
A Dynamic Real-time Scheduling Algorithm for Reduced Energy Consumption

Rohini Krishnapura, Steve Goddard, Ala′ Qadi
Computer Science & Engineering
University of Nebraska—Lincoln

Lincoln, NE 68588-0115
{rohini, goddard, aqadi}@cse.unl.edu

Technical Report TR-UNL-CSE-2004-0009
May 2004

Abstract

In embedded real-time systems, Dynamic Power Management (DPM) techniques have traditionally focused on
reducing the dynamic power dissipation that occurs when a CMOS gate switches in a processor. Less attention
has been given to processor leakage power or power consumed by I/O devices and other subsystems. I/O-based
DPM techniques, however, have been extensively researched in non-real-time systems. These techniques focus on
switching I/O devices to low power states based on various policies and are not applicable to real-time environ-
ments because of the non-deterministic nature of the policies. The challenge in conserving energy in embedded
real-time systems is thus to reduce power consumption while preserving temporal correctness. To address this prob-
lem, we introduce three scheduling algorithms of increasing complexity: Energy-Aware EDF (EA-EDF), Enhanced
Energy-Aware EDF (EEA-EDF) and Slack Utilization for Reduced Energy (SURE). The first two algorithms are
relatively simple extensions to the Earliest Deadline First (EDF) scheduling algorithm that enable processor, I/O
device, and subsystem energy conservation. The SURE algorithm utilizes slack to create a non-work-conserving
approach to reducing power consumption. An evaluation of the three approaches shows that all three yield sig-
nificant energy savings with respect to no DPM technique. The actual savings depends on the task set, shared
devices, and the power requirements of the devices. When the cost of switching power states is low, the EA-EDF
and EEA-EDF algorithms provide remarkable power savings considering their simplicity. In general, however, the
higher the energy cost to switch power states, the more benefit SURE provides.

1. Introduction

Traditionally, power conservation in systems has been implemented via efficient power management using static

and dynamic techniques. Static power management techniques are built into the design of a system. Dynamic

Power Management (DPM) techniques are applied at run-time, based on workload variation [7]. DPM techniques

can be employed through the operating system (OS) to obtain fine-grained control over power management. For

example, the Advanced Configuration and Power Interface (ACPI) [1], conceived by Intel, Microsoft and Toshiba,

provides a standard interface for the PC platform, through which devices can be controlled for power management

1

by the OS. Earlier, BIOS-based power management techniques were widely used with the OS unaware of any

power management policies. The OnNow technology from Microsoft [11] takes advantage of ACPI to provide

OS-directed power management techniques through Windows.

OS-directed DPM techniques can be processor-based (CPU-based) or I/O-based. An example of CPU-based

DPM is Dynamic Voltage Scaling (DVS), wherein the operating voltage of the CPU is varied to save energy

by computing at a lower frequency, thereby trading computational speed for power conservation. I/O-based DPM

techniques focus on switching I/O devices into low power states based on predictive, stochastic, or timeout policies

[9].

DPM in embedded real-time systems, however, have centered mainly on the CPU with little focus given to I/O

devices. CPU-based DPM methods in these systems include real-time scheduling algorithms aimed at reducing the

dynamic power dissipation that occurs when a CMOS gate switches, which is the dominant component of power

consumed by processors. The other two power components are leakage power and shortcut power. Leakage power

is expected to account for an increasing fraction of power consumption in processors of the future [2] and cannot

be ignored.

Energy conservation in I/O devices presents an even greater challenge since the approaches developed for pro-

cessors (e.g., DVS) generally are not applicable. For example, probabilistic power-saving policies for shutting

down I/O devices cannot be implemented in hard real-time systems, as jobs are not guaranteed to meet dead-

lines. The challenge in conserving energy in embedded real-time systems is to reduce power consumption while

preserving temporal correctness.

In this paper, we introduce three scheduling algorithms of increasing complexity: Energy-Aware EDF (EA-

EDF), Enhanced Energy-Aware EDF (EEA-EDF) and Slack Utilization for Reduced Energy (SURE). These al-

gorithms can be classified as OS-directed DPM techniques applicable to either processor or I/O devices. These

techniques do not rely on DVS to save power. Instead, they shutdown the device whenever possible to conserve

power. When applied to processors, the goal is to reduce leakage power consumption, though the algorithm also

saves the maximum amount of power possible when only frequency can be scaled (and not voltage).

EA-EDF and EEA-EDF are obvious and simple extensions to the Earliest Deadline First (EDF) scheduling

algorithm to enable I/O and subsystem energy conservation. We use these algorithms to illustrate the amount of

energy savings possible with simple techniques. The main focus of this paper, however, is the SURE algorithm.

SURE schedules jobs so that devices can be kept in a given power state for as long as possible thus reducing the

2

device power state transitions and reducing energy consumption, while ensuring that all jobs meet their deadlines.

The general SURE algorithm can be applied to the CPU, co-processors (e.g., digital signal processors), de-

vice subsystems, and individual I/O devices. The primary focus of this paper is the fully preemptive version of

SURE which applies to processors, of course, but also to preemptive I/O devices such as memory flash cards or

Micro-Electro-Mechanical Systems (MEMS) storage devices [3, 19], which are anticipated to be a main focus

of secondary storage devices in the near future [6, 10]. For non-preemptive devices, blocking factors for the non-

preemptive periods in the task execution due to accessing the device need to be accounted for, which are extensions

to the version of SURE presented here. The preemptive SURE algorithm provides the foundation for a family of

general, non-work-conserving, online I/O and subsystem energy saving algorithms.

The rest of this paper is organized as follows. Section 2 gives a review of related work and Section 3 describes

the energy conservation model assumed. We present the three scheduling algorithms and a necessary and sufficient

feasibility condition for the preemptive version of SURE in Section 4. (Non-preemptive and preemptive versions

with non-preemptive [blocking] intervals are relatively simple extensions to the version of SURE presented here,

but beyond the scope of this paper.) Finally, we present evaluation results in Section 5 and conclude in Section 6.

2. Related Work

This work addresses power consumption in the processor, device subsystems, and I/O devices. Within a pro-

cessor, there are three primary components to processor power consumption: dynamic power, leakage (static)

power, and shortcut power. Dynamic power is currently the largest fraction of three, but it is expected that leakage

power will become an increasingly larger fraction [2]. From a processor perspective, this work primarily addresses

leakage power reduction, though it also helps to reduce dynamic power consumption in the processor.

Even when CMOS circuits are not switching, they still dissipate leakage power. Leakage power consumption

is reduced by disabling all or parts of the processor whenever possible. To the best of our knowledge, Lee et

al. [5] present the first earliest-deadline-first (EDF) and rate monotonic (RM) and scheduling algorithms designed

exclusively to reduce leakage power in hard real-time systems. These algorithms insert idle intervals in the schedule

to delay the transition of the processor from a low power state to the processing power state.

When the CPU is the only device used by the task set, the EA-EDF and EEA-EDF algorithms presented here

both reduce to the the EDF-S algorithm of [5]. However, the EA-EDF and EEA-EDF algorithms are more general

than the EDF-S algorithm in that they can also save energy in I/O devices. Conceptually, SURE is similar to the

leakage-control EDF (LC-EDF) algorithm developed by Lee et al. in [5] in that idle times are inserted into the

3

schedule at key points to keep the CPU idle for as long as possible. However, SURE differs in the job scheduling

strategy and the application of the concept to also reduce energy in I/O devices. In addition, we use system slack

computation to insert idle time into the schedule, rather than the ad-hoc method used by Lee et al. Since the SURE

algorithm uses all available system slack before transitioning the processor from a low power state to a normal

power state, it will always save at least as much leakage power as the LC-EDF algorithm.

The approach taken in this work to reduce leakage power consumption is to view the processor as a device with

two states: idle and active. (In this work, we do not distinguish between idle and sleep states. The idle state is the

lowest power state available that still meets the application requirements.) Thus, from this perspective, reducing

leakage power consumption is equivalent to reducing energy consumption in I/O devices—or device subsystems,

depending on the platform.

Most DPM techniques for shared devices are based on switching a device to a low power state (or shutdown)

during an idle interval. DPM techniques for I/O devices in non-real-time systems focus on switching the devices

into low power states based on various policies (e.g., [7, 8, 9, 4, 20]). These strategies cannot be directly applied to

real-time systems because of their non-deterministic nature. Nonetheless, the non-real-time scheduling algorithm

for energy conservation in I/O devices by Lu, Benini, and Micheli presented in [9] is similar to the approach

presented here. Their scheduling technique also rearranges jobs so as to minimize the device state switches. Our

approach, however, differs in that it is deterministic and ensures temporal correctness of the system.

To the best of our knowledge, the first I/O-based technique for real-time systems is the Low Energy Device

Scheduler (LEDES), by Swaminathan and Chakrabarty [14]. LEDES takes as input a pre-determined task schedule

and a device-usage list for each task to generate a sequence of sleep/working states for each device. LEDES

determines this sequence such that the energy consumed by the devices is minimized while guaranteeing that no

task misses its deadline. However, LEDES differs from SURE in that jobs are not rearranged to reduce energy

consumption. SURE relies on the observation that under some conditions, jobs can be rearranged to facilitate

energy conservation and still meet their deadlines.

The pruning-based scheduling algorithm, Energy-optimal Device Scheduler (EDS), is different from LEDES

and similar to SURE in that jobs are rearranged to find the minimum energy task schedule [15]. EDS generates a

schedule tree by selectively pruning the branches of the tree. Pruning is done based on both temporal and energy

constraints. A drawback of EDS is that it generates only non-preemptive energy optimal schedules. Thus EDS

is successful only for task sets which have at least one feasible non-preemptive schedule. SURE removes this

4

drawback by providing the ability to generate preemptive schedules, which in some cases consume less energy

than a non-preemptive schedule—provided that the I/O device or subsystem is at least partially preemptive. In

addition, the algorithm we present is different from EDS in that EDS is inherently an offline algorithm, with

schedules computed statically, whereas SURE can be implemented as an online or offline algorithm. An advantage

of generating an online schedule is the flexibility in adapting to changing task parameters. This also has the merit

of utilizing dynamic slack which results from actual job execution times being much less than the WCET.

An extension of LEDES to handle I/O devices with multiple power states is presented in [16] by the same

authors. Multi-state Constrained Low Energy Scheduler (MUSCLES) takes as input a pre-computed task schedule

and a per-task device usage list to generate a sequence of power states switching times for I/O devices while

guaranteeing that real-time constraints are not violated. Although MUSCLES has the advantage over SURE to

efficiently utilize multiple power states of a device, MUSCLES has the same drawback of LEDES in that jobs are

not rearranged to exploit the inherent device dependencies of different tasks.

3. Energy Conservation Model

Modern devices (including processors) have at least two power states:idle andactive. The rate at which energy

is consumed is different in each state with less power being used in theidle state. Thus to save energy, a device can

be switched to theidle state when it is not in use. In a real-time system, in order to guarantee that jobs will meet

their deadlines, a device cannot be madeidle without knowing when it will be requested by a job. But, the precise

time at which an application requests the operating system for a device is usually not known (with the exception

of the CPU under the periodic task model). Predictive algorithms try to forecast the rate at which requests arrive

or make an estimate based on past requests. However, even without knowing the exact time at which requests are

made, we can safely assume that devices are requested within the time of execution of the process or job making

the request. We can also assume that in the absence of DMA or other such mechanisms, a device will be used

within the execution time of a job. If DMA is used, then the DMA and I/O devices controlled by the DMA device

can be viewed as an I/O subsystem. Thus, given these assumptions, we can determine the upper bound on the

utilization of a deviceλi. We define this upper bound as thedevice utilization factor, Uλi , which is the the sum of

the CPU utilization of the tasks using the device.

Suppose that the set of devices required by each task during its execution is specified along with the temporal

parameters of a periodic task set. More formally, given a periodic task set with deadlines equal to periods,τ =

{T1, T2, ...Tn}, let taskTi be specified by the three tuple(pi, ei, Λi) where,pi is the period,ei is the worst case

5

execution time, andΛi = {λ1, λ2, ...λm} is the Device Requirement Specification (DRS) for the taskTi. Then,

Uλi
=

∑
∀Tj ,{λi}⊆Λj

(ej/pj). The generalized problem that we aim to solve in this paper can now be stated as, given

this periodic task setτ = {T1, T2, ...Tn}, Ti = (pi, ei, Λi), is there a schedule which meets all deadlines and also

reduces the energy consumed by each deviceλj?

In a hyperperiod (i.e.,lcm{pi}, 1 ≤ i ≤ n), the total time that deviceλi will be used isUλi ·H. Consequently, the

device is not in use for at least(1−Uλi
) ·H time units. For the periodic task model, consider the energy consumed

over one hyperperiod. If the device remainedactiveover the entire hyperperiod, the total energy consumed would

beEorig = Pactive · H, wherePactive is the rate at which energy is consumed when the device isactive. Since

the device is not in use for at least(1− Uλi
) ·H, the device does not need to beactivefor the entire hyperperiod.

However, significant cost is incurred when an I/O device switches or transitions from one power state to another.

This cost is high in terms of both time and energy. Thus by employing a DPM technique, the total energy consumed

by a deviceλi in the hyperperiodH, is given by,

Eλi = Eactive + Eidle + Esw (1)

where,Eactive is the energy consumed whenλi is in theactivestate andEidle is the energy consumed byλi when
it is in the idle state andEsw is the energy consumed whenλi is in transition states. From the discussion above,

it should be clear thatEactive = Pactive · Uλi · H. For simplification, let the time taken to switch fromactiveto

idle and vice-versa be the same. Let us call this switch timetsw. In addition, let the power consumed during both

transitions be the same. Let this power bePsw. Then,Esw = σi · Psw · tsw, whereσi is the total number of device

state switches in a hyperperiod. So, the actual time the device is in theidle state is[(1− Uλi
) ·H − σitsw]. Thus,

Eidle = Pidle[(1 − Uλi) · H − σi · tsw], wherePidle is the rate at which energy is consumed when the device is

idle. Substituting forEactive, Eidle andEsw in Equation (1), the total energy consumed byλi in a hyperperiod is,

Eλi = [PactiveUλi ·H] + [Pidle(1− Uλi) ·H − Pidleσitsw] + [σi · Pswtsw]

The energy savings incurred if the device is madeidle whenever it is not in use, is given by,

6

Es(λi) = Eorig − Eλi

= Pactive ·H − [Pactive · Uλi
·H + Pidle(1− Uλi

)H − σiPidletsw + σi · Psw · tsw]

= Pactive(1− Uλi) ·H − Pidle(1− Uλi) ·H − σitsw(Psw − Pidle)

= (Pactive − Pidle)(1− Uλi
) ·H − σitsw(Psw − Pidle)

Thus, to increase energy savings, the time for which the deviceλi is idle must be increased whereas the total
number of power state transitions (σi) must be decreased. However, this is an optimistic equation in that device

idle times are assumed to be longer than2 ·Psw time units. If a device is idle for less than2 ·Psw time units, it will

not have sufficient time to switch from theactivestate to theidle state and vice-versa. Thus, if a device is idle for

less than2 · Psw time units, it should not be switched to theidle state. This will ensure that device transitions still

preserve temporal constraints.

4. Scheduling Algorithms

This section introduces three OS-directed, real-time, DPM techniques applicable to either processors or I/O

devices. The first two methods are relatively simple extensions to EDF scheduling. The third method is more

complicated but still based on EDF. Rather than using dynamic voltage scaling (DVS) to save power, the three

algorithms shutdown the device whenever possible to conserve energy.

4.1. Simple Extensions to EDF

A simple scheduling algorithm is to extend EDF to conserve energy in devices by switching a device to the low

power state whenever the system is idle. This is an obvious extension to EDF and we refer to this facile technique

as Energy-Aware EDF (EA-EDF). Observe that with this method there is no need to associate a DRS with each

task since devices are put in the low power state only when the CPU is idle, which implies that no device is in use

(under the stated assumptions). Energy savings is calculated by considering the amount of time the device is in the

activestate and theidle state and the number of device state switches that are incurred with the EA-EDF schedule.

When the CPU is the only device used by the task set, the EA-EDF algorithm reduces to the EDF-S algorithm

presented by Lee et al. in [5]. Theonly difference between the EA-EDF algorithm and the EDF-S algorithm is

that the EA-EDF algorithm switches I/O devices to the low power state in addition to the CPU. This algorithm is

presented here to provide a base-line comparison.

Another obvious extension is the Enhanced Energy-Aware EDF (EEA-EDF) algorithm, wherein a device is

7

switched to a low power state whenever it is not in use. This implies that the underlying EDF scheduling algorithm

is made aware of the device requirements of the tasks (i.e., a DRS is associated with each task). The EEA-

EDF schedules tasks using the EDF algorithm. It improves energy conservation over the EA-EDF algorithm by

switching devices to the idle state whenever they are not used by the currently executing task. The device stays in

the idle state until a task that uses that device is dispatched. Thus, whenever the CPU is idle the devices used by

the task set will be in a low-power state. When the CPU is the only shared device, the EA-EDF and EEA-EDF

algorithms generate the exact same schedule and consume the same amount of energy.

EA-EDF and EEA-EDF can be executed as online or offline algorithms. In both cases, it should be clear that

the standard utilization test,U ≤ 1, is a necessary and sufficient condition for the temporal correctness of the

preemptive versions of EA-EDF and EEA-EDF, assuming devices are ready whenever the task makes a request.

A more complex algorithm than either of these is the SURE scheduling algorithm, which schedules jobs that

require the same device to run in succession. This results in combining small and scattered device idle times to

generate device idle times of longer duration. Moreover, slack is used to combine CPU idle times to produce

longer intervals of CPU idle time. As with EA-EDF and EEA-EDF, all devices are switched to theidle state to

save additional power during these CPU idle intervals. The next section describes this more sophisticated approach

in detail.

4.2. Slack Utilization for Reduced Energy (SURE)

The SURE algorithm is a non-work-conserving, real-time, scheduling algorithm that is designed to reduce

system energy consumption while ensuring the temporal correctness of the application. By non-work-conserving,

we mean that the SURE algorithm deliberately inserts idle time in the schedule when there are pending jobs to

execute. The SURE algorithm can be executed offline to generate a cyclic schedule for online execution, or it can

be executed online for more flexibility—and potentially more energy savings. Of course, the online execution of

SURE adds scheduling overhead, and a cost-benefit tradeoff must be made, which will be application specific.

Thus, as with most scheduling algorithms, SURE is not a panacea for energy savings. Rather, it should be viewed

as another tool available to engineers.

This section provides an introduction to the SURE algorithm. For simplicity, a preemptive version of SURE

is presented that provides the foundation for a family of general, non-work-conserving, I/O and subsystem en-

ergy saving algorithms. Before presenting the algorithm, however, we first present the concept of slack and its

computation, which is used to determine the location and duration of inserted idle intervals in the schedule.

8

4.2.1. Slack Computation

It is helpful to provide formal definitions of job and system slack since the SURE algorithm utilizes system slack

to conserve energy.

Definition 4.1. Initial Job Slack.The initial slack of a jobJk, at timet = 0, is denotedωk(0) and computed by

subtracting the total time required to execute jobJk and other periodic requests with higher priorities than this job

from the total time available to execute jobJk. That is, the slack of a jobJk at t = 0 is given by

ωk(0) = Dk −
∑

Di≤Dk

ei, whereDk is the absolute deadline ofJk.

Definition 4.2. Dynamic Job Slack.The slack of a jobJk, att, ∀t > 0, is denotedωk(t) and changes dynamically

as it gets consumed by CPU idling and by the execution of lower priority jobs. That is, the dynamic slack of a job

Jk at timet is given by

ωk(t) = ωk(0)− I(0, t)−
∑

Di>Dk,ri<t

fi(t)

= Dk −
∑

Di≤Dk

ei − I(0, t)−
∑

Di>Dk,ri<t

fi(t)

whereI(0, t) is the amount of time the CPU has been idled tillt;
∑

Di>Dk,ri<t

fi(t) is the amount of time jobs with

deadlines greater thanDk, have executed tillt, which implies that these jobs have to be released beforet; and

I(0, t) +
∑

Di>Dk,ri<t

fi(t) is the total amount of slack consumed tillt.

Definition 4.3. System Slack.The slack of a system att, ∀t ≥ 0, is denotedΩ(t) and is the minimum slack at time

t among all the jobs in the hyperperiod. That is,

Ω(t) =

0 ∃Ji, Di > t andωi(t) < 0

min(ωi(t)) ∀Ji, Di > t andωi ≥ 0

Based on these definitions, the system slack at timet is the maximum amount of time that job execution can be

delayed without causing any jobs (both current and future) to miss their deadlines. Henceforth, unless specified

explicitly, the termslackwill be used to refer to the system slack.

If the system slack is computed by looking at the slack of all N jobs in the hyperperiod, the complexity would

9

be O(N). For a more efficient method of slack computation, we use Tia’s method of static computation [18]. In

Tia’s method, the scheduler computes the amount of slack for all periodic requests before runtime and stores them

in a table. This pre-computed slack is then adjusted appropriately during runtime.

To computeΩ(t) efficiently during runtime, periodic requests are grouped inton disjoint sets such that only one

request from each set needs to be examined. At any timet, to compute the system slack, jobs that have finished

execution need not be considered. Suppose that the current job of each taskTi at the time of slack computation,

t, is given byJci whose absolute deadline is denoted byDci . Without loss of generality, suppose we order the

currentn jobs,Dc1 < Dc2 < . . .Dcn . A job in the hyperperiod with deadline aftert is grouped into a subsetZi

if its deadline falls in the range[Dci , Dci+1), i.e. between the deadline of the current job of taskTi and ofTi+1.

The last subsetZn contains all jobs whose deadlines are equal to or greater thanDcn , i.e. all jobs with deadlines

greater than the absolute deadline of the current job of taskTn. This results in grouping all jobs in the hyperperiod

amongn subsets.

Suppose a low priority jobJcj executes ahead of a higher priority job. Also suppose thatJcj falls in the group

Zi. Then, the portion that is subtracted from the initial slack of a job, is constant for all jobs in the setZi−1. This

is because the absolute deadlines ofall jobs inZi−1 is less than the absolute deadline of the jobJcj in Zi. Hence,

the same amount has to be subtracted for all these jobs. Thus the job inZi with the minimum slack at timet will

also be the job with the minimuminitial slack att = 0. To obtain the minimum slack at any timet, the jobs with

minimum slack is each subsetZi need to be examined. This results in a lookup ofn jobs.

Now, for an efficient retrieval of the jobs with minimum slack in each subset, Tia’s method is as follows. Jobs

J1, J2, . . . JN are assumed to be arranged in the non-decreasing order of their deadlines. Now, each subsetZi will

contain the jobsJci , Jci+1, Jci+2 . . . Jcn An N x N table containing the initial slack of all jobs is created at time

t = 0 with entries asχ(i, j). An entryχ(i, j) is the minimum slack of all jobsJk, for k = i, i + 1, . . . , j − 1, j.

Conceptually,χ(i, j) is the minimum slack of all jobs with deadlines in the range[Dci , Dcj]. The system slack at

time t = 0 can be calculated as,Ω(0) = χ(1, N). The initial slack of a jobJk is given asχ(k, k).

This pre-computed slack of jobs in a subsetZi is updated as slack is consumed by CPU idling and execution of

lower priority jobs. The minimum slack at timet, of all jobs in the subsetZi is computed as,

χi(t) = χ(ci, ci+1 − 1)− I(t)−
n∑

k=i+1

fck
(t)

∀i = 1, 2, ...n− 1

Minimum slack of all jobs in the subsetZn is given by,

10

χn(t) = χn(0)− I(t)

Thus the slack of the system att is the minimum slack of all the jobs at timet, given by

Ω(t) = min(χi(t))∀1≤i≤n

Since, only the minimum slack inn subsets need to be computed, we can compute the system slack with O(n) time

complexity.

4.2.2. The SURE Algorithm

With SURE, if a device is in theactivestate, ready jobs requiring the device are executed in succession such that

few device state changes occur. Alternatively, if a device is in theidle state, the execution of jobs is delayed as

long as possible so that the jobs do not miss their deadlines but also allows the device to be in theidle state for a

longer duration. The heuristic here is that a device state change fromactiveto idle or vice-versa is delayed as long

as possible while still upholding temporal constraints.

For instance, if an I/O device isidle and a job requiring that device is released, then if there is system slack at

that time, the device is allowed to stay idle till system slack becomes zero. After this, the job has to be executed

to meet its deadline. Similarly, suppose a device wasactive, and the job with the nearest deadline, i.e., the highest

EDF priority job, did not require the device (henceforth, we use the term priority to mean the priority assigned by

the EDF scheduling algorithm). At this time, there could be another lower priority job requiring the same device. If

there is slack in the system, the higher priority job could be deferred and the lower priority job is executed till there

is no more slack in the system. Now, the higher priority job has to execute to meet its deadline. The overall result

of the algorithm is that smaller chunks of device idle times and usage times are grouped together. This results in

reducing the total number of state transitions in the hyperperiod. The algorithm is presented in Figure 1.

The algorithm combines slack utilization with EDF to produce an energy-conserving (but non-work-conserving)

schedule. Att = 0, all devices are in theidle state. Jcurr corresponds to the currently executing job and is

initialized toφ. Each scheduled job is given an execution budget before execution. The execution budget ofJcurr

is tracked with the variableBcurr, which is initialized to zero. The scheduler is invoked when a job is released or

when a job completes or finishes its execution budget. The boolean variablenoSlackis used to indicate that there is

no slack in the system and is initially madefalse. The boolean variablecomputeSlackdetermines when to compute

the system slack and is madefalseat t = 0.

11

scheduler():
Initialize at t = 0: {

noSlack ← false;
Jcurr ← φ;
Bcurr ← 0;
computeSlack ← false;
devShare ← φ;
return;

}
If (t: instance when job is released){

If (Jcurr == φ) // the CPU is idle
computeSlack ← true

else
computeSlack ← false

If (noSlack) { // the system has no slack
do EDF();
return;

}
}
If (t: instance when job finishes its execution budget){

If (job queue is empty){
Jcurr ← φ; // make CPU idle
Bcurr ← 0;
return;

}
computeSlack ← true; // need to recompute slack

}
If (computeSlack) {

ComputeΩ(t);
If (Ω(t) > 0)

do SURE ();
else

do EDF();
}

do EDF(){
If (Jcurr 6= Jhigh) {

devShare ← {ΛT (curr) ∩ΛT (high)}; // devShare is the set of devices
shared byJcurr andJsh

Make devices in{ΛT (curr) − devShare} idle; // the set ofactivedevices not
required byJsh is madeidle

Make devices in{ΛT (high) − devShare} active; // the set ofidle devices re-
quired byJsh are madeactive

Jcurr ← Jhigh; // execute the highest priority job
Bcurr ← ehigh;
noSlack ← true;

}
return;

}
do SURE (){

If (Jcurr 6= φ) {
// Determine the jobJsh which shares the maximum number of devices withJcurr
devShare ← {ΛT (curr) ∩ ΛT (sh)};
If (|devShare| == 0) { // no job share any device withJcurr

Make devices in{ΛT (curr)} idle; // Make all devices used byJcurr idle
Jcurr ← φ; // Make CPU idle

}
else{
Make devices in{ΛT (curr) − devShare} idle;
Make devices in{ΛT (sh) − devShare} active;
Jcurr ← Jsh;
}

}
Bcurr ← Ω(t);
noSlack ← false;
return;

}

Figure 1. SURE Scheduling Algorithm.

At t = 0, when a job is released, since all devices are in theidle state, if there is slack in the system, the

execution of jobs is deferred to keep the devices in theidle state as long as possible. Hence,computeSlackis made

true and slack is computed. If system slack is greater than zero, thendo SURE()is invoked. Here,Jcurr remains

equal toφ andBcurr is made equal toΩ(t). When this execution budget expires, the scheduler is invoked again.

Now, since all the system slack has been consumed,do EDF() is invoked and the job with the nearest deadline or

the highest priority job,Jhigh is executed. The devices required by this job, as specified byΛT (high) will all be

changed to theactivestate.T (high) refers to the task of the highest priority jobJhigh.

Jhigh will execute till it completes, at which point the scheduler is invoked again. Whenever a job completes or

finishes its budget, slack is computed anddo SURE ()is invoked. Now, if there is another job,Jsh, which shares

the maximum number of devices with the previously executed job, thenJsh is executed immediately.devShare

denotes the set of devices shared byJcurr andJsh. Someactivedevices which are not needed byJsh will be made

idle and otheridle devices required byJsh will be madeactive. Jd is executed with a budget equal to the system

slack at that time. However, if none of the ready jobs require any of theactivedevices, then the CPU is idled for a

time equal to the system slack.

After Jd finishes its execution budget, the SURE scheduler is invoked again. If there are no more jobs to execute,

the CPU is idled andBcurr is made zero. Allactivedevices will be madeidle. Again when a job is released, its

execution is delayed as much as possible till there is no more slack.

12

λ Device Idle Times

0 2 4 6 8 10 12 14 16 2018

J1,1 J1,2 J1,3 J1,4 J1,5J2,1 J2,2 J1,6 J1,7 J1,8 J1,9 J1,
10

J2,3 J2,4

λ Device Idle Times Device is made idle Device is made active

EA-EDF Schedule

SURE Schedule

0 2 4 6 8 10 12 14 16 2018

J1,1 J1,2 J1,3 J1,4 J1,5J2,1 J2,2 J1,6 J1,7 J1,8 J1,9 J1,
10

J2,3 J2,4

Figure 2. EA-EDF and SURE Schedules for {T1, T2}, T1 = (2, 1, {λ}), T2 = (5, 1, {λ}).

For non-preemptive or blocking versions of SURE, one simply needs to change thedo EDF() and slack compu-

tation routines to support non-preemptive or partially-preemptive EDF scheduling and to correctly compute slack

under these circumstances.

Example: Consider the task set{T1, T2}, T1 = (2, 1, {λ}), T2 = (5, 1, {λ}) where the deadline is equal to the

period and release time is0. Both tasks require deviceλ. The hyperperiod is10. Fig. 2 shows both the EA-EDF

schedule and the SURE schedule for the task set where the deviceλ is idle whenever the CPU is idle (since all

tasks use deviceλ). At t = 0, the deviceλ is idle. With EA-EDF the idle times in a hyperperiod are{1, 1, 1}
time units and the total number of switches is6. Since the task sets have zero phase, the EA-EDF schedule will

be the same in all subsequent hyperperiods. With the SURE schedule, att = 0, the deviceλ is idled for1 time

unit. At t = 1, the highest EDF priority job is executed. Subsequent eligible jobs which requireλ are all executed

in succession. Att = 7, the ready job queue becomes empty and the CPU is idled. The device is changed to

the idle state. Att = 8, J1,5 is released. But, sinceλ is already in theidle state, execution of this job is delayed

as much as possible. The device remains in theidle state till t = 9. The remaining jobs all execute in time and

complete within their deadline. With slack utilization, the device idle time is1 time unit in the beginning of the

first hyperperiod. Subsequently, longer idle times of2 time units are obtained. The total number of switches in a

hyperperiod is reduced to3 and the total idle time, of course, remains constant.

13

4.3. Feasibility

This section presents a necessary and sufficient feasibility condition for the preemptive SURE scheduling algo-

rithm. The condition is the same utilization condition used for preemptive EDF scheduling of synchronous periodic

task sets:U ≤ 1, whereU represents the processor utilization of the task set. (The non-preemptive and partially

preemptive versions of SURE require different scheduling conditions, which are beyond the scope of this paper.)

The feasibility condition assumes that before a job is executed, it must be ensured that the devices requested by

the task are in theactivestate. If the job release time is known in advance, a timer can be used to switch the devices

to theactivestate. Alternatively, device switch times can be incorporated within the slack computation to ensure

that the devices are in theactivestate before the execution of the job. In this section, we assume either one of these

methods are employed to ensure that before a job executes, all devices in the DRS of its task are in theactivestate.

Another point to note is that, although it is not explicitly mentioned in the algorithm, if a device is idle for a time

less than2Psw, SURE will not switch the device to theidle state. This is to ensure that the device has sufficient

time to transition back from theidle state to theactivestate before job execution begins.

Intuitively, the reason the simple utilization test ofU ≤ 1 is a necessary and sufficient condition for the preemp-

tive SURE algorithm is that SURE reduces to EDF scheduling whenever there is no system slack. However, the

following lemmas are required before we can actually prove the temporal correctness of the SURE algorithm.

Let the symbolJi denote a job, fori = 1 to N , whereN is the total number of jobs released in the hyperperiod.

Lemma 4.1. If U ≥ 1, there is no slack, that is,∀t ≥ 0, Ω(t) = 0.

Proof: Let the slack of a jobJi at t beω(t). At t = 0, ω(0) = Di −
∑

Dj≤Di

ej , whereDi is the absolute deadline

of Ji. At t = 0,

ω1(0) = D1 −
∑

Dj≤D1

ej

ω2(0) = D2 −
∑

Dj≤D2

ej

. . .

ωi(0) = Di −
∑

Dj≤Di

ej

Since the tasks are synchronous andH = lcm(pi), every task has one job with the deadline asH. Thus, there will

14

ben jobs with deadlines asH. This set of jobs has the slack as,

ωk(0) = H −
∑

Dj≤H

ej

= H − {e1 + e2 + . . . + eN}

= H − {sum of execution times of all jobs in H}

But, {sum of execution times of all jobs in H} =
n∑

i=1

ei · H

pi

= U ·H

Thus,ωk(0) = H − U ·H

= H · (1− U)

Since,U ≥ 1, ωk(0) ≤ 0

Since slack gets consumed as time progresses, the slack of a job at any time cannot be greater than its slack at time

zero. Thus we have,

∀t ≥ 0, ωk(t) ≤ ωk(0) ≤ 0

⇒ ωk(t) ≤ 0

At any timet ≥ 0, from the definition of system slack,

Ω(t) = 0

Hence, ifU ≥ 1, there is no slack at any timet ≥ 0.

Lemma 4.2. When there is no slack, SURE reduces to EDF.

Proof: In the algorithm presented in Section 4.2.2, whenever the system slack is zero, control goes todo EDF()

procedure. If the scheduler was invoked because a new job was released, then control goes directly todo EDF(). If

the scheduler was invoked because a job finished execution,computeSlack is madetrue. When there is no slack

and there are jobs to execute, the control goes todo EDF ().

In do EDF (), if the CPU had been idle till now, then a newly released job would immediately execute. If a

15

lower priority job had been executing, it would be preempted by the newly released job. If there are no jobs to

execute, then the CPU is idled. Thus, at all times, if there is no slack, the highest EDF priority job is executed each

time the scheduler is invoked. In addition, the job is executed immediately since there is no slack at any time to

defer the execution of the job. Hence, the algorithm reduces to EDF.

Lemma 4.3. In an interval[t1, t2] where the CPU is never idled, if for some arbitrary jobJk with absolute deadline

at Dk ≥ t2 and its release timerk ≤ t1 andωk(t2) < 0, thenωk(t) < 0, ∀t, t1 ≤ t ≤ t2; the system slack is never

positive in the interval[t1, t2].

Proof: We prove this Lemma by contradiction. Suppose thatti is the last instant beforet2 such thatΩ(ti) ≥ 0.

Given that slack of jobJk at t2 is less than zero and from the definition of the slack of a job, we have,

ωk(t2) < 0

⇒ ωk(t2) = Dk −
∑

Di≤Dk

ei − I(0, t2)−
∑

Di>Dk,ri<t2

fi(t2) < 0 (2)

Since CPU is never idled in[t1, t2], I(0, ti) = I(0, t2). In addition,

∑

Di>Dk,ri<t2

fi(t2) =
∑

Di>Dk,ri<ti

fi(t2) +
∑

Di>Dk,ti≤ri<t2

fi(t2)

Substituting in Equation (2),

Dk −
∑

Di≤Dk

ei − I(0, ti)−
∑

Di>Dk,ri<ti

fi(t2)−
∑

Di>Dk,ti≤ri<t2

fi(t2) < 0

But, Dk −
∑

Di≤Dk

ei − I(0, ti)−
∑

Di>Dk,ri<ti

fi(t2) = ωk(ti)

⇒ ωk(ti)−
∑

Di>Dk,ti≤ri<t2

fi(t2) < 0

⇒ ωk(ti) <
∑

Di>Dk,ti≤ri<t2

fi(t2) (3)

The term
∑

Di>Dk,ti≤ri<t2

fi(t2) denotes the CPU demand by jobs with lower priority thanJk. The lower priority

jobs are given CPU time by the SURE scheduler only if there is system slack. From the assumption thatti is the

16

last point beforet2 such thatΩ(ti) ≥ 0, we have,

∑

Di>Dk,ti≤ri<t2

fi(t2) ≤ Ω(ti)

⇒ ωk(ti) <
∑

Di>Dk,ti≤ri<t2

fi(t2) ≤ Ω(ti)

⇒ ωk(ti) < Ω(ti)

By definition of slack, this is possible only ifΩ(ti) = 0 andωk(ti) < 0. Thus, we have proved thatωk(t) < 0,

∀t, t1 ≤ t ≤ t2.

Hence, by definition of system slack,Ω(t) = 0, ∀t, t1 ≤ t ≤ t2. This means that the system slack is never

positive in the interval[t1, t2].

Lemma 4.4. Consider an interval[t0, t2] whereωk(t2) < 0 andt0 is the last instant beforet2 at which the CPU

has no jobs to execute. Supposet1 is the last CPU idle instant beforet2, t0 ≤ t1 < t2, andt0 ≤ rk ≤ t1, whererk

is the release time of some jobJk with absolute deadline atDk ≥ t2 thent0 = t1.

Proof: In the interval[t1, t2], the CPU is never idled sincet1 is the last instant beforet2 at which the CPU is idle.

It is also given thatrk ≤ t1 andωk(t2) < 0. Thus, from Lemma 4.3,ωk(t) < 0, ∀t, t1 ≤ t ≤ t2. And the system

slack is never positive in the interval[t1, t2]. Thus att1, slack of jobJk is less than zero,

ωk(t1) < 0

⇒ ωk(t1) = Dk −
∑

Di≤Dk

ei − I(0, t1)−
∑

Di>Dk,ri<t1

fi(t1) < 0 (4)

∑

Di>Dk,ri<t1

fi(t1) =
∑

Di>Dk,ri<t1

fi(t0) +
∑

Di>Dk,ri<t1

fi(t0, t1)

The term
∑

Di>Dk,ri<t1

fi(t0) refers to the amount of time jobs with deadline greater thanDk, have executed tillt0.

This implies that these jobs have to be released beforet0. Hence, we can change the notation to
∑

Di>Dk,ri<t0

fi(t0).

Also, sincet0 is the last instant beforet2 at which the CPU has no jobs to execute,
∑

Di>Dk,ri<t1

fi(t0, t1) can be

made equal to
∑

Di>Dk,t0≤ri<t1

fi(t0, t1). This term
∑

Di>Dk,t0≤ri<t1

fi(t0, t1) refers to the CPU time allotted to jobs

17

with priority lower thanJk but released in[t0, t1]. Thus,

∑

Di>Dk,ri<t1

fi(t1) =
∑

Di>Dk,ri<t0

fi(t0) +
∑

Di>Dk,t0≤ri<t1

fi(t0, t1)

Since the CPU is idle tillt1, these jobs will not be allotted any CPU time i.e,
∑

Di>Dk,t0≤ri<t1

fi(t0, t1) = 0.

∑

Di>Dk,ri<t1

fi(t1) =
∑

Di>Dk,ri<t0

fi(t0)

Substituting this in Equation (4)

Dk −
∑

Di≤Dk

ei − I(0, t1)−
∑

Di>Dk,ri<t0

fi(t0) < 0

Also, I(0, t1) = I(0, t0) + I(t0, t1). Substituting this and rearranging the terms,

{
Dk −

∑

Di≤Dk

ei − I(0, t0)−
∑

Di>Dk,ri<t0

fi(t0)
}
− I(t0, t1) < 0 (5)

But, Dk −
∑

Di≤Dk

ei − I(0, t0)−
∑

Di>Dk,ri<t0

fi(t0) = ωk(t0)

Substituting in Equation (5),

ωk(t0)− I(t0, t1) < 0

⇒ ωk(t0) < I(t0, t1)

But, the CPU is idled fromt0 to t1 by the SURE scheduler only if there is system slack att0.

I(t0, t1) ≤ Ω(t0)

⇒ ωk(t0) < Ω(t0)

But, if the system slack is positive att0, ωk(t0) ≥ Ω(t0), a contradiction. Thus, it must be thatΩ(t0) = 0 and

18

ωk(t0) < 0. Thus, there is no positive slack in[t0, t1]. This also implies that CPU will not be idled fromt0 to t1

andt1 is the last instant at which the CPU is idle beforet2, t0 = t1. Thus, it follows that slack is never positive in

[t0, t2].

Thus, as long as system slack is computed correctly, processing can be delayed until there is no more slack in

the schedule. At that point, the task set is scheduled using EDF. The challenge in proving that SURE generates a

correct schedule arises when tasks are executed “out of order” with respect to EDF when there is non-zero system

slack.

Theorem 4.5. A set of synchronous periodic tasksT = {T1, T2, T3, ...Tn}, with deadlines equal to their periods,

can be feasibly scheduled on a single processor with preemptive SURE if and only if
n∑

i=1

ei
pi
≤ 1.

Proof: For the proof of necessity of the Theorem, suppose thatU > 1. From Lemma 4.1, we know that ifU ≥ 1,

there is no slack. From Lemma 4.2, we know that if there is no slack at any time, then SURE reduces to EDF.

Hence, we can conclude that sinceU > 1, SURE reduces to EDF. We know that ifU > 1, EDF will fail to find a

schedule. Since SURE reduces to EDF, SURE will also fail whenU > 1. Thus, necessity is proved.

t1 DK
t2

Jk

Figure 3. Instance of the SURE schedule when Jk misses a deadline at time Dk.

For sufficiency, assume thatU ≤ 1, but tasks cannot be feasibly scheduled. In Fig. 3, letJk be the first job to

miss its deadline atDk andt0 be the last instant beforeDk at which the CPU has no jobs to execute.t0 can be

traced back to0 if there are no idle instants thereafter. Lett1 be the last instant beforeDk at which the CPU is idle.

Since SURE is a non-work-conserving algorithm, it does not guarantee that a job will be scheduled immediately if

the CPU is free. Hence, the last idle instant of the CPU maybe equal to or after the last instant at which the CPU

has no jobs to execute. Thus,t0 ≤ t1.

Let rk be the absolute release time ofJk. Sincet0 is the last instance beforeDk at which the CPU has no jobs

to execute, it follows that

t0 ≤ rk < Dk

19

Thus, with reference to the release time ofJk, we can define two cases.

a) t0 ≤ rk ≤ t1 < Dk

b) t0 ≤ t1 < rk < Dk

Case (a):t0 ≤ rk ≤ t1 < Dk

In the interval(t1, Dk), the CPU is never idled sincet1 is the last instant beforeDk at which the CPU is idle. It

is also given thatrk ≤ t1. SinceJk misses its deadline atDk, ωk(Dk) < 0. Thus, from Lemma 4.4,ωk(t) < 0,

∀t, t0 ≤ t ≤ Dk. This also means that the system slack is never positive in the interval[t0, Dk] and that CPU is

never idled in[t0, Dk].

ωk(Dk) < 0

⇒ ωk(Dk) = Dk −
∑

Di≤Dk

ei − I(0, Dk)−
∑

Di>Dk,ri<Dk

fi(Dk) < 0 (6)

Since CPU is never idled in[t0, Dk], I(0, t0) = I(0, Dk). In addition,

∑

Di≤Dk

ei =
∑

Di≤t0

ei +
∑

t0<Di≤Dk

ei

Substituting in Equation (6),

Dk −
∑

Di≤t0

ei −
∑

t0<Di≤Dk

ei − I(0, t0)−
∑

Di>Dk,ri<Dk

fi(Dk) < 0 (7)

But,
∑

Di>Dk,ri<Dk

fi(Dk) =
∑

Di>Dk,ri<Dk

fi(t0) +
∑

Di>Dk,ri<Dk

fi(t0, Dk)

To have the CPU allocated to them, these jobs have to be released beforet0,

∑

Di>Dk,ri<Dk

fi(t0) =
∑

Di>Dk,ri<t0

fi(t0)

⇒
∑

Di>Dk,ri<Dk

fi(Dk) =
∑

Di>Dk,ri<t0

fi(t0) +
∑

Di>Dk,ri<Dk

fi(t0, Dk)

20

The term
∑

Di>Dk,ri<Dk

fi(t0, Dk) is the CPU time allocated in(t0, Dk) to ready jobs with lower priority thanJk.

Since there is no system slack in[t0, Dk], these jobs will not be allocated any CPU time. Thus,
∑

Di>Dk,ri<Dk

fi(t0, Dk) =

0. Substituting in Equation (7),

Dk −
∑

Di≤t0

ei −
∑

t0<Di≤Dk

ei − I(0, t0)−
∑

Di>Dk,ri<t0

fi(t0) < 0

Adding and subtractingt0 and rearranging the terms,

(Dk − t0) +
{

t0 −
∑

Di≤t0

ei − I(0, t0)−
∑

Di>Dk,ri<t0

fi(t0)
}
−

∑

t0<Di≤Dk

ei < 0 (8)

But, t0 −
∑

Di≤t0

ei − I(0, t0)−
∑

Di>Dk,ri<t0

fi(t0) = ωj(t0)

where,ωj(t0) is the slack of the job with absolute deadline att0, the instant before the CPU’s job queue becomes

non-empty. Since the tasks are synchronous with deadlines equal to periods, ift0 marks the instant at which some

job is released, it must also mark the absolute deadline of some job,Jj . SinceJk was the first job to miss its

deadline,ωj(t0) = 0. The slack of this jobJj is positive when it finishes executing and when the CPU becomes

idle beforet0. This slack then decreases and att0, the slack of the job is zero. So, (8) becomes,

(Dk − t0)−
∑

t0<Di≤Dk

ei < 0 (9)

But,
∑

t0<Di≤Dk

ei =
∑

t0<Di≤Dk,ri<Dk

ei

=
∑

t0<Di≤Dk,ri<t0

ei +
∑

t0<Di≤Dk,t0≤ri<Dk

ei

Substituting in Equation (9),

(Dk − t0)−
∑

t0<Di≤Dk,ri<t0

ei −
∑

t0<Di≤Dk,t0≤ri<Dk

ei < 0 (10)

21

The term
∑

t0<Di≤Dk,ri<t0

ei refers to the CPU demand of the jobs released beforet0 and with deadlines in(t0, Dk].

Sincet0 is the last instant at which the CPU has no jobs to execute, there can be no jobs released prior tot0 with

deadlines in(t0, Dk]. Thus,
∑

t0<Di≤Dk,ri<t0

ei = 0. So Equation (10) becomes,

(Dk − t0)−
∑

t0<Di≤Dk,t0≤ri<Dk

ei < 0

The term
∑

t0<Di≤Dk,t0≤ri<Dk

ei is the CPU demand of the jobs with deadlines in(t0, Dk] and released in[t0, Dk).

Thus,

(Dk − t0) <
n∑

j=1

⌊
Dk − t0

pj

⌋
· ej

≤
n∑

j=1

(Dk − t0
pj

)
· ej

= (Dk − t0)
n∑

j=1

ej

pj

(Dk − t0) < (Dk − t0) · U

1 < U , a contradiction

This implies that in this case, ifU ≤ 1, SURE will find a valid schedule.

Case (b):t0 ≤ t1 < rk < Dk

In the interval[rk, Dk] the CPU is never idled sincet1 is the last instant beforeDk at which the CPU is idle. Since

Jk misses its deadline atDk, ωk(Dk) < 0. Thus, from Lemma 4.3,ωk(t) < 0, ∀t, rk ≤ t ≤ Dk. This also means

that the system slack is never positive in the interval[rk, Dk].

Suppose thatt3 is the last instant beforeDk such thatωk(t3) ≥ 0. We have intentionally avoided using the

notationt2 to avoid confusion from the previous definition in Lemma 4.3, and Lemma 4.4. Lett4 be the first

instant aftert3 where slack of jobJk is negative i.e,ωk(t4) < 0 wheret4 ≤ rk < Dk. This also means that,∀t,
t4 ≤ t ≤ Dk, ωk(t) < 0. Figure 4 illustrates this case. Note that as assumed here and by the earlier definition of

the slack of a job, a job can have slack less than zero before it is released. Now, att4, the slack of jobJk is less

22

t1 DK
t2

Jk

t3 t4

is released sometime after or equal toJk t4

rk

Figure 4. Instance of the SURE schedule when Jk misses a deadline at time Dk. t3 is the last instant
before Dk such that ωk(t3) ≥ 0 and t4 be the first instant after t3 where slack of job Jk is negative.

than zero.

ωk(t4) < 0

⇒ ωk(t4) = Dk −
∑

Di≤Dk

ei − I(0, t4)−
∑

Di>Dk,ri<t4

fi(t4) < 0

Since CPU is never idled in[t1, Dk], I(0, t4) = I(0, t3). In addition,

∑

Di>Dk,ri<t4

fi(t4) =
∑

Di>Dk,ri<t4

fi(t3) +
∑

Di>Dk,ri<t4

fi(t3, t4)

=
∑

Di>Dk,ri<t3

fi(t3) +
∑

Di>Dk,ri<t4

fi(t3, t4)

Substituting in Equation (11),

⇒ Dk −
∑

Di≤Dk

ei − I(0, t3)−
∑

Di>Dk,ri<t3

fi(t3)−
∑

Di>Dk,ri<t4

fi(t3, t4) < 0

But, Dk −
∑

Di≤Dk

ei − I(0, t3)−
∑

Di>Dk,ri<t3

fi(t3) = ωk(t3)

⇒ ωk(t3)−
∑

Di>Dk,ri<t4

fi(t3, t4) < 0 (11)

ωk(t3) <
∑

Di>Dk,ri<t4

fi(t3, t4) (12)

Thus, a portion of the CPU time from from(t3, t4) is allocated to lower priority jobs with deadlines greater than

Dk. Thus slack ofJk is consumed by lower priority jobs and this can happen because of two reasons:

23

(i) The lower priority jobs are scheduled by SURE.

(ii) The lower priority jobs are scheduled because no higher priority jobs are released yet.

We will consider both cases.

Case (i): Slack ofJk is consumed by lower priority jobs because of SURE scheduler.

If slack is consumed because of the SURE scheduler, we can be assured that the slack consumed is always less

than or equal to the system slack at that time. Hence,

0 ≤ ωk(t3) <
∑

Di>Dk,ri<t4

fi(t3, t4) ≤ Ω(t3)

⇒ 0 ≤ ωk(t3) < Ω(t3)

By definition of slack, this is possible only ifΩ(t3) = 0 andωk(t3) < 0. So,t3 cannot be the last instant before

Dk where slack of jobJk is non-negative and this case reduces to Case (a).

Case (ii): Slack ofJk is consumed by lower priority jobs because higher priority jobs are not yet released.

Slack of a job can be consumed by execution of lower priority jobs or by CPU idling. Since CPU is not idled

in [t1, Dk], it must be that lower priority jobs consumed the slack. If slack ofJk is not allocated by the SURE

scheduler it must be that slack ofJk is consumed by lower priority jobs only because higher priority jobs are not

released beforet4. Thus,t4 marks the instant whenJk or a higher priority job i.e., a job with deadline lesser than

Dk is released. This is in fact similar to the proof of EDF when there are some jobs, which start their current period

earlier than the release time of the job which misses its deadline. Figure 5 illustrates this case.

t1 DK
t2

Jk

t3 t4

Earliest instant at which a job, with
Jk

is released.
priority greater than or equal to

Figure 5. Instance of the SURE schedule when Jk misses a deadline at time Dk and t4 marks the
instant when Jk or a higher priority job is released.

24

We know from Lemma 4.3,ωk(t) < 0, ∀t, rk ≤ t ≤ Dk. Now, atDk, slack of the jobJk is less than zero.

ωk(Dk) < 0

⇒ ωk(Dk) = Dk −
∑

Di≤Dk

ei − I(0, Dk)−
∑

Di>Dk,ri<Dk

fi(Dk) < 0 (13)

Since the CPU is never idled in[t1, Dk], I(0, Dk) = I(0, t4). In addition,

∑

Di>Dk,ri<Dk

fi(Dk) =
∑

Di>Dk,ri<Dk

fi(t4) +
∑

Di>Dk,ri<Dk

fi(t4, Dk)

=
∑

Di>Dk,ri<t4

fi(t4) +
∑

Di>Dk,ri<Dk

fi(t4, Dk)

=
∑

Di>t4,ri<t4

fi(t4)−
∑

t4≤Di≤Dk,ri<t4

fi(t4) +
∑

Di>Dk,ri<Dk

fi(t4, Dk)

The term
∑

t4≤Di≤Dk,ri<t4

fi(t4) refers to the CPU time allocated tillt4 to jobs with deadlines in[t4, Dk]. But, we

know that all jobs with priority equal to and higher thanJk are not released beforet4. Thus,
∑

t4≤Di≤Dk,ri<t4

fi(t4) =

0. Substituting in Equation (13),

Dk −
∑

Di≤Dk

ei − I(0, t4)−
∑

Di>t4,ri<t4

fi(t4)−
∑

Di>Dk,ri<Dk

fi(t4, Dk) < 0

Adding and subtractingt4,

(Dk − t4) +
{

t4 −
∑

Di≤Dk

ei − I(0, t4)−
∑

Di>t4,ri<t4

fi(t4)
}
−

∑

Di>Dk,ri<Dk

fi(t4, Dk) < 0 (14)

But,
∑

Di≤Dk

ei =
∑

Di≤Dk,ri<Dk

ei

=
∑

Di≤t4,ri<Dk

ei +
∑

t4<Di≤Dk,ri<Dk

ei

=
∑

Di≤t4,ri<t4

ei +
∑

t4<Di≤Dk,ri<Dk

ei

25

Substituting in Equation (14) and rearranging the terms,

(Dk−t4)−
∑

t4<Di≤Dk,ri<Dk

ei +
{

t4−
∑

Di≤t4,ri<t4

ei−I(0, t4)−
∑

Di>t4,ri<t4

fi(t4)
}
−

∑

Di>Dk,ri<Dk

fi(t4, Dk) < 0

(15)

But, t4 −
∑

Di<t4,ri<t4

ei − I(0, t4)−
∑

Di>t4,ri<t4

fi(t4) = ωj(t4)

where,ωj(t4) is the slack of the job,Jj , released by some task that releases another job att4. Since the tasks are

synchronous and deadlines are equal to periods,t4 marks the absolute deadline of the jobJj . As Jk was the first

job to miss its deadline,ωj(t4) ≥ 0. Equation (15) becomes,

(Dk − t4)−
∑

t4<Di≤Dk,ri<Dk

ei −
∑

Di>Dk,ri<Dk

fi(t4, Dk) < 0 (16)

The term
∑

Di>Dk,ri<Dk

fi(t4, Dk) refers to the CPU time allocated in(t4, Dk) to jobs with lower priority than

Jk. Since there is no positive slack in[t4, Dk], the CPU will never be allocated to lower priority jobs. Hence,
∑

Di>Dk,ri<Dk

fi(t4, Dk) = 0. So, Equation (16) reduces to,

(Dk − t4)−
∑

t4<Di≤Dk,ri<Dk

ei < 0

(Dk − t4)−
∑

t4<Di≤Dk,r4≤ri<Dk

ei −
∑

t4<Di≤Dk,ri<r4

ei < 0

The term
∑

t4<Di≤Dk,ri<r4

ei refers to the CPU demand of the jobs with deadlines in(t4, Dk] but released beforet4.

We know that there are no such jobs released beforet4. So, this CPU demand is zero. Hence,

(Dk − t4)−
∑

t4<Di≤Dk,r4≤ri<Dk

ei < 0

(Dk − t4) <
∑

t4<Di≤Dk,r4≤ri<Dk

ei

The term
∑

t4<Di≤Dk,r4≤ri<Dk

ei signifies the CPU demand of jobs with deadlines in(t4, Dk] and released in

26

[t4, Dk).

(Dk − t4) <
n∑

j=1

⌊
Dk − t4

pj

⌋
· ej

≤
n∑

j=1

(Dk − t4
pj

)
· ej

= (Dk − t4)
n∑

j=1

ej

pj

(Dk − t4) < (Dk − t4) · U

1 < U , a contradiction

This implies that in this case, ifU ≤ 1, a feasible schedule will be produced. Hence, sufficiency is proved.

5. Evaluation

In this section, we present evaluation results for the EA-EDF, EEA-EDF and SURE algorithms. Section 5.1

describes the the evaluation methodology used in this study. Section 5.2 reports on the performance of the algo-

rithms when the CPU is only shared device. Section 5.3 describes the evaluation of the algorithms on a system

with multiple shared devices, and Section 5.4 compares SURE with the minimum energy schedule generated using

a brute-force algorithm that explores the entire state space to generate a feasible schedule with minimal energy

consumption.

5.1. Methodology

We evaluated the EA-EDF, EEA-EDF and SURE algorithms using a simulator written in the C programming

language. This approach is consistent with the evaluation methodologies of [5] for leakage power and [14, 15, 16]

for I/O devices, which were all offline scheduling algorithms. Moreover, since the main concern in the evaluation

of an energy-saving algorithm is the amount of energy it saves, we evaluated EA-EDF, EEA-EDF and SURE as

offline algorithms. An online implementation of EA-EDF, EEA-EDF and SURE will generate the same amount

of energy savings as the offline simulation as long as the tasks execute with there worst case execution time. In

the case of the SURE algorithm, the primary difference in the online version is the additional overhead incurred in

the adjustments to the pre-computed slack table due to inserted idle time, which has costO(n). For the purposes

of this study, however, this overhead was not measured. Instead each of the algorithms is evaluated as an offline

27

algorithm.

The power requirements and state switching times for devices were obtained from data sheets provided by the

manufacturer when available, or measured experimentally when the data was not provided by the manufacturer.

For example, the Rabbit 3000 was chosen as the CPU device because it is used in many embedded systems,

including several of our own research projects. Rabbit Semiconductor provides a data sheet on the processor that

provides average power requirements for the processor in its various power states. However, the vendor does not

provide the average time taken to change power states. Thus, a series of experiments were conducted to measure

the average power state switch times as well as the average energy consumed at each power state. The measured

amount of energy consumed was very close to the amount computed using the data sheet, given the measured

power state switch times. Thus, the power requirements provided in the data sheet for the device were used for

the simulation experiments. The average power state switch time used in the simulations, however, is based on the

average measured times since the vendor does not provide this information.

Thenormalized energy savingsis used to evaluate the energy savings of the three algorithms. The normalized

energy savings is the amount of energy saved under a DPM algorithm relative to the case when no DPM technique

is used. It is computed using Equation (17).

Normalized Energy Savings=
Energy with No DPM− Energy with Energy Saving Algorithm

Energy with No DPM
(17)

In all of the experiments, 500 task sets were generated randomly with random utilization (whereU ≤ 1). The

number of tasks in any task set was also a random number between 1 and 20.

To ensure that the a device changes its state before the start of the execution of the job utilizing the device, the

absolute time at which the device should be switched to theactivestate is recorded from the schedule. During

execution, an interrupt is issued at this time to switch the device state to theactivestate. Similarly, when a job

finishes execution and the algorithm detects that a device should be switched to theidle state, the power state switch

is carried out. When no DPM technique is used, all devices specified in the DRS of the tasks will remain in the

activestate over the entire hyperperiod. Note that only the first hyperperiod must be simulated since a synchronous

periodic task set is assumed.

28

Device Pactive (mW) Pidle (mW) Psw (mW) tsw (ms)
Rabbit 3000 198 .3729 30.3 12.1

Table 1. CPU Specifications.

5.2. CPU as the Only Shared Device

In this experiment we examined the performance of EA-EDF, EEA-EDF and SURE as if the CPU was the

only shared device. The Rabbit 3000 processor was selected for evaluation purposes. This processor is an 8-bit

29.4MHz embedded processor running the MicroC/OS-II real-time operating system. The power specifications for

the Rabbit 3000 are shown in Table 1, wherePactive andPidle were obtained from the product data sheets provided

by the manufacturer whiletswitch andPswitch were measured experimentally. The Rabbit 3000 processor has a

main oscillator that runs the processor in active mode and a low power 23kHz oscillator that runs the processor in

idle mode. The switching time between the main oscillator and the 32kHz oscillator is 0.9 ms while the switching

time from the 32kHz to the main oscillator is 23.3 ms. The average of these two values was used fortswitch since

the energy conservation model presented in Section 3 assumes that the switching overhead is symmetric for a

device. (Note that most vendors report only a single switching time, if they report any at all.)

In this experiment, the EA-EDF and EEA-EDF algorithms perform exactly the same because the CPU is the

only device used, and both algorithms switch it to the idle state whenever there is no job to execute. Figure 6(a)

shows the normalized energy savings for these two algorithms. Each of the 500 randomly generated task sets

results in a different energy savings. The general trend follows the expectation that the normalized energy savings

should decrease linearly with increases in CPU utilization.

Figure 6(b) plots the normalized energy savings of the SURE algorithm against CPU utilization. The SURE

algorithm performs only slightly better than the EA-EDF and EEA-EDF algorithms in total energy savings. There

is not a significant performance improvement because the switching energy consumed by the Rabbit 3000 processor

is relatively low, and all three algorithms place the processor in the low power state for the same amount of time—

sans switching time.

The obvious conclusion to draw from this experiment is that the EA-EDF algorithm should be selected when

the CPU is the only shared device and the cost of switching power states is low; it has the lowest overhead and

results in nearly the same energy savings as the other two algorithms.

29

(a) Normalized energy savings with either EA-EDF or EEA-EDF. (b) Normalized energy savings with SURE.

Figure 6. Normalized energy savings with only the CPU as a device.

Device Pactive (W) Pidle (W) Psw (W) tsw (ms)
SST Flash SST39LF020 [13] 0.125 0.001 0.05 1
SimpleTech Flash Card [12] 0.225 0.02 0.1 2

TI DSP TMS320C6411 (Digital Signal Processor)[17] 0.63 0.2 0.4 500

Table 2. Device Specifications.

5.3. Multiple Devices

In this experiment we used the same randomly generated task sets created for the prior experiment (i.e., when

the CPU was the only shared device). However, we changed the DRS of the tasks so that each task uses the CPU

and a random number of devices from the set of devices shown in Table 2. The parameters for these devices were

obtained from the product data sheets provided by the manufacturer.

In this case we plotted the normalized energy savings against thetotal device utilization(TDU), which is the

sum of thedevice utilization factorsfor all devices specified in the DRS of the tasks. The TDU can be more than1

since, if a task uses several devices, the device utilization factor of each requested device increases by an amount

equal to the CPU utilization of that task. Figure 7 shows the a plot of the normalized energy savings against the

TDU for EEA-EDF and SURE. In this case, the energy savings of the EEA-EDF algorithm is always at least as

great as the savings for the EA-EDF. Thus, to simply the presentation, only results for the EEA-EDF and SURE

algorithms are plotted together.

30

Figure 7. Normalized energy savings with EEA-EDF and SURE.

On average, SURE saves more energy than EEA-EDF (or the EA-EDF). In most cases, as the TDU increases,

the normalized energy savings decreases. The rationale for this is that as devices are utilized more, the amount of

time they can be kept inidle mode decreases. There are a few instances in which the SURE algorithm actually

results in more energy being consumed than the EEA-EDF algorithm. This is because SURE tries to minimize the

number of switches at a given time, but it does not ensure that the total number of switches is minimized. Thus, a

locally optimal choice may result in a globally suboptimal result, which is not uncommon in heuristic algorithms.

Another metric used to compare the performance of SURE with EEA-EDF is thepercentage of switch reductions

computed using Equation (18).

Percentage of Switch Reductions=
Num of Device Switches with EEA-EDF− Num of Device Switches with SURE

Num of Device Switches with EEA-EDF
(18)

Figure 8 shows the percentage of total device switch reductions performed by SURE as compared to EEA-EDF. A

general trend is that, as TDU increases, the percentage of switch reductions increases. This is expected since, as

device utilization increases, there is a higher probability of SURE finding a ready job requiring the devices which

are already in theactivestate. Hence, the SURE algorithm can more effectively rearrange the jobs to reduce the

number of switches. However as in the earlier cases, the actual value of the percentage of switch reductions is

dependent on parameters of the task set.

Perhaps the most remarkable result from this experiment is not that SURE saves more energy, on average, than

31

Figure 8. Percentage of switch reductions performed by SURE as compared to EEA-EDF.

either EA-EDF or EEA-EDF; it is that the savings is not larger. From Figure 8, it is clear that SURE has the

potential to save much more energy than EA-EDF or EEA-EDF. However, the devices used in this experiment all

have relatively low switching costs, which reduces the benefit of lowering the number of switches. Devices with

much higher switching costs, such as disks, will result in much greater energy savings for SURE compared with

EA-EDF or EEA-EDF.

5.4. Comparison with Minimum Energy Schedule (MES)

To compare the SURE algorithm with theminimum energy schedule(MES) for a task set, we implemented the

brute force method of constructing the entire tree of preemptive schedules for a given task set and selecting the

schedule with the minimum energy. We implemented this by means of a Depth-First-Search method by examining

the tree at each time-tick, which translates into a tree ofH levels. Since preemptive schedules are considered,

at every level, we also consider CPU idling for one time-tick as a job with infinite deadline and execution time.

If a job misses a deadline, then no further jobs at that level of the tree are examined. If a job has not yet been

released, we move on to the next job in the same level without further branching. This simply means that we look

at scheduling only ready jobs at any time. The energy is computed at every level. When all the schedules have

been exhausted, we retrieve the minimum energy value for the given task set. The complexity of this algorithm is

O((n + 1)H−1), wheren is the number of tasks in the task set andH is the length of the hyperperiod.

32

Execution Time Energy Consumed (W)
H MES SURE MES SURE
≤ 10 < 1s < 1s 74 78
≤ 20 > 30min < 1s 121 123
≤ 30 > 30min < 1s 116 120
≤ 40 > 30min < 1s 176 180
≤ 50 > 30min < 1s 138 138
≤ 60 > 1day < 1s 164 164

Table 3. Comparison with the Minimum Energy Scheduler.

We ran experiments forH ranging from10 to 60 time units with varying task temporal parameters and DRS.

Table 3 shows the worst case values for the time taken to execute the Minimum Energy algorithm and the cor-

responding value of the minimum energy for the task set as compared to the SURE algorithm. We stopped at

H > 60, because for some task sets it was taking several days to complete. In fact, forH = 32, n = 4, N = 6,

the Minimum Energy algorithm executed for more than5 days on a Sun workstation.

It can be observed from Table 3, that as we approach higher orders of the hyperperiod, the energy savings with

the SURE schedule is more than 90% of the optimal solution. More importantly, the time taken to compute the

SURE schedule is many orders of magnitude less than the time to compute the MES schedule.

6. Conclusion

Three real-time scheduling algorithms were presented for conserving energy in processors, I/O devices, or de-

vice subsystems. For preemptive versions of all three algorithms,U ≤ 1 is a necessary and sufficient schedulability

condition. The EA-EDF and EEA-EDF algorithms, though relatively simple extensions to EDF scheduling, pro-

vide remarkable power savings when the cost of switching power states is low. As the cost of switching power

states increases, so does the energy savings produced by the SURE algorithm—especially with respect to EA-EDF

and EEA-EDF. Ultimately, the choice of which energy saving algorithm to choose, if any, depends on the temporal

parameters of the task set and devices utilized.

In Section 5, we illustrated that the SURE algorithm does not result in the minimum energy schedule when

multiple devices are shared; none of the three algorithms are optimal in this case. The problem of finding a

feasible schedule which consumes minimum I/O device energy is NP-hard. Hence, our focus was not to find the

optimal solution but to create algorithms that reduce the energy consumption of multiple shared devices and that

can be executed online to adapt to the work load. The preemptive SURE algorithm provides the foundation for a

family of general, non-work-conserving, online energy saving algorithms that can be applied to systems with hard

33

temporal constraints.

References

[1] Advanced configuration & power interface specification. Advanced Configuration & Power Interface, August 2003.
http://www.acpi.info/DOWNLOADS/ACPIspec-2-0c.pdf.

[2] S. Borkar. Low power design challenges for the decade. InProc. Asia South Pacific Design Automation Conference,
pages 293–296, 2001.

[3] L. R. Carley, G. R. Ganger, D. F. Guillou, and D. Nagle. System design considerations for mems-actuated magnetic-
probe-based mass storage.IEEE Transactions on Magnetics, 37(2 Part 1):657–662, March 2001.

[4] R. Golding, P. Bosch, C. Staelin, T. Sullivan, and J. Wilkes. Idleness if not sloth. InProceedings of the Winter USENIX
Conference, 1996.

[5] Y. H. Lee, K. P. Reddy, and C. M. Krishna. Scheduling techniques for reducing leakage power in hard real-time systems.
In Proceedings of the IEEE Euromicro Conference on Real-Time Systems, 2003.

[6] Y. Lin, S. A. Brandt, D. D. E. Long, and E. L. Miller. Power conservation strategies for mems-based storage devices. In
Proceedings of the Tenth IEEE/ACM International Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunications Systems (MASCOTS 2002), Oct. 2002. Fort Worth, TX.

[7] Y. H. Lu, L. Benini, and G. Micheli. Operating-system directed power reduction. InInternational Symposium on Low
Power Electronics and Design, 2000.

[8] Y. H. Lu, L. Benini, and G. Micheli. Requester-aware power reduction. InInternational Symposium on System Synthesis,
pages 18–23. Stanford University, September 2000.

[9] Y. H. Lu, L. Benini, and G. Micheli. Power-aware operating systems for interactive systems.IEEE Transactions on
Very Large Scale Integration Systems, 10(2):119–134, April 2002.

[10] G. Marsh. Data storage gets to the point. InMaterials Today, Feb. 2003.

[11] Microsoft OnNow power management architecture. http://www.microsoft.com/
whdc/hwdev/tech/onnow/OnNowAppPrint.mspx.

[12] Simpletech compact flash card. http://www.simpletech.com/flash/flashprox.php.

[13] SST multi-purpose flash SST39LF020. http://www.sst.com/downloads/datasheet/S71150.pdf.

[14] V. Swaminathan and K. Chakrabarty. Dynamic I/O power management in real-time systems. InProc. International
Conference on Information Fusion (FUSION 2002), pages 965–972, 2002.

[15] V. Swaminathan and K. Chakrabarty. Pruning-based energy-optimal device scheduling in hard real-time systems. In
Proc. International Symposium on Hardware/Software Co-Design, pages 175–180, 2002.

[16] V. Swaminathan and K. Chakrabarty. Energy-conscious, deterministic I/O device scheduling in hard real-time systems.
IEEE Transactions on Computer-Aided Design of Integrated Circuits & Systems, 22:847–858, July 2003.

[17] Texas instruments tms320c6411 dsp. http://focus.ti.com/lit/an/spra373a/spra373a.pdf.

[18] T. S. Tia.Utilizing Slack Time for aperiodic and sporadic requests scheduling in real-time systems. PhD thesis, Univer-
sity of Illinois at Urbana-Champaign, Department of Computing Science, 1995. J. W.-S. Liu, adviser.

[19] P. Vettiger, M. Despont, U. Drechsler, U. Durig, W. Haberle, M. I. Lutwyche, H. E. Rothuizen, R. Stutz, R. Widmer,
and G. K. Binnig. The ’millipede’ - more than one thousand tips for future afm data storage.IBM Journal of Research
and Development, 44(3):323–340, 2000.

[20] M. Weiser, B. Welch, A. J. Demers, and S. Shenker. Scheduling for reduced CPU energy. InOperating Systems Design
and Implementation, pages 13–23, 1994.

34

