division by 4. Our model of the Rabbit 2000

has an 18.532 MHz main oscillator. Thus, there are four frequency levels available from the main

oscillator: 18.532MHz, 9.266MHz, 4.633MHz and 2.3165MHz—which correspond to 100%, 50%,

25% and 12.5% of the maximum frequency. Since the maximum frequency at which we can operate

the processor is 18.532 MHz and the low power mode frequency is 32.768 kHz, the idle-state scaling

factor used by GDVS isαidle = 32.768kHz
18.532MHz

= .00176. In practice, the value ofαidle can be close to

zero but never zero as assumed in the theoretical presentation of GDVS.

The Rabbit 2000 processor can operate at different voltages but it does not change the voltage

level dynamically when the frequency level is changed. Thus, only the processor frequency will be

scaled dynamically, which will result in a linear savings in average power as explained in Section

4.2.

5.2 Modifying GDVS for the Rabbit Processor

There are four non-idle scaling levels available on the Rabbit 2000, rather than the infinite number

of levels often assumed in theory. Fortunately, the algorithm can be modified slightly to allow scaling

the frequency to a discrete number of levels by rounding the value ofα to the next upper scaling

level. For example, if we have a processor with scaling levels 0.25, 0.5, 0.75, and 1.0 and the value

of αn at some point in timet as calculated by GDVS is 0.58, then the next upper scaling level to

which we setαn is 0.75.
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Another challenge in implementing GDVS on the Rabbit 2000 is that serial communication baud

rates cannot be derived from the low-power oscillator. Thus,αidle = 0.00176 cannot be used with any

application that requires serial communication. Since the wireless transceiver used in the Robotic

Highway Safety Marker uses a serial interface to the processor, we useαidle = αmin = 0.125 so that

the application will not lose communication with the other robots.

5.3 Algorithm Overhead

There are two primary sources of overhead created by GDVS: changing frequency levels and

detecting when the frequency can be scaled. Changing the processor frequency from one level to

another is (approximately) constant, and was measured on the Rabbit 2000 processor to be 120µs

per frequency change with the main oscillator.

The second source of overhead is largely dependent on how the algorithm detects when it is

possible to scale the processor frequency. When a task is released, a check is made to see if the

frequency needs to be increased (i.e., if the task∈ TD). A timer list is used to detect when it is

possible to scale down the processor frequency. A timer is set when the task is released and cancelled

if the task is released again before the timer expires. The processor frequency is scaled down by

ei/min(di, pi) whenever a timer expires for taskTi.

The timer list is implemented as a sorted linked list with no effort made to optimize list insertion

since most applications that use the Rabbit 2000 have very few tasks; our application has only six

tasks and the version ofµC/OS-II that comes with the board only supports 64 tasks. Thus, insertion

into a list of sizen has costO(n). The worst case occurs when an entry needs to be inserted at the

end of the list. The list insertion time was measured for up to 512 tasks with random deadlines. For

each list length from one to 512, the test was repeated a number of times equal to the list length

with random timer values to be inserted. The insertion time was measured for each insertion and the

average time of these values for each list length was recorded. The graph shown in Figure 6 plots

the average timer list insertion time verses the number of tasks from 20 such experiments. Time is

measured in terms of periodic clock ticks on the Rabbit 2000, which occur at a rate of 2kHz or one
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Figure 6. Timer list insertion overhead

clock tick every 488µS.

The average insertion time is less than 1 clock tick for a list with less than 125 entries, as shown

in Figure 6. The insertion time is about 4 clock ticks (2 ms) for 512 entries. Clearly a more efficient

implementation of the timer list should be used for large task sets.

5.4 Power Savings for a Robotic Highway Safety Marker

The Robotic Highway Safety Marker (RSM) is an automated safety devices designed to improve

road construction work-zone design and safety. A RSM is a semi-autonomous mobile robot that

carries a highway safety marker, commonly called a barrel. The RSMs operate in groups that consist

of a single lead robot—called the foreman—and worker robots. To date, one foreman and six worker

prototype RSMs have been developed. Each worker RSM has a Rabbit 2000 processor running our

modifiedµC/OS-II. The prototype foreman is more sophisticated than the worker RSMs.

Control of the RSM group is hierarchical and broken into two levels—global and local control—

to reduce the per-robot cost. The foreman robot performs global control. To move the robots, the

foreman locates each RSM, plans its path, communicates destinations points (global waypoints),
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and monitors performance. Local control is distributed to each individual RSM, which do not have

knowledge of other robots and only performs local tasks.

The code for the RSM is implemented as a sporadic task set. The task set only executes after it

receives a new waypoint from the foreman. A path from the initial position of the RSM to the new

waypoint is computed as a parabola decomposed into multiple local waypoints. The number of local

waypoints depends on the length of the path. The following six sporadic tasks comprise the RSM

task set.

• Serial Task: reads commands from the foreman via a RF transceiver, converts the command

to target destinations, and stores the destinations in a shared queue data structure.

• Length Task: calculates the path length, number of iterations, and other values for each target

destination.

• Waypoint Task: calculates the desired wheel angles for each iteration of a PID control loop.

• PID Task: does the PID control for each iteration.

• Encoder Task: reads the current wheel angles.

• Motor Task: sends commands to each motor.

An abstract processing graph for this task set is shown in Figure 7. The precedence relations shown

in Figure 7 represent the logical precedence constraints on the data processing and do not reflect

actual release patterns. For example, to reduce latency in the processing graph, the last four nodes in

the processing graph can be released simultaneously with deadline ties broken in favor of producer

nodes, as described in [4]. The Serial task is released when data is available on the serial port. When

data arrives, the Serial task converts it to a target destination, places it in a shared data structure

and releases the Length task. Semaphores are not needed to synchronize access to the data structure,

which results in a fully preemptable task set. The Length task calculates the first two local waypoints

before the robot begins to move. As the robot moves to waypointi, waypointi+2 is computed. The

design ensures that waypointi+2 is computed before waypointi is reached.
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Figure 7. RSM processing graph.

This task set is modeled as a sporadic task set because the serial task receives commands with a

minimum separation of 7.8125ms. The length task is executed the same number of times the serial

task is executed. The number of times that Waypoint, PID, Encoder and Motor are executed depends

on the number of local waypoints that need to be computed to reach the next global waypoint, which

is dependent on the path length. Thus, for each execution of the serial task there may be a different

number of executions for the Waypoint, PID, Encoder and Motor tasks. However, each task has a

minimum separation period, as shown in Table 2.

The execution time for these tasks is very deterministic for two reasons. First the Rabbit 2000

has no cache memory, which eliminates memory-caching effects on execution time. Second the

tasks repeat almost the same operation each time, with the exception of system initialization where

some of the tasks execute a few more lines. Therefore the execution time of these tasks is usually

very close to their WCET. The task execution times, shown in Table 2, were determined using an

oscilloscope and free I/O pins on the processor.

Task Period Execution Time ei /pi

Serial 7.8125ms 100µs .0128
Length 7.8125ms 1ms .128
Way Point 3 ∗7.8125ms 2.5ms .1066
Encoder 3 ∗7.8125ms 350µs .0149
PID 3 ∗7.8125ms 1.06ms .04522
Motor 3 ∗7.8125ms 250µs .0106

Table 2. RSM sporadic task set parameters.

The maximum utilization for the task set isU= 0.31812, which occurs when all of the tasks

execute in a periodic mode for an extended interval of time. If we have no idle periods over an

extended interval of time, the lower bound on utilization is when we have only one execution of the
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serial and length task followed by a very large number of executions of the other tasks. This will

result in a processor utilization slightly greater than

eWaypoint

pWaypoint

+
eEncoder

pEncoder

+
ePID

pPID

+
eMotor

pMotor

= .17732

Depending on when commands arrive and the length of the path to be computed, a wide range of

utilization values is possible. For any case, the theoretical maximum power savings will be1 − Uτ

(as shown in Section 4.2), whereUτ is the utilization over the time intervalτ . The actual power

savings achieved is less because we cannot scale the frequency to the desired value; instead we scale

it to the nearest upper level of frequency available on the Rabbit 2000, as described in Section 5.2.

As mentioned in Section 5.1, the Rabbit 2000 provides frequency scaling but does not directly

adjust the voltage with the frequency. Thus, power savings can be linearly proportional to frequency

scaling at best. However, since the Rabbit 2000 provides only a limited number of levels, rather than

the unlimited number assumed in theory, there will be a difference between the actual savings and

the theoretical power savings.

Figures 8(a) and 8(b) show the difference between the actual and the theoretical power savings.

The normalized average power savings is plotted against relative utilization values, where the rel-

ative utilization is the ratio of a possible task utilization value to the maximum task utilization

(0.31812). Figure 8(a) shows the normalized theoretical and actual power savings for the task set

verses the relative utilization when there are no idle periods. That is, the robot is constantly moving

but with destination commands of varying distance. In this case, the minimum relative utilization is

0.55739. Figure 8(b) shows the normalized theoretical and actual power savings when we have idle

periods. That is, when the robot stops for intervals of time.

Note that the actual power savings deviate from a linear pattern even though only the processor

frequency is scaled and the voltage remains constant. This is because when the frequency is scaled

on the Rabbit 2000, it draws less current and the rate at which the current increases or decreases

with each frequency level is not exactly linear.

The average ratio of the actual savings to the theoretical savings in both cases is about 83%.

This means that GDVS achieved 83% of the theoretical power savings on the Rabbit 2000 for this

31



(a) Power savings with the robot constantly moving. (b) Power savings with the robot not constantly moving.

Figure 8. Power Savings For The RSM

application.

If the task set were executed at a periodic rate, the GDVS would run the processor at a frequency

equal to the task utilization, which is the same as the Static Voltage Scaling algorithm of [1, 22].

In this case GDVS will give the same power savings as the Static Voltage Scaling but with more

overhead. Other DVS algorithms from the literature are unlikely to improve power savings much,

even if the task set executes periodically, because they try to take advantage of the case when tasks do

not execute with their WCET. In this application, however, task execution time is very deterministic

and there is very little difference between average execution time and WCET.

5.5 Power Savings For Simulated Periodic Task Sets

The RSM application provided a good example of a sporadic task set with deadlines equal to

periods, but since GDVS is a general algorithm, more evaluation for the power savings is needed.

Two periodic task sets with deadlines less than periods were created. The task sets were simulated

on the same implementation of GDVS used with the RSM application. The task sets consisted of

five and ten tasks respectively. The task sets characteristics are summarized in the following points:

• Execution timeei is the same for all tasks in the task set.
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• ei = 10ms so thatei >> Switching to the low power oscillator Overhead.

• pi for tasks takes the values of 200ms, 400ms and 800ms.

• The density of the task set is varied by changing the deadline of the tasks.
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Figure 9. Power savings for a periodic task sets with di ≤ pi

By changing the value of

di we get different values

of task set density ranging

from .0975 to 1. Figure 9

shows normalized theoreti-

cal and actual power savings

for the two task sets. The

theoretical power savings for

a periodic task set with dead-

lines less than or equal to pe-

riods is1−
n∑

i=0

ei

min(di,pi)
when only frequency is scaled. Figure 9 shows that the actual power savings

gets closer to the theoretical savings as the density increases. This is because the lower the density,

the less the number of scaling levels we have; since we have only five levels on the Rabbit 2000

we have even fewer levels for lower densities. We also note that with a higher number of tasks in

the task set (10 tasks) the power savings also decrease because the effect of the limited number of

scaling factors becomes greater. It is clear from this result that implementing the algorithm on a

processor that offers a larger number of frequency levels will improve the power savings.

6. Conclusion

A dynamic voltage-scaling algorithm called GDVS was presented for both periodic and sporadic

task sets with no constraints on the deadlines executed under EDF scheduling. It was shown that

schedulability under EDF is a necessary and sufficient schedulability condition for fully preemptive

task sets to be scheduled under EDF with GDVS. GDVS is an inter-task DVS algorithm and the

only attempt to save power when jobs execute for less than their WCET is to scale the processor to
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a minimum frequency level whenever no jobs are pending. GDVS assumes that resources are not

shared between tasks; DVS for resource-sharing sporadic tasks remains an open problem. GDVS

is shown to be optimal when only the processor frequency is scaled and not the voltage. It is also

shown that GDVS saves more energy than just switching the processor on and off. The optimality of

GDVS when both the voltage and frequency are scaled remains a problem open for future research.

GDVS has been implemented in a modified version ofµC/OS-II that supports EDF scheduling.

GDVS was tested with a real-time application —The Robotic Highway Safety Marker— with a spo-

radic task set. GDVS was also tested with a simulated task set with deadlines less than periods. Both

of these tests were run on the Rabbit 2000 processor. Results show differences between theoretical

and actual savings are due to the limited number of frequency levels supported by the Rabbit 2000

processor.
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