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Abstract

Mobile real-time systems must use sensors to scan the environment and adapt to constraints imposed by a dy-

namically changing environment and predictably react to those changes in real-time. Complexity arises in mobile

real-time systems because the computing platform travels through the environment with which the system is inter-

acting. These systems have spatio-temporal requirements in the sense that correct behavior is defined in terms of

both space and time. The focus of this dissertation is mobile real-time platforms that must sense their environment

and avoid obstacles as they navigate from one point to another. We present a design and analysis methodology for

these platforms that integrates spatio-temporal attributes by developing the concepts of processing windows and

zones. Processing windows can become dynamic in different situations relating to the changes in the environment

of a mobile real-time platform or the level of performance required from the platform. Therefore we also propose

an algorithm to adjust the processing windows to meet these requirement while maintaining schedulibilty.

1. Introduction

Traditional real-time systems are concerned only with guaranteeing task execution by a temporal deadline.

Most of these traditional systems do not move within a dynamically changing environment where changes can

affect task execution times, deadlines or the desired platform performance to meet these changes.

Mobile real-time systems must use sensors to scan the environment and adapt to constraints imposed by a

dynamically changing environment and predictably react to those changes in real-time. Mobile real-time sys-

tems add yet one more level of complexity in that the computing platform travels through the environment with

which the system is interacting. These systems have spatio-temporal requirements in the sense that correct be-

havior is defined in terms of both space and time. As real-time systems, computations must be completed within

established response times, but they may also have varying temporal requirements. As spatial systems, the com-

putations performed and their timeliness will be dependent on (i) the location of the platform in its environment,

(ii) the velocity with which the platform is moving, and (iii) the existence of objects in the environment.

The focus of this dissertation is mobile real-time platforms that must sense their environment and avoid ob-

stacles as they navigate from one point to another. We present a design and analysis methodology for these

platforms that integrates spatio-temporal attributes with real-time scheduling. To support dynamic environments,

we divide the path the mobile platform traverses into zones and associate with each zone a processing window.

The spatial dimensions of each zone are dependent on the platform’s sensing capabilities and the existence of

obstacles in the zone. The processing window represents the time interval required to scan a zone and plan a safe

path through that zone. The speed at which the platform can travel is limited by physical attributes of the plat-
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form and the minimal feasible processing window (since this limits the sampling rate of sensors). The challenge,

however, is that the obstacles in the environment also limit platform speed, minimal processing windows, or both

simultaneously. Thus, we propose research for a technique for adjusting platform speed and processing windows

such that the maximum speed less than or equal to the desired speed is maintained while adjusting the processing

window to maintain schedulability of the platform’s real-time tasks.

The remainder of this proposal is organized as follows. Section 2 presents a summary of the background,

motivation and contributions of this dissertation. Section 3 presents the main concepts that form the basis for the

research in this dissertation. Section 4 presents a summary of preliminary results. Section 5 discusses related

work. Section 6 presents a list of items to be finished to complete the dissertation and Section 7 presents a

proposed time list to finish these items.

2. Background and Contributions

This section provides a summary of the background, motivations and contributions of this proposed disserta-

tion. Section 2.1 provides a background summary about real-time systems. Section 2.2 presents a summary of

the contributions and motivations of this proposed dissertation.

2.1 Real-Time Systems

This section provides a summary of the background, motivations and contributions of this proposed disserta-

tion. Section 2.1 provides a background summary about real-time systems. Section 2.2 presents a summary of

the contributions and motivations of this proposed dissertation.

A real-time system is a system that is required to complete its work and deliver its services on a timely basis.

The main difference between a real time system and a normal system is that a real-time system is not just required

to produce the correct output, but to produce the correct output on time. Before introducing the different real-time

models let us present some essential terms used in real-time systems.

Task: A sequential piece of code that is executed repeatedly with some pattern.

Job: An instance of an execution of a task.

Release time of a job: The time instant the job becomes ready to execute.

Deadline of a job: The time instant by which the job must complete execution.

Relative deadline of a job: Deadline minus the release time of the job.

There are two primary types of timing constraints in real-time systems:hard and soft. In hard real-time

systems, a late job is not allowed because it may cause disastrous consequences. Late completion of a job that
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has a soft deadline is allowed because a few misses of soft deadlines do not produce serious harm.

The most widely used and accepted real-time model is the periodic task model as defined by Liu and Layland

[28]. According to the periodic task model, the real-time system is defined by a set of tasksT = {T1, T2, . . . , Tn}.

Every task releases jobs at a constant interval for each task. The task is defined by four parametersφ, p, e, andd :

φ is the phase of the task—the interval of time between the instant the system started and the release of the

first job of the task;

p is the period between the release of two consecutive jobs of a task;

e is the worst-case execution time of the job;

d is the relative deadline for the job.

However the periodic task model is not suitable for all applications because many real-time applications do not

execute tasks on a periodic basis and there are periods where the processor is not executing any task. Therefore

some alternate models have been suggested. The most important one of them is the sporadic task model defined

by Mok [31]. Each task in a sporadic task setT = {T1, T2, . . . , Tn} has three associated parameters,p, e, andd :

p is the minimum separation period between the release of two consecutive jobs of a task;

e is the worst-case execution time of the job;

d is the relative deadline for the job.

Tasks can be either independent or have shared resources. Examples of shared resources are shared data

in memory, printers and remote servers. Two tasks are independent if they do not share any resources. An

independent task set is a task set where any two tasks in the set are independent.

In real-time systems there are two main schemes used to dynamically schedule jobs online: Fixed Priority

Scheduling and Dynamic Priority Scheduling.

• Fixed priority scheduling: The fixed priority scheduling algorithm assigns the same priority to all jobs of a

task. The priority does not change during application execution. The scheduling decision is made based on

the task priority. When a task is released, alljobs for this task can only be delayed by higher priority tasks

or interrupts. A well known fixed priority algorithm is therate monotonic priority assignment(RM) [28].

This algorithm assigns task priorities based on the rate the tasks execute. The task with the highest rate of

execution is given the highest priority. The task with lowest rate of execution is given the lowest priority.

• Deadline driven scheduling: Deadline driven scheduling is a dynamic scheduling algorithm that assigns

priorities to tasks according to the deadline of their current requests. At each time instant, the scheduler

assigns a priority to each ready-to-execute job and allocates the highest priority job to the processor. This

method of assigning priorities to tasks is a dynamic one and it is different from fixed priority algorithms.
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One of the well known dynamic scheduling algorithms is theearliest deadline first(EDF) scheduling algo-

rithm [28]. In EDF scheduling, at any time instant, it assigns the highest priority to jobs with the earliest

absolute deadline. EDF is known to be anoptimalscheduling algorithm for the class of dynamic scheduling

algorithms. For a given set ofm tasks with an optimal deadline driven scheduling algorithm, the task set is

feasible if and only if

U =
m∑

i=1

ei/pi ≤ 1.

The deadline driven scheduling algorithm is able to achieve full processor utilization.

Another important concept in real-time scheduling is preemptibility. In preemitive scheduling if a higher

priority task is released then the executing task is suspended and the higher priority task is set to execute. The

suspended task will continue executing if no higher priority task is available. In non-preemptive scheduling if a

task is executing it will continue executing until it finishes, even if a higher priority task was released while it is

executing.

2.2 Motivation and Contribution

In many mobile real-time systems, the system needs to maintain or maximize the performance level of the

system. Examples of mobile real-time system performance can be the system velocity, accuracy of position or

ability to execute extra tasks. Also the complex nature of a mobile real-time system usually involves using many

sensors to collect the data and involves utilizing complex planning and control algorithms for navigation. The

tasks controlling sensors and the planning algorithms are usually interdependent with a minimum compulsory

delay between them. The traditional real-time systems described Section 2.1 fail to capture these aspects of

mobile real-time systems. Therefore we propose the concept of processing windows to capture the special aspects

of mobile-real-time systems that cannot be captured by traditional real-time systems.

The motivation behind developing the processing window concept can be summarized in the following points:

• Traditional real-time periodic model does not fit interdependent tasks with inter-delays.

• Traditional real-time periodic model does not relate the deadline of the task to any spatial concept.

• Traditional real-time periodic model does not consider dynamically changing execution requirements due to

the environment.

The main contributions of this dissertation are

• an abstract analysis methodology for mobile real-time systems that integrates spatio-temporal properties

using the processing windows and zone abstractions.
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• an algorithm for adjusting platform speed or performance and processing windows such that the maximum

speed less than or equal to the desired speed (or performance) is maintained or maximized while adjusting

the processing window to maintain schedulability of the platform’s real-time tasks.

3. Concepts

In this section we present the main concepts developed in this dissertation to help model mobile real-time

systems.

3.1 Processing Windows and Zones

We define aprocessing windowas the time interval from the instant the platform starts collecting data to the

moment the platform must finish processing the data. In this context a processing window is the deadline for

execution of one or more interdependent tasks. Also the processing window length can be related to more than

just a pre-defined time interval, as explained in Section 3.2.

The platform’s intended area of exploration is divided into subareas calledzonesso that we can isolate the

computational and spatial (speed) requirements for each zone and perform the analysis separately on each zone.

We define a zone as the area for which the platform collects and processes sensor information, creates a map for

the area and plans its path through the area. The zone boundary is defined by the region of exploration in which

the platform can build a map and safely generate a path trajectory using previously collected sensor information.

A mobile real-time system can be in one four states while it interacts with its environment:

• Stationary System, Static Environment

• Moving System, Static Environment

• Stationary System, Moving Environment

• Moving System, Moving Environment

3.1.1 Stationary System, Static Environment

In this case the system is stationary but still needs to collect data about its environment and process the data

according to time constraints. Because the system is stationary, the zone boundary is defined by the system

sensors’ range. Figure 1 shows an example of the zone boundary for a two dimensional zone where the system

starts collecting sensor data at pointA, and does not move while collecting the sensor data. In Figure 1 the

platform uses sensors with an angle of coverage ofθ and maximum range ofr. In the two-dimensional zone

shown in Figure 1, the zone is a circular section due to the sensor distribution and coverage. Therefore each zone
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Figure 1. Zone Boundary for Stationary System

boundary can be defined by an angle and a radius. From Figure 1 we can see that thezone radiusDi is equal to

the sensor ranger.

In this context, the zone can be any two or three-dimensional shape depending on the distribution and range

of sensors on the platform. For ease of demonstration we will only consider two-dimensional zones in which all

platform sensors provide a two dimensional map. Extension to three dimensions follows the same concepts used

in our two dimensional zone model.

We will define the instant that the platform starts collecting data asdata collection instanttBi and the instant

the platform must finish processing the data for the zone astFi . In this caseWi = [tBi , t
F
i ), and the processing

window durationw can be calculated from Equation (1).

wi = tFi − tBi (1)

3.1.2 Moving System, Static Environment

In this case the system is moving while it is collecting data about its environment. Therefore other factors

relating to the system’s motion such as system’s velocity and safe separation distance from any obstacles in the

path affect the zone boundary. In Figure 2(a) the platform starts collecting data at pointA and continues to move

while collecting sensor data. It is not until pointB that the platform is able to build a map for its intended area

of exploration based on its sensor information. At this point all sensor readings taken on the platform path from

pointA to pointB must be converted relative to pointB. Therefore the zone boundary is reduced. The zone in

Figure 2(b) is further reduced because a safety area has been added for extra precautions due to sensor errors and

braking distance.

In this case thezone radiusDi is equal to the sensor ranger minus the distance the platform moved from

pointA to pointB minus the width of the safety stopping distanceSM . ThereforeDi can be calculated from

7



(a) In motion (b) In motion, safety area in-
cluded

Figure 2. Zone Abstraction: Zone Boundary

Equation (2), whereAB is the distance the platform moved from pointA to pointB.

Di = r −AB − SM (2)

We define the point (in space and time) that the platform finishes planning its path and speed for zoneZi as

planning pointFi. BecauseFi describes both spatial and temporal information,planning pointFi is denoted by

the tuple(tFi , L
F
i ) wheretFi represents the time instant the platform arrives at the pointFi andLF

i represents

the platform position information at pointFi. LF
i is also a tuple whose parameters depend on the nature of the

required position information and the coordinate system used. For a mobile real-time platform that moves in a

two-dimensional cartesian coordinate systemLF
i will be denoted by the tuple(xF

i , y
F
i , ψ

F
i ) wherexF

i andyF
i

represent the platform’sx andy coordinates respectively andψF
i represent the platform’s orientation angle. If

we expand theLF
i tuple in the tuple(tFi , L

F
i ) we can represent planning pointFi in a two dimensional cartesian

coordinate system by the four parameter tuple(tFi , x
F
i , y

F
i , ψ

F
i ). Each zoneZi is bounded by the two planning

points:Fi andFi+1. The platform collects sensor data through zoneZi. The platform’s planing for the next zone

Zi+1 must be finished by the end of the next planning point,Fi+1. Therefore the platform must finish collecting

data, build an environment map and plan for the next zone,Zi+1, before the platform starts moving through zone

Zi+1. We define thezone processing windowW as the time interval from the instant the platform starts collecting

data to the moment the platform finishes planning for the zone. ThereforeWi = [tFi , t
F
i+1), and the processing

window durationw can be calculated from Equation (3).

wi = tFi+1 − tFi (3)
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Figure 3(a) demonstrates the division of the platform’s path into zones and the division of the associated process-

ing time. If the platform operates at the maximum possible rate then the platform must start collecting sensor

information as soon as it finishes planning for the previous zone. As illustrated in Figure 3(a), the platform must

start scanning zoneZi+1 at pointFi.

(a) Zone concept: Maximal Scanning (b) Zone concept: Minimal Scanning

Figure 3. Division of robot’s path into zones

In Figure 3(a) the platform starts scanning the next zone as soon as it finishes planning for the current zone.

In this case the platform is collecting data, building a surrounding map and planning as fast as possible. While

using this approach guarantees that the platform is achieving the best navigational performance, scanning and

planning at this fast rate might not be necessary if we can scan at a lower rate and maintain the desired speed.

Instead of scanning as fast as possible, we can scan at a rate that is necessary to safely maintain the platform’s

desired speed. Scanning at a lower rate provides extra time for the processer to execute other tasks, which might

not have been possible to execute with a maximum scanning rate. At a planning point, the platform has a map

describing its intended area of exploration until the boundary of the zone. If we assume a static environment then

the platform does not need to start scanning until a point somewhere before the end of the zone. This new point

must ensure that the next planning point is at most at the zone boundary.

In this scenario we do not start scanning the next zone at the moment we finished scanning the current zone.
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Therefore we need to introduce the definition of adata collection pointto distinguish between the instant the

platform starts scanning zone,Zi, and the instant the platform finishes planning for the previous zoneZi−1

because they might not be the same. We define the point (in space and time) at which the platform starts collecting

data about its environment from its sensors for zoneZi as data collection pointBi. Using the same methodology

used to represent planning points, data collection pointBi can be represented by the tuple(tBi , L
B
i ), whereLB

i

can be represented by the tuple(xB
i , y

B
i , ψ

B
i ). In a two dimensional cartesian coordinate system we can represent

Bi by the four parameter tuple(tBi , x
B
i , y

B
i , ψ

B
i ).

Figure 3(b) demonstrates this case where the platform does not start scanning as soon as the planning for the

current zone is done, rather it starts scanning at data collection pointBi for zoneZi. In this caseWi = [tBi , t
F
i ),

and the processing window durationw can be calculated from Equation (4).

wi = tFi − tBi (4)

3.1.3 Stationary System, Moving Environment

This case is almost an inverse of the previous case. The zone boundary would be affected by the velocity at which

the environment is moving, the safe separation and the distance from any objects approaching the system.

3.1.4 Moving System, Moving Environment

This case is more complicated and involves integrating many of the concepts presented for the previous cases.

The research presented in this dissertation should provide the necessary basis required for a full modelling of this

case. Therefore we leave this case in the proposed future work. Further research on this case is propped in theTo

Do list of this proposal.

3.2 Dynamic Processing Windows

To derive a feasible processing window, two conditions must hold. First, the processing window interval

must meet the sensor parameter requirements. Second, a sufficient scheduling condition for the scheduling algo-

rithm used must be satisfied. In addition, under different situations the processing window’s length may become

dynamic. Factors that can change processing windows into dynamic processing windows can be summarized as:

• changes in the platform environment.

• increasing the maximum possible platform speed.

• increasing performance for processing window related task.
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Section 3.2.1 presents an overview of schedulability impact on processing windows. Section 3.2.2 presents an

overview of sensor impact on processing window length, and Section 3.2.3 presents an overview of the environ-

mental impact on processing windows.

3.2.1 Schedulibilty Impact on Processing Window Length

We conjecture that any mobile real-time platform will have a set of tasksT = {Tw ∪ Thp ∪ Tlp}, whereTw

is the set of tasks associated with zone processing,Thp is a (possibly empty) set of periodic tasks with higher

priority thanTw andTlp is a (possibly empty) set of periodic tasks with lower priority thanTw. Each set of

tasks can be scheduled using a different scheduling algorithm as long as every task in each set meets its deadline

requirements. This model can be extended to include any soft real-time tasks by including them in a different

lower priority task set.

3.2.2 Sensor Impact on Processing Window Length

The zone processing window of the platform is dependent on sensor parameters representing delays between

sensor readings/invocations, data arrival time, number of sensors, sensor range and sensitivity, and sensor tasks’

execution times. Equation (5) is a general equation for deriving the minimum feasible bound on the zone pro-

cessing window lengthw. The feasibility functiong is a function that is dependent on the sensor(s) and the

associated task(s).n is the number of task inTw, E is the set of execution times for the tasks inTw and∆ is

the set of delays that might exist between the execution of sensor tasks inTw.

w ≥ g(n,E,∆) (5)

For sensors with adjustable ranges,∆ can be further divided into a set of independent delays,∆I, that must

exist regardless of any other sensor parameters and a set of delays,∆R, that depend on sensor ranges limitations.

Since∆R is dependent on the sensor ranges, we can insert the set of effective ranges of platform sensors,R,

directly as a parameter in the functiong.

w ≥ g(n,E,∆I,R) (6)

3.2.3 Environmental Impact on Processing Window Length

The platform depends on sensors to plan its path and to determine the presence of obstacles and their distance.

The maximum speed at which the platform can travel is related to the rate the environment can be scanned and
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signals processed. If the platform moves faster than the sensor signals can be processed, then the motion will be

unsafe because there might be an obstacle in the path that will be undetected at that rate.

The speed of the platform for a zone is dependent on the radius of the zone, the zone-processing window, the

speed of the platform in the previous zone and the existence of obstacles in the zone. We derive the calculation of

the upper bound on the desired speed for the zone,vmaxi, in two distinct cases: an obstacle free environment and

an environment in which obstacles exist.

Figure 4. Maximal scanning with no obstacles

Obstacle Free Environment

We first calculate the upper bound on the zone

speed for the maximal sensor scanning scenario (i.e.,

scanning as fast as possible). Figure 4 demon-

strates this scenario. Initially the platform starts

scanning its intended area of exploration at point

B0 = (0, xB
0 , y

B
0 , ψ

B
0 ). Because it takes the plat-

form w time units to finish collecting the sonar data

and planning the path, it is not safe for the platform

to start moving untilt = w. Therefore the first

planning pointF0 will have the same position coor-

dinates as the first data collection pointB0: F0 =

(w, xB
0 , y

B
0 , ψ

B
0 ). Beyond the first zone, planning

points for the current zone and data collection points

for the next zone will have the same time and posi-

tion,Bi+1 = Fi.

In each zone the platform can travel a maximum distance equal to the zone radiusDi before entering another

zone. The platform also must spend at leastw time units in the zone because that is the time interval required for

the platform to collect sensor data and plan the path for zoneZi. Therefore the maximum speed the platform can

travel safely through zoneZi, while being able to collect sensor data and plan for zoneZi+1, can be calculated

from Equation (7), wheref(vmaxi, vi−1, wi, Di) is a formula that depends on the equation representing velocity

as a function of time and displacement during the time interval the platform traverses the zone.

f(vmaxi, vi−1, wi, Di) = 0 (7)
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Lets consider a two dimensional zone example where the platform travels at a constant speed. In this case

Equation (7) simplifies to Equation (8)

vmax =
Di

wi
(8)

The zone radiusDi can be calculated from Equation (2). If we assume the platform is traveling at the maximum

possible speedvmax then the distance the platform moves between pointsBi andFi is equal tovmax ·w. Therefore

the zone radius can be calculated from Equation (9).

Di = r − vmax · w − SM (9)

Substituting Equation (9) in Equation (8) and solving forvmax we get

vmax =
r − vmax · w − SM

w
(10)

=
r − SM

w
− vmax =

r − SM

2 · w
(11)

If at any plan pointFi we change the zone processing windowwi or change the sensor detection rangeri, then

Equation (11) becomes

vmaxi =
ri − vi−1 · wi − SM

wi+1
, (12)

wherevmaxi+1 is the next maximum speed,wi+1 is the next processing window,wi is the current sensor detection

distance,vi andwi are the current speed and processing window respectively.

Obstacles Exist

If an obstacle exits then the distance the platform can safely move is not the zone radius, but rather the distance

between the obstacle and the platform,Xobs. Therefore ifXobs < Di and we assume that the platform is moving

in speed can be calculated from Equation (13), wheref(vmaxi, vi−1, wi, Xobs) is a formula that depends on the

equation describing the velocity as a function of time and displacement during the transition time interval.

f(vmaxi, vi−1, wi, Xobs) = 0 (13)

vmaxi can be calculated by solving Equation (13) forvmaxi. In an ideal case if the speed transition time is zero
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and the platform is moving in a constant speed through the zone, Equation (13) reduces to Equation (14)

vmaxi =
Xobs

wi
. (14)

If the platform is not using maximal scanning then the platform might switch to maximal scanning if it en-

counters an obstacle because it needs to maintain a higher speed or scan in a different direction in order to explore

alternative paths.

3.2.4 Processing Window Adjustment Algorithm

Under different situations, environmental factors might affect the processing window length, and a higher perfor-

mance level (i.e., speed) might require a different processing window length (typically smaller). Because bounds

on processing window length are already set due to sensor requirements, an algorithm is needed to adjust the

processing window lengths to maximize performance while ensuring schedulibilty. The algorithm should adjust

the processing window length by adjusting sensor or environment parameters (within a possible range). Figure 5

shows a black box diagram of such an algorithm where the inputs to the algorithm are: the schedulibilty require-

ments, sensor requirements and environment requirements. The outputs of the algorithm are: minimum bounds

on the processing window length and an associated set of maximum bounds on system performance parameters.

Figure 5. Processing Window Adjustment Algorithm

A better design approach is to sperate the system schedular from the processing window adjustment algorithm.

The system scheduler schedules the tasks according to the bounds generated by the processing window adjust-

ment algorithm. However, if the system is not schedulable under these bounds, the schedulability requirements

are fed back to the processing window adjustment algorithm as shown in Figure 6.

4. Preliminary Results

We have tested the proposed framework of an instance of the problem on an autonomous mobile robot that

was used as the lead robot in the Robotic Safety Marker project [11, 40, 36]. Through both simulation and
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Figure 6. Processing Window Adjustment Algorithm & Schedular

real experiment, a specific instance of the algorithm described in Section 3.2.4 was developed and tested. The

processing window is adjusted according to the algorithm shown in Figure 7, but only at planning points. The

algorithm starts by setting the sensor detection ranger to the maximum sensor detection range. The upper bound

on the platform speedvmax is set as if no obstacles exist in the platform’s path (as explained in Section 3.2.3).

The initial value is set to its desired speed as long as that value is less than or equal tovmax .

At the end of the zone processing window, there will be two cases: either there is an obstacle in the path or the

path is obstacle free.

Case 1: An obstacle exists.Even though the existence of an obstacle will probably cause the value ofvmax

to drop, the desired speed might still be less than or equal tovmax . If so, set the speed of the platform to the

desired speed.

However, if the desired speed is greater thanvmax and there is a possibility to adjust the speed by reducing the

sensor detection distance (which in turn reduces sensor delays and thereforew), then a new value is calculated

for w. Next a new speed is calculated for the platform, and the zone slack time,tslack, is set to zero.

Case 2: No obstacle exists.If no obstacle exists and the current speed is equal to the desired speed, there

is no need to make a change. The algorithm simply follows the processing described in the previous sections to

computevmax andw.

If the current speed is less than the desired speed, we have to try to maximize the platform’s speed by choosing

the optimal value for the detection ranger that would result in the maximum increase in speed. However, if the

calculated value forr is not within a valid range, we use the lowest sensor rangermin that will give the maximum

possible speed (less than or equal to the desired speed). Each timer is adjusted, zone slack timetslack must be

calculated based on the new values forr andw.
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Figure 7. Speed-processing window adjustment algorithm
Task e (ms) p (ms) Priority

Dead Reckoning 5 17 1
PID 1 50 2

Table 1. Task parameters

4.1 Simulation

Before implementing the algorithm on a real mobile robotic platform we have constructed a simulation to eval-

uate the performance speed adjustment algorithm using Matlab. The simulation assumes ideal speed transition

conditions (i.e., no speed transition time when switching between speeds). The simulation uses the parameters

of an autonomous mobile robot that was used as the lead robot in the Robotic Safety Marker project [11, 40, 36].

The robot has 24 sonar sensors arranged in a ring. Using these sensors the robot builds a map of its environment

and determines the distance to any obstacles in its path. Each sonar sensor is associated with two tasks with

different delays between their execution: a sonar send task that sends the sonar signal from the sensor and a sonar

Without processing
window adjustment

With processing win-
dow adjustment

ttotal (s) 96.48 73.17
v̄ (cm/s) 38.20 48.02
v̄/vdesired(%) 76.40% 96.04%

Table 2. Simulation results summary
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receive task that checks the sensor for the received signal and calculates the distance to the objects in the sensor

direction. In addition, two more tasks are associated with the zone processing window: 1) a map task generates

a map for the platform’s surroundings based on the sensor data, 2) a plan task that processes the generated map

and plans the platforms path and speed for the next zone. For the current sonar senor set, the feasibility function

g is given by Equation (15),

g(n,E,∆I,R) = n · (esend + erecv + τ +
2 · r
340

) + emap + eplan (15)

wheren is the number of sonar sensors used;τ is the delay used to eliminate crosstalk between a received sonar

signal and the next sonar send signal;esend is the execution time of a sonar send task;erecv is the execution time

of a sonar receive task;emap is the execution time of the map task, andeplan is the execution time of the plan

task. The set of higher priority tasks,Thp, are given in Table 1. These tasks are aPID task that controls the robot

motors and aDead Reckoningtask that calculates the robot’s coordinates based on dead reckoning techniques.

The simulation environment is event based and simulates of a 30m x 22.5m space where the robot moves. The

space matrix is projected onto a visualization image where each pixel represents 1cm x 1cm of space.

Because one of the goals of this research is the automatic adjustment of speed and processing windows for each

zone, no obstacle avoidance algorithm was used, instead the robot follows a path that maintains a safe distance

of 60 cm from obstacles. As the platform detects an obstacle in its original path it is forced to change its path

to avoid the obstacle. The robot takes a parabolic path while avoiding the obstacles. This scenario demonstrates

how the existence of obstacles in the platform’s path affects the zone processing window and speed.

The desired speed for the robot in this simulation is 50 cm/s, the robot is using 10 sonar sensors out of its

24 sensors to build its environment map (a smaller number of sonar sensors is used in order to reduce crosstalk

effects).

Figures 8(a) and 8(b) show the simulation of the robot moving along the path showing both zones and actual

sonar range on the robot’s path. Figure 8(a) shows the simulation of the robot traversing the path without using

the speed adjustment, while Figure 8(b) shows the simulation of the robot traversing the path using the processing

window adjustment. The figures show a schematic of the robot at each data collection pointBi, while the zones

start and finish at the planning pointsFi. The figures also show robot velocity and processing window plotted

against the x-coordinate of the path.

We can see in Figure 8(b) that the robot adjusts its sonar range as it gets closer to the obstacle in order to adjust

its processing window and maximize its speed. The simulation also shows that the robot switches its scanning
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(a) Test with no processing window adjustments (b) Test with processing window adjustments

Figure 8. Simulation results

rate to maximal scanning as it faces an obstacle.

Table 2 shows a comparison between both cases in terms of total timettotal needed to traverse the path, average

speedv̄, and the ratio of average speed to the desired speedv̄/vdesired. The result shows that the processing

window adjustment algorithm improved the average speed for the robot over the whole path by about 20%

relative to the desired speed.

4.2 Experiments

We also evaluated the processing window adjustment algorithm on the actual robot described in Section 4.1.

The test scenario is similar to the simulated scenario, but we have adopted a linear approximation of the speed

transition function of Equation (13) given in Equation (16) wherem is a constant dependant on the speed con-

troller. The derivation of the functionf described in detail in [37].

f(vmaxi, vi−1, wi, Xobs) =
−vmax

2
i

2m
+ vmaxi

(
w +

vi−1

m

)
−
v2
i−1

2m
−Xobs (16)

Because one of the goals of this research is the automatic adjustment of speed and processing windows for
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Figure 9. Test Progress Pictures

(a) Zone demonstration on robot path no processing win-
dow adjustments

(b) Zone demonstration on robot path with processing
window adjustments

Figure 10. Experimental test results

each zone, the platform was steered manually through its path, moving closer to objects than the path planning

algorithm would.

We can see in Figure 10(a) that the zones are all the same size because there is no processing window adjust-

ment. We note that when the robot gets closer to the obstacles, the robot scans at faster a rate. Thus the zone

slack distance and time become either shorter or equal to zero. In Figure 10(b) we see that zones become smaller

as the robot gets closer to the obstacle since the robot reduces the sonar range and processing window in order to
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Without processing
window adjustment

With processing win-
dow adjustment

ttotal (s) 85.20 63.53
v̄ (cm/s) 29.74 36.09
vactual (cm/s) 29.97 36.85
v̄/vdesired(%) 59.48% 72.18%
vactual/vdesired(%) 59.97% 73.7%

Table 3. Experimental results summary

increase the robot’s speed. As the robot gets closer to the end of its path, the zones go back to their initial size as

the path clears from obstacles and the robot is able to adjust the processing window back to its initial size while

maintaining the desired speed.

Table 3 shows a comparison between both cases in terms of total timettotal needed to traverse the path,

average speed calculated speedv̄ (calculated by processing window adjustment), average actual speedvactual

(measured from the motors), ratio of average calculated speed to the desired speedv̄/vdesired and the ratio of the

average actual speed to the desired speedvactual/vdesired. These results show that the speed adjustment algorithm

provided about 14% improvement relative to the desired speed. The speed improvement in the experiment was

less than the improvement in the simulation because we have accounted for the speed switching delay by adopting

a linear approximation to Equation (13), described in detail in [37].

5. Related Work

In the context of mobile real-time systems, the most closely related work from the literature is based on the

application of real-time scheduling theory to robots.

Applying traditional real-time systems scheduling theory to robotic applications is not a new concept. Ex-

amples of applying the classic periodic task model to robotics can be found in [26, 2, 32, 35, 14]. Examples of

applying rate monotonic (RM) [28] scheduling algorithm to the control of an autonomous mobile robot can be

found in [4, 14, 34, 41], the earliest deadline first (EDF) [28] scheduling algorithm can be found in [34, 42] and

feedback based scheduling techniques in [17, 27, 41].

An early example of applying real-time scheduling theory to a robotic application is the work by George and

Kanayama [14] in which they applied the RM [28] scheduling algorithm to the control of an autonomous mobile

robot.

Prasad and Burns [35] proposed a method for ranking services on autonomous vehicle system pre-runtime.

Their method assigns a value for each service based on many factors including the time service completes, the

history of invocations of the service, importance of the service, and state of the computer system that the services

are being run on. Their work was supported by simulation results only.
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Wargui et al. [41] used real-time scheduling theory to address the communication time delay in the sensing,

control and action feedback loops of the control system in a mobile robot. The mobile robot is seen as a system

with message queues controlled through a multiplex communication link. The authors include the delays in the

derivation of scheduling bound based on rate monotonic scheduling.

Baccelli et al. [2] used petri nets and marked graphs to analyze the temporal correctness of periodic real-time

tasks under preemptive fixed priority scheduling. They applied their work to a specific software environment

dedicated to the design, verification and the implementation of robotic control systems (ORCCAD).

Miyata et al. [32] developed a task assignment system for a team of robots handling flexible materials. Their

task assignment algorithm used task templates to divide the work done by robots in to tasks and assigned the

tasks to robots based on the number of free robots and task priorities. However, their work did not consider hard

deadlines or real-time scheduling theory. Neither did it relate any of the real-time requirements to the robots’s

velocity.

Li et al. [26] presented an algorithm to distribute periodic real-time tasks on a team of mobile robots. The

proposed method converts robotic applications into strategies that can be modelled with acyclic task graphs.

Then they proposed an algorithm to distribute the task graphs to member robots in a team to achieve feasibility.

However, their work did not consider the effect of spacial or velocity requirements of the environment on the

real-time characteristics of the robot.

Zaera et al. [42] developed a real-time multithreading robotic application under the Windows NT operating

system. Several mobile robots transport tiles over the factory floor using the shortest path from their current

positions to the destinations. They argued that static real-time scheduling algorithms are restrictive and inflexible

for many non-deterministic eal-time systems including their application. They used the EDF algorithm with PIP

(Priority Inheritance Protocol).

Piaggio et al. [34] compared two different real-time scheduling policies in the navigation of an autonomous

mobile robot: preemptive RM and non-preemptive EDF. From their experimental results their conclusion was

that non-preemptive EDF is more efficient than RM at higher loads due to the reduction in the thread number of

context switches. They also argued that non-preemptive EDF is preferable from a programming point of view

because it is easier to implement.

Beccari et al. [4] presented rate modulation scheduling techniques for adaptation of soft real-time loads to

available computation capacity in the context of autonomous robot control architectures. These techniques are

used for overload management due to the high number of sensors and the need to perform complex reasoning

activities, especially when operating in dynamic and possibly unstructured environments. Their methods are
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based on the knowledge of worst-case execution time of tasks and are focused on the period adjustment of soft

real-time tasks within a range of admissible rates. Their work was based only the the RM scheduling algorithm.

Our work considers fixed priority scheduling of tasks related to zone processing windows.

Lin et al. [27] present another feedback based real-time adaptive scheduling method for an autonomous vehicle

which is used to spray herbicide in agriculture production. They used the idea of feedback control to adjust the

speed of the vehicle based on the a deadline miss ratio and CPU utilization of the vehicle system.

While many of the previously mentioned papers applied real time scheduling theory to a robotic application,

none of these papers considered the execution requirements of the robots sensing and planning as a factor in the

robot’s velocity calculations. The current literature does not address the issues of using fixed priority scheduling

of processing windows for mobile platforms whose workload changes with the environment.

The closest work to our work is the work done by Hassan et al. [17]. Their work considers the variability of

the system load and temporal requirements. They use a feedback control scheduler (FCS) and a flexible server

(FS) for a hybrid mobile robotic system (deliberative and reactive). The FCS scheduler permits the adaptation

of the temporal requirements. However their work does not relate the velocity calculation to the robot’s sensing

abilities or changes in the environment. Their work and results are purely based on theoretical and simulation

results without actual experiments with a robotic platform.

6. To Do

1. Research Case 2: Stationary System, Moving Environment.

2. Generalize the algorithm for adjusting processing windows described in Section 3.2.4.

3. Simulation and implementation

• Simulation: A Simulation of a mobile real-time system executing different task sets moving under differ-

ent environment conditions will be implemented. The simulation evaluates the the zone and processing

window abstractions and the generalized processing window adjustment algorithm.

• Implementation (Case Studies): I have worked on four robotic platform during my PhD that can serve as

platforms for implementation and evaluation of the framework proposed in the dissertation. These robotic

platforms are

(a) (Companion) Lead Robot in the Robotic Highway Safety Marker Project [11, 40, 36]. Companion

consists of seven units: main unit, power unit, communication unit, localization unit, sonar unit, sensor

unit and motor unit. The main unit, which is the central processing unit of the foreman, consists of

a PC/104-Plusembedded processor system running Windows CE with RS232 and RS485 serial ports
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(a) Companion Robot (b) RSM Robot

Figure 11.

and a parallel port interface. The operating system for the main unit is Windows CE. The power unit

consists of two 12V batteries and DC converters. It supplies±12V and±5V voltages for the system. A

standard RS232 serial port is used to interface with the communication unit—a 9XStreamTM 900 MHz

OEM RF module. The main control is differed from the PC/104-Plus to a laptop running windows XP.

The robot is shown Figure 11(a).

(b) Follower Robots in the Robotic Highway Safety Marker Project (RSMs). These robots are used as

the followers in the Robotic Highway Safety Marker Project [11, 40, 36]. The robotic safety barrel

replaces the heavy base with a mobile robot that transports the safety barrel. These robots have a base

diameter of 50 cm and 20 cm diameter wheels that are independently driven by two motors. The RSMs

utilize a Rabbit 3000 processor [38] that runs MicroC-OSII [21]. The robots use communication unit—a

9XStreamTM 900 MHz OEM RF module to communicate with leader robot. In addition the robots have

a GPS unit. The robot is shown in Figure 11(b).

(c) Cliff-bots for Planetary Exploration: The Cliff-bot system consists of three individual planetary rovers

that work as a team to explore the surface of a cliff [33]. Two of the rovers, designated Anchor-bots

assist the motion of a third rappelling Cliff-bot down and along a cliff face using tethers. These rovers
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work together, as a team, in a tightly coordinated motion. The Anchor-bots use winches to control the

tension in the tethers and assist the Cliff-bot with motion in any direction along the surface of the cliff

or canyon wall. All of these rovers utilize a Rabbit 3000 processor [38] that runs MicroC-OSII [21]. All

rovers measure tether speed using a motor encoder. The Cliff-bot is also equipped with two load cells to

measure the tension in the tethers. The rovers communicate with each other and a PC through ethernet

(to be upgraded to wireless ethernet). The rovers are shown in Figure 12.

(d) Crane-bots: The Crane-bot system consists of three individual rovers. Two Crane-bots and a Wall-bot.

The Wall-bot is used to maneuver along the side of a building for surveillance. The Crane-bots are the

same as the anchor-bots for planetary exploration but with cranes added to the rovers. The Wall-bot is

a lighter robot that cannot drive on the side of the building. The Crane-bots rappel the Wall-bot on the

side of the building through tethers. In this case, the rappelling robot is completely controlled by the

winches on the anchor robot. The rovers are shown in Figure 13.

We already have preliminary results tested on Companion. The other platforms serve as possible candi-

dates for implementation case studies.

4. Writing the dissertation

Figure 12. Cliff-Bots Rovers for Planetary Explanation
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(a) Crane-Bot Rover (b) Wall-Bot System Setup

Figure 13. Crane-Bot Rovers

7. Time Table

1. Research Case 2: Stationary System, Moving Environment (3-4)Weeks.

2. Develop an algorithm(s) for adjusting processing windows (4-5) Weeks.

3. Simulation and implementation (Hard to tell, depends on 1)

4. First dissertation draft (6-8 Weeks)

5. Graduate by December 2007
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