Cluster Computing 0 (2000) ?-?

LSMAC vs. LSNAT: Scalable Cluster-based Web Servers

Xuehong Gan, Trevor Schroeder, Steve Goddard, and Byrav Ramamurthy

Department of Computer Science and Engineering

University of Nebraska—Lincoln
Lincoln NE 68588-0115, U.S.A.

Server scalability is more important than ever in today’s client/server dominated network environments. Recently,

researchers have begun to consider cluster-based computers using commodity hardware as an alternative to expensive

specialized hardware for building scalable Web servers. In this paper, we present performance results comparing two

cluster-based Web servers based on different server architectures: OSI layer two dispatching (LSMAC) and OSI layer

three dispatching (LSNAT). Both cluster-based server systems were implemented as application-space programs running

on commodity hardware in contrast to other, similar, solutions which require specialized hardware/software. We point

out the advantages and disadvantages of both systems. We also identify when servers should be clustered and when

clustering will not improve performance.

Keywords: Internet, HT'TP, Web server, Web server clustering, LSNAT.

1. Introduction

More and more companies have turned to the World
Wide Web (WWW) as an alternative way to provide
channels for software distribution, online customer ser-
vice, and business transactions. The function per-
formed by the Web server is critical to a company’s
business. Successful companies will need to handle mil-
lions of “hits” on their server as well as handle millions
of dollars in transactions per day. Server overload is
frustrating to customers, and harmful to companies.

The first option many companies use to scale their
Web service is simply to upgrade the server to a larger,
faster machine. While this strategy relieves short-term
pressures, many companies find that they are repeat-
edly increasing the size and power of the server to cope
up with the demand for their services. The increasing
use of dynamic content such as CGI only serves to am-
plify this problem. What companies need for their Web
sites is incremental growth and massive scalability—the
flexibility to grow with the demands of the business
without incurring large expenses. One such solution
is a cluster-based Web server. Clustering a few low-
cost commodity systems is usually a cheap alternative
to upgrading a single high-end Web server with faster

hardware.

In a non-clustered server, there is only one Web
server serving the requests sent to one hostname or
Internet Protocol (IP) address.
cluster-based server, several back-end Web servers coop-

In contrast, with a

eratively serve the requests addressed to the hostname
or IP address corresponding to the company’s Web site.
In general, all of these servers provide the same content.
The content is either replicated on each machine’s lo-
cal disk or shared on a network file system. Each re-
quest destined for that hostname or IP address will be
distributed, based on load-sharing algorithms, to one
back-end server within the cluster and served by that
server. The distribution is realized by either a software
module running on a common operating system or by a
special-purpose hardware device plugged into the net-
work. In either case, we refer to this entity as the ‘dis-
patcher’. Busy sites such as Excite, Inc. depend heavily
on clustering technologies to handle a large number of
requests [1].

We implemented and compared two different cluster-
based Web servers using two different Web server clus-
tering technologies (Figure 1). The first is Load Shar-
ing using Medium Access Control, or LSMAC (based
on OSI layer two dispatching), in which the dispatcher
forwards packets by controlling MAC addresses. The
second is Load Sharing using Network Address Transla-

2 X. Gan, T. Schroeder, S. Goddard, and B. Ramamurthy / LSMAC vs. LSNAT

tion, or LSNAT (based on OSI layer three dispatching),
in which the dispatcher distributes packets by modi-
fying Internet Protocol (IP) addresses. We have im-
plemented, for the first time, both methods in appli-
cation space and they achieve comparable performance
at a fraction of the cost of existing products. In addi-
tion, LSMAC provides auto configuration of the back-
end server pool. Our results show that under nearly all
conditions, a layer two approach offers superior perfor-
mance to an IP-level approach.

HTTPreplies

Server 1 Server 1

HTTP requests HTTP requests

LSMAC -
> LSNAT
dispatcher HTTP replies dispatcher :

HTTP replies Server n Sarv
ern

Figure 1. Logical representations of LSMAC and LSNAT cluster-
based server.

The rest of this paper is organized as follows. We first
discuss related work in Section 2, and then describe our
implementations in Section 3. In Section 4 we describe
how we evaluated our systems and present the results.
We present our conclusions and describe future work in
Section 5.

2. Background and Previous Work

Clustering is any of a range of technologies that com-
bines multiple inexpensive computers to work together
as a single unit. Until recently, it was typically used
in proprietary server environments to improve applica-
tion uptime. In a cluster, two or more servers were tied
into a configuration where one server takes on the work-
load of another in the event of a hardware or software
failure. Availability measures how long a server can
operate continuously without, planned or unplanned,
outages. Scalability refers to how well a server per-
forms when the number of client requests increase. In
fact, high-end high-availability server clustering tech-
nologies, developed by such vendors as IBM, HP, and
Sun Microsystems, have been introduced into the com-
mercial mainstream. Most of these products only pro-
vide high availability, not scalability. Some products
support rudimentary scalability. But they usually re-
quire developers to rewrite applications to be cluster-

aware with vendor-specific APIs.

Historically, when clustering has been used to im-
prove performance, it has required the use of special
tools or interfaces such as PVM [2] or MPI [3]. This re-
quirement has made developing and deploying clustered
servers significantly more expensive than deploying an
equal number of servers acting independently.

In contrast, Web server clustering can provide scala-
bility without these limitations: owing to the simple na-
ture of HT'TP, the Web server software does not have to
be cluster-aware; the servers can run any combination
of operating systems on any mix of hardware with load
distribution being done at the level of a single HT'TP re-
quest. Web server clustering has proved to be effective
in improving performance. One particular reason for
this is its incremental scalability. Administrators can
easily add or remove servers according to business de-
mands without the high cost associated with purchasing
and deploying a completely new system. For example, a
sports magazine site may add more servers in the clus-
ter during the Olympic games. Web server clustering
technologies can be divided into two categories: Round
Robin Domain Name Service (RR-DNS) and Single-IP-
Image. Neither requires client modification. We discuss
each of these techniques below.

2.1. Round Robin DNS

Early server clusters were implemented using the
Round Robin Domain Name Service (RR-DNS) [4].
RR-DNS is a hostname-based approach. It works by
mapping a single hostname of the server to several dif-
ferent IP addresses though the Domain Name Service
(DNS). DNS is a giant hierarchical distributed database
for mapping hostnames to their corresponding IP ad-
dresses. In RR-DNS, one of a set of server IP addresses
will be returned with each request. The return record
sequence is circular-shifted by one for each response in
a round robin fashion. In this way, requests are, hope-
fully, distributed more or less evenly among a pool of
servers rather than requiring a single server to service
all requests.

RR-DNS is the most commonly used method mainly
due to its simplicity and low cost. No additional soft-
ware or hardware is needed. However, there are many
drawbacks in using the RR-DNS technique for cluster-
RR-DNS does not automatically handle
hosts that go down; so manual modification of DNS

ing servers.

zone files and reloading DNS is required. For example,

X. Gan, T. Schroeder, S. Goddard, and B. Ramamurthy / LSMAC vs. LSNAT 3

when you take a misbehaving server off-line, the DNS
servers will still pass out its address, being unaware of
the server’s status. This causes clients to receive er-
ror messages. Even if the DNS zone file is immediately
modified after a server failure, problems still arise due
to DNS caching.

If a name to IP address mapping has been cached by
local DNS servers across the Internet; for the next few
minutes, many users will get error messages instead of
connecting to one of the available servers. Additionally,
clients themselves may cache DNS replies and bypass
DNS for subsequent requests, which similarly defeats
the load sharing mechanism. Furthermore, with RR-
DNS, each server must be configured identically because
RR-DNS provides no control over the distribution of
connections. In the same sense, low-end personal com-
puters and powerful servers both have an equal chance
of serving a HTTP request. This may result in the
personal computers becoming overloaded with requests
while the more powerful servers remain underutilized.
It is worth noting that RR-DNS could be modified to
weight each DNS entry differently according to the ca-
pacity of each server, although this is currently not the

case.
2.2. Single-IP-Image

In contrast to the multiple IP addresses in RR-DNS,
methods for presenting a single IP image to clients have
been developed over the years. These methods pub-
lish one IP address (the cluster address) in DNS for
clients to use to access the cluster. Each request reach-
ing the cluster using the cluster address is distributed
by the dispatcher to one of n back-end servers (Fig-
ure 1). Single-IP-Image approaches are advantageous
because they require no modification to client software.
While RR-DNS provides this same seamless transition
from a single server to multiple servers, the undesired
interaction between local name servers, local DNS re-
solvers, and the RR-DNS server make it less optimal
than a Single-IP-Image.

The methods to achieve a Single-IP-Image differ in
the way they forward packets to a back-end server. Cur-
rently there are two main schemes: OSI layer two dis-
patching and OSI layer three dispatching.

In the layer two approach, the dispatcher controls
the MAC addresses of the frames carrying the request
packets. All servers in the cluster share the cluster ad-

dress as a secondary IP address while the dispatcher is
assigned a different address. In our implementation, a
routing rule is inserted into the routing table in the
immediate router so that those packets destined for
the cluster address are always routed to the dispatcher.
Other options include a static ARP entry on the gate-
way to the LAN hosting the dispatcher so that all pack-
ets addressed to the cluster address are sent to the dis-
patcher, or disabling ARP responses on the back-end
servers. The secondary IP address assignment can be
accomplished using interface aliases on most Unix sys-
tems. The TCP/IP stack of the back-end server, which
receives the forwarded packets, will handle the packets
just as a normal network operation since its secondary
IP address is the same as the destination IP address in
the packets. No IP addresses in either in-bound or out-
bound packets are modified, and the in-bound packets
and the out-bound packets may go by different routes.
The fact that out-bound packets need not pass through
the dispatcher reduces the amount of processing the dis-
patcher must do and speeds up the entire operation.
This feature is especially important considering the ex-
treme downstream bias on the WWW, i.e., requests are
small while server responses are much larger.

The mechanism for controlling the MAC addresses
varies in different implementations. ONE-IP [5] pro-
posed a layer two method using broadcasting. Each
packet is broadcast by the dispatcher to every back-end
server. Each server implements a local filter so that ev-
ery packet is processed by exactly one server. The dis-
advantage of this is that filtering reduces the capacity
of each server to process client requests. Our implemen-
tation of the layer two approach, i.e., LSMAC, differs
in that it directly rewrites the MAC addresses of each
frame.

In the layer three approach, each server in the clus-
ter has its own unique IP address. The dispatcher is
assigned the cluster address so that all client requests
will first arrive at the dispatcher. After receiving a
packet, the dispatcher rewrites the IP header to enable
delivery to the selected back-end server, based on the
load-sharing algorithm. This involves changing the des-
tination IP address and recalculating the IP and TCP
header checksums. The rewritten packet is then sent to
the appropriate back-end server. Packets flowing from
a back-end server to a client go through a very simi-
lar process. All of the back-end server responses flow

4 X. Gan, T. Schroeder, S. Goddard, and B. Ramamurthy / LSMAC vs. LSNAT

through the dispatcher on their way back to the clients.
The dispatcher changes the source IP address in the re-
sponse packet to the cluster address, recalculates the IP
and TCP checksums, and sends it to the clients.

This method is detailed in RFC 2391, Load Sharing
Using IP Network Address Translation (LSNAT) [6]. A
commercial example of the LSNAT approach is Cisco’s
Local Director [7]. A slight variation of this approach
was proposed for IBM’s TCP Router [8], in which the
selected back-end server places the cluster address in-
stead of its own address as the source IP address in the
reply packets. Even though the TCP Router mechanism
has the advantage of not requiring the reply packets
go through the TCP Router (dispatcher), the TCP/IP
stack of every server in the cluster has to be modified.
Our implementation of the layer three approach, i.e.,
LSNAT, follows RFC 2391. Unlike TCP router, LSNAT
is totally transparent to the clients and servers. We be-
lieve our LSNAT implementation is the first user-level
implementation of RFC 2391.

2.3. Other Approaches

A hybrid of the RR-DNS approach and Single-IP-
Image approach has also been studied, in which the
DNS server selects one of several dispatchers in a round
robin fashion [9]. Other innovative approaches, such
as locality-aware distribution and dispatcher-side Web
caching, are being investigated by the research commu-
nity [10,11].

3. Implementation

We are most interested in the Single-IP-Image ap-
proach, which is at the core of most commercial prod-
ucts. We implemented both layer two and layer three
approaches as application-space programs. Our layer
two dispatcher, LSMAC (Load Sharing Using Medium
Access Control), dispatches each incoming packet by
directly modifying its MAC addresses (Figure 2). Our
layer three dispatcher, LSNAT (Load Sharing Using
Network Address Translation) follows RFC 2391 (Fig-
ure 3). Our solutions are much simpler and more
portable than existing products, which involve modify-
ing the TCP/IP stacks of the dispatcher and/or server
machines. While LSNAT offers reasonable performance
when serving dynamic content, LSMAC offers perfor-

mance rivaling specialized solutions costing much more.

3.1. LSMAC

In this section, we look at the design and implemen-
tation of the LSMAC (OSI layer two) application. This
includes the software tools used, the sequence of events
in establishing connections using LSMAC, and a brief
comparison of features with LSNAT (discussed in Sec-
tion 3.2).

In LSMAC, the back-end servers are aliased to the
cluster address and the dispatcher is assigned a different
IP address. In order to make the dispatcher the only en-
try point for each packet addressed to the cluster-based
server, we add one route in the immediate router to
route every incoming packet to the LSMAC dispatcher.
The LSMAC dispatcher uses the 1ibpcap packet cap-
ture library [12] to capture each packet. The dispatcher
maintains a table containing information about all ex-
isting sessions. Upon receipt of the packet, the dis-
patcher will determine whether it belongs to an exist-
ing session or is a new request. The IP addresses and
port numbers of the two endpoints uniquely define ev-
ery TCP connection (session) on the Internet. We use
these to map incoming packets to corresponding con-
nections already established with the back-end servers.
If the session does not already exist, it is simply a mat-
TCP flags
on the incoming packets are used to identify the estab-

ter of creating a new entry in our table.

lishment and termination of each connection. The first
packet of a TCP session is recognized by the presence
of SYN bit and absence of ACK bit in the TCP flags.
The end of a TCP session is detected when a packet
with both FIN and ACK bits set is received or when a
packet with RST bit set is received. Upon the termi-
nation of a TCP session, the corresponding mapping in
the table is removed.

Once a mapping has been established, the LSMAC
dispatcher rewrites the source and destination MAC ad-
dresses of each frame and sends them, using 1ibnet [13],
to a chosen back-end server. Since the MAC addresses
have significance only in a LAN environment, LSMAC
requires that the dispatcher and back-end servers be
connected in a LAN. The LSMAC dispatcher needs the
MAC address of each back-end server for forwarding
packets. The Address Resolution Protocol (ARP) is
used to automatically discover back-end servers. This
novel approach enables administrators to add (remove)
servers to (from) the cluster dynamically. The user
specifies the cluster address and load-sharing algorithm

X. Gan, T. Schroeder, S. Goddard, and B. Ramamurthy / LSMAC vs. LSNAT 5

when invoking the LSMAC dispatcher. The LSMAC
dispatcher then broadcasts an ARP request for the clus-
ter address and retrieves the back-end servers’ MAC
addresses from their ARP replies.

HTTP requests -
with dest IP=A 3
1 2 il
”””” e Il e e E—
Route: A->D | "| . | }|"

[1P=B1 | [IP=B2 | [1P=B3 | =
IP_alias=A IP_dias=A P adias=A LSMAC
Server 1 Server 2 Server 3 dispatcher

Figure 2. LSMAC implementation in a LAN environment.

Figure 2 illustrates the packet flow in a LSMAC
cluster-based server.

1. A client sends a HTTP packet with A as the desti-
nation IP address.

2. The immediate router sends the packet to LSMAC
on D, due to the added route: A—D.

3. Based on the load sharing algorithm and the ses-
sion table, LSMAC decides that this packet should
be handled by the back-end server Server 2, and
sends the packet to Server 2 by changing the MAC
addresses of the packet to Server 2’s MAC address.

4. The back-end server Server 2 accepts the packet
and replies directly to the client.

The operation of LSMAC offers two distinct advan-
tages over LSNAT, discussed below. As all operations
are performed at OSI layer two, it is not necessary to
modify layer three data. This allows us to avoid re-
calculating TCP/IP checksums, an otherwise expensive
operation. Secondly, LSMAC only processes half of the
TCP stream: the portion flowing from client to server.
This is only a small fraction of the total traffic flow-
ing between the client and server as most of the data is
contained in the server’s response. This allows LSMAC
to scale well since the introduction of additional clients
has relatively little impact in terms of the amount of
data processed.

3.2. LSNAT

In our LSNAT (OSI layer three) implementation,
only the dispatcher is configured to the cluster address.
Normal routing rules ensure that it receives in-bound re-
quests. We then use IP filters to keep the host operating

system from responding to the requests itself, allowing
the LSNAT application to process them manually us-
ing the libpcap packet capture library. Conceptually,
LSNAT appears as a single host to clients, but—as we
will see-as a gateway to the back-end servers.

HTTP requests .~ S .
with dest IP=A 3 |
1 2 P |
,,,,,,, - b - - - - - -~ = = — — = = J === = = — — — = — — = — — — — — — — — |-
router 7|‘~~47 7777777777777 H|M
| |
vl vy

[1P=B1 | [1P=B2 | [1P=B3 | [1P=A_|

Server 1 Server 2 Server 3 LS\‘AT

dispatcher

Figure 3. LSNAT implementation in a LAN environment.

After receiving a client request, the LSNAT dis-
patcher sets up the connection mapping just as the LS-
MAC dispatcher does. Once a mapping has been es-
tablished, it is necessary to rewrite the packet headers
since it is addressed to the cluster address and not to
an individual back-end server. The LSNAT dispatcher
changes the destination IP address of each in-bound
packet to the IP address of the selected server. For
each out-bound packet, the LSNAT dispatcher changes
source IP address to the cluster address, which is ex-
pected by the client. LSNAT allows the dispatcher and
back-end servers to be in different LANs provided that
traffic between the back-end servers and the clients is
always routed through the dispatcher.

Figure 3 illustrates the packet flow in a LSNAT
cluster-based server.

1. A client sends a HTTP packet with A as the desti-
nation IP address.

2. The immediate router sends the packet to the
LSNAT dispatcher on A, since the LSNAT machine
is assigned the IP address A.

3. Based on the load sharing algorithm and the ses-
sion table, the LSNAT dispatcher decides that this
packet should be handled by the back-end server
Server 2. It then rewrites the destination IP ad-
dress as B2, recalculates the IP and TCP check-
sums, and sends the packet to B2.

4. The back-end server Server 2 accepts the packet
and replies to the client via the LSNAT dispatcher,
which the back-end server sees as a gateway.

5. The LSNAT dispatcher rewrites the source IP ad-
dress of the replying packet as A, recalculates the

6 X. Gan, T. Schroeder, S. Goddard, and B. Ramamurthy / LSMAC vs. LSNAT

IP and TCP checksums, and sends the packet to
the client.

As we see here, the operation of LSNAT may be re-
duced to two simplex flows: one from clients to servers,
the other the return path from servers to clients. In ad-
dition, the 1libpcap library encourages this approach.
Therefore, LSNAT contains two threads of execution.
The first processes all data traveling from the clients to
the back-end servers; the other processes all data travel-
ing in the opposite direction, from the back-end servers
to the clients. Thread-safe execution is achieved by us-
ing mutex locks for all shared objects. In the case of
the connection map, these locks are record-level.

LSNAT suffers owing to its position in the connec-
tion between client and server. Unlike LSMAC, LSNAT
changes the layer three (network) payload so that data
destined for the cluster address appears to be bound
for that back-end server. The reverse operation is ap-
plied to packets originating from the back-end server so
that they appear to be from the cluster address. This
requires the recalculation of both IP and TCP check-
sums. Additionally, we must process both sides of the
connection, not just the relatively small amount of data
traveling upstream from the client. These two factors
combine to make LSNAT extremely CPU intensive. In
Figure 4 we see an illustration of the traffic flow be-
tween a client and a server. In the case of LSMAC,
we see that the incoming packet requires no modifica-
tion and that the response travels directly back to the
client whereas with LSNAT, both the incoming packet
and the outgoing packet must be modified by the dis-
patcher. LSNAT could realize a significant performance
boost through the addition of hardware for checksum
recalculation such as the use of gigabit Ethernet cards
which do TCP/IP checksum calculation or through the
use of a field programmable gate array (FPGA).

The one advantage offered by LSNAT is the ability
to have servers in multiple networks without requiring
multiple interfaces. As LSNAT operates at layer three,
all that is required is that it be positioned on the net-
This
would even allow for sparse geographic distribution for
fault tolerance. LSMAC, on the other hand, must reside
on the same physical network as the servers in its clus-

work between clients and the back-end server.

ter. Therefore, if we wished to split the server pool into
two or more networks to offer higher aggregate band-
width, it would be necessary to have a physical interface

on the LSMAC dispatcher to each of those networks.

Cluster address: 129.93.1.1 Cluster address: 129.93.1.1
Client LSMAC Server Client LSNAT Server
7212154 129.93.1.10 129.93.1.1 7212154 129.93.1.1 129.93.1.10
FSC. 7212154] P 7212154
dst: 129.93.T.1 dst: 129.93°11
fee 7212154] fee.72.12154 |
dst: 129.93T1 dst: 129.93.1.16+
[sc: 129.93.1.101
Fdst 72
ECE=ESE [5¢ 299511]
(e 72.12154] Fasr7212154]

Figure 4. IP header modifications during dispatching operation
in LSMAC and LSNAT approaches.

3.8. Discussion

To ensure that each back-end server contains the
same set of files, some sort of file replication must be
done or a common network file system must be used.
Once this is done every server in the group must start
its server software to handle the incoming requests.
The back-end servers behave as if they were commu-
nicating directly with the clients and do not need to
know anything about the clustered nature of the sys-
tem. This means that no special software needs to be
Both the LSMAC
and LSNAT dispatchers are transparent to the clients

installed on the back-end servers.

and the servers. We currently use the round robin al-
gorithm to distribute the load amongst the entire set of
back-end servers for load sharing. This works well since
all our servers are configured in a similar fashion and
the requests from clients are comparable in size and du-
ration. However, because our solution does not restrict
the user to a certain server configuration, load-sharing
algorithms based on individual server usage could yield
Our
modular design allows new load-sharing algorithms to

better results in a heterogeneous environment.

be easily added to the systems.

Additionally, while different approaches were taken
with regards to delivering data to the dispatcher (spe-
cial routing rules in the case of LSMAC versus normal
delivery and IP filtering in the case of LSNAT), neither
approach must necessarily use the delivery mechanism
we chose for it. Finally, even though we focus on Web
server clustering in this paper, LSMAC and LSNAT can
be used to distribute any simple TCP/IP-based network

X. Gan, T. Schroeder, S. Goddard, and B. Ramamurthy / LSMAC vs. LSNAT 7

Table 1
Comparison of key features of the LSMAC and LSNAT implementations.

Feature LSMAC

LSNAT

OSI Layer of operation

Traffic flow through dispatcher
Incoming packet modification No
Outgoing packet modification
Servers in different LANs

Not applicable

Layer 2 (Data-link)
Unidirectional (Incoming)

Phys. Interface on Each LAN

Layer 3 (Network)

Bidirectional

Dest. IP address and checksums
Src. IP address and checksums
Allowed

services with no or little modification. Table 1 provides
a comparison of the LSMAC and LSNAT dispatchers.

4. Evaluation

WebStone [14] was used to benchmark the perfor-
mance of our cluster-based server systems. WebStone
is a popular configurable load generator for Web servers.
As most of the published benchmarks were done using
WebStone, we felt it was the best choice. WebStone
consists of one “Webmaster” and a variable number
of clients. The Webmaster is the controlling process,
which spawns a variable number of client processes on
each client workstation. These clients then communi-
cate in a synchronous manner with the Web server, re-
questing documents for a given period of time and re-
porting their findings to the Webmaster. This freely
available benchmark simulates varying client loads to
measure a server’s capability to accommodate client
connections, to deliver data, and to answer requests.

4.1. Ezperiment Design

We measured the performance of the LSMAC and
LSNAT dispatchers in both shared and switched 100
Mbps Ethernet environments. In our experiments, the
dispatcher (LSMAC/LSNAT) and the back-end servers
were executing on 266 MHz Pentium IT machines with
64 MB memory. For tests in the shared Ethernet en-
vironment these machines were connected to a Linksys
SPHUBOS8S hub. In the case of the switched Ether-
net environment, every Webstone client workstation or
back-end server was connected to one port of a Cisco
Catalyst 2900 XL switch. Red Hat Linux 5.2 (kernel
2.2.6) and Apache Web Server 1.3 were installed on ev-
ery machine. The Web server was configured to allow a
maximum of 256 simultaneous server processes. Web-
Stone 2.0 was run on two 266 MHz Pentium IT machines
with 128 MB memory each on the same network. For

the scalability studies, we ran experiments on five con-
figurations: single server (no cluster and hence no dis-
patcher), one-server cluster, two-server cluster, three-
server cluster, as well as a special configuration with
three dedicated servers in addition to the dispatcher
itself acting as a back-end server. The results from
the single server and one-server cluster tests measure
the overhead due to the dispatcher. The server per-
formance usually depends on the types of files that are
being served. For this reason, we chose four file types
in measuring each configuration: 0 KB files that have
no payload but still require HTTP headers; 2 KB files,
which are typical of the first page of a Web server; a file
mix with file sizes and access frequencies derived from
a Web server access log (available from [15]); and fully
dynamic files. The dynamic files were generated by a
Common Gateway Interface (CGI) program based on
file sizes and access frequencies derived from the same
Web server access log. Testing with dynamic files is nec-
essary since more and more dynamic content is appear-
ing on the Web. Dynamic content plays an important
role in nearly all high-volume Web sites.

It should be noted that the static file set configu-
ration is designed to optimize the performance of the
back-end web servers. The files being served are small
enough that they are cached by the host operating sys-
tem on the back-end servers. Thus the performance of
the server does not rely on the disk subsystems, but
upon other factors such as CPU speed, network band-
width, etc. This allows us to benchmark our clustered
Web servers versus the best performance that may be
expected from a single server.

4.2. Performance Measurement

This section examines various metrics useful in evalu-
ating the performance of a Web server, including a clus-
tered server. We examine shared media networks versus

switched environments, static versus dynamic content,

8 X. Gan, T. Schroeder, S. Goddard, and B. Ramamurthy / LSMAC vs. LSNAT

dispatcher CPU utilization for LSNAT and LSMAC,
and dedicated dispatchers versus dispatchers coexisting
with Web servers on the same machine.

Server connection rate, throughput, and request la-
tency are the three most important performance met-
rics for Web systems. The server connection rate is
expressed as connections per second. This is an indica-
tion of how fast the server can establish a connection
and start communicating with the clients. The calcula-
tion of server throughput is simple: total bytes (body
+ header) transferred throughout the test divided by
the total test duration. The server throughput depends
on the transferred file size, server capability, and the
network bandwidth. The request latency is the time
elapsed between when the client sends its request to
when it receives the entire response.

4.2.1. Shared vs. Switched Environment

In a cluster-based server there is one or more back-
end servers simultaneously handling requests. In gen-
eral, it should have a higher connection rate than a
single server, unless the network bandwidth or the dis-
patcher becomes a bottleneck. Our tests with small files
(0-2 KB) in the shared Ethernet environment show that
LSMAC with three servers can handle over 1600 con-
nections per second (Figure 5), and LSNAT can handle
about 800 connections per second (Figure 6). Tests in
the switched Ethernet environment show that the LS-
MAC dispatcher can reach 1800 connections per sec-
ond (Figure 7) while LSNAT achieves approximately
900 connections per second (Figure 8). The connection
rate for a single server with the same file size is around
550 connections per second in shared environment and
700 connections per second in switched environment.

Connection rate (conn/sec)

L~
8888858888

— L 7 v
._’—‘ 2 — L 9
0 20 40 60 80 100 120

Number of clients
‘—O—Ok files =2k files =—#r—access log —®—access log with cgi ‘

Figure 5. LSMAC connection rates in shared Ethernet environ-
ment with Linksys SPHUBO8S hub.

3 2000
v 1800
< 1600
S 1400
o 1200
g 1000
S 800 ———————a
£ 600 s
@ 400
€ 200
o 0 ‘ , , : :
0 20 40 60 80 100 120
Number of clients
|—0—0k files —8—2k files —A—access log —8—access log with ogi |

Figure 6. LSNAT connection rates in shared Ethernet environ-
ment with Linksys SPHUBO08S hub.

'S’ 2000
g 1800 - e *
s 1600 -
o 1400
@ 1200 ////
© 1000 </ " N N
< 800 =7/ A 7
£ 600 "4 //A
& 400 P
£ 200 = r~ ~ = ry
8 0 T T T T T
0 20 40 60 80 100 120
Number of clients
—O—0k files =82k files =#r—access log —®—access log with cgi

Figure 7. LSMAC connection rates in switched Ethernet environ-
ment with Cisco Catalyst 2900 XL switch.

%‘ 2000
© 1800
£ 1600
S 1400
o 1200
© 1000 P
= 800
S 600 // ——
8 400 ——
S 200 K
8 0 4!"‘ A T T T T
0 20 40 60 80 100 120
Number of clients
|—<>—0k files —m— 2k files —A—access log —e—access log with cgi |

Figure 8. LSNAT connection rates in switched Ethernet environ-
ment with Cisco Catalyst 2900 XL switch.

With the access log file mix, whose average file size
is 108.5 KB, cluster-based servers do not improve the
connection rate in shared Ethernet environment due to
network collision. LSMAC with three servers maintains
about 400 connections per second, which is very close to
the connection rate of a single server (Figure 9). LSNAT

X. Gan, T. Schroeder, S. Goddard, and B. Ramamurthy / LSMAC vs. LSNAT 9

supports only 200 connections per second (Figure 9).
The processing capacity of the LSNAT dispatcher be-
comes the bottleneck before the network bandwidth.
400 connections per second are about the maximum rate
for that file size in our 100 Mbps shared Ethernet en-
vironment, because at that rate the server throughput
reaches 60 Mbps (Figure 11). However, with the same
log file mix in a switched environment, the LSMAC dis-
patcher reaches near 800 connections per section, while
the LSNAT dispatcher still maintains about 200 con-
nections per second. This test points out that a higher
capacity network is needed in order to fully utilize the
functionality provided by LSMAC.

In practice, no actual connection would result in a
zero-byte transaction. Nevertheless, the number of con-
nections per second with a small file size is an impor-
tant indicator of the dispatcher’s capability. With a
2-byte page size, IBM Network Dispatcher can handle
2200 connections per second when it runs on an SP-2
node with 6 back-end servers [16]. Each SP-2 node has
a POWER2 67 MHz CPU and 256 MB memory. The
maximum connection rate observed in the 1996 Sum-
mer Olympics was only about 600 connections per sec-
ond [16]. IBM eNetwork Dispatcher and our dispatchers
can easily handle that amount of traffic. While the IBM
eNetwork Dispatcher requires expensive IBM hardware
and is not generally portable to other environments, our
dispatchers run on commodity hardware and commod-
ity operating systems. Our solution is cost-effective as
we can expect that the price/performance ratio of com-
modity hardware and commodity operating systems will
remain superior to that of proprietary systems.

It is interesting to note that LSMAC consistently
shows more than twice the connection rate of LSNAT
in both shared and switched environment for all cases
but the CGI case. The reason is that LSNAT spends
more time in processing each packet than LSMAC and
therefore slows down the connections. The LSNAT dis-
patcher must modify IP addresses in both in-bound
and out-bound packets and recalculate their checksums,
while LSMAC only changes the MAC addresses of in-
bound packets and no checksum recomputation is re-
quired. We will discuss the CGI case in the next sec-
tion.

Some vendors also publish the number of simulta-
neous connections supported. However, different con-
nections transfer different amounts of data. Some may

cause a lot of traffic because of downloading multime-
dia data, while others may transfer only a few pack-
ets. Thus the number of simultaneous connections sup-
ported has more to do with memory in the dispatcher
machine than its ability to quickly forward packets. A
dispatcher usually uses less than 32 bytes of memory to
keep track of each TCP session. Thus, a dispatcher run-
ning on a machine with 32 MB memory could theoret-
ically support 1 million simultaneous connections. Yet
in order to support a mere 1 Kbps sustained transfer
rate (less than 2% of the capacity of a 56K modem) for
each connection, 1 Gbps of network bandwidth would
be required, not to mention the level of processing power
required.

4.2.2. Static vs. Dynamic Content

Figures 9-14 show the relative performance of the
three-server LSMAC cluster and the three-server LSNAT
cluster with respect to static and dynamic content.
WebStone was used to generate requests for 42 Web
client processes distributed evenly among two client
computers. For easy comparison, the performance mea-
surements of a single server (without a dispatcher) are
also plotted in the figures. In the access log case, LS-
MAC significantly outperforms LSNAT. Both connec-
tion rate and server throughput of LSMAC in a shared
environment are nearly triple those of LSNAT (Fig-
ure 9 and 11). The difference in a switched environ-
ment is even larger (Figures 10 and 12). The LSNAT
dispatcher is the obvious bottleneck in this case. How-
ever, in the CGI case they achieve a similar connection
rate and server throughput (Figures 10 and 12). This is
because, in the CGI case, the back-end servers are the
bottleneck. A CGI program runs as a separate process
in the server machine every time a CGI document is
requested and therefore is very costly. The connection
rate is expected to increase if we add more back-end
servers to the cluster (i.e., ease the bottlenecks) in the
CGI case (Figure 10).

In the access log case, LSMAC adds minimal over-
head to the response time of a single server in shared
environment and halves the response time of a single
server in switched environment (Figure 13). LSNAT
triples the response time of a single server in both
shared and switched environments (Figure 13). How-
ever, both LSMAC and LSNAT show response time im-
provement in the CGI case (Figure 14). Even though

10

X. Gan, T. Schroeder, S. Goddard, and B.

Ramamurthy / LSMAC vs. LSNAT

ST |

90
@ 800

g &0 ~

© 5 ,/

©

= 400 * —
S 200 \L = -
S 100 L = =t
© 0

single sener one-sener two-sener three-sener
—— LSMAC (shared) —— LSNAT (shared)
—o— LSMAC (switch) —o—LSNAT (switch)

Figure 9. Connection rate for access log trace.

&

ed

s

B

[&)]

Server throughput (Mb.sec)

o

singleserver onesener twosener three-sener
—— L SMAC (shared) —— LSNAT (shared)

—o—LSMAC (switch) —0— LSNAT (switch)

Figure 12. Server throughput for CGI trace.

160 400
5140 .
30
§ 120 / m
e < 300 / %
< ad £ 20 7
g) o 20
o & B=—5’ 2 150 /
@ <}
c 40 Q ./ —— N
c %] 100 |y —— X ¢ 4
[e] 20 &) \
© 50
0
single sener one-sener twosener three-sener 0 . o tree:
LSMAC (shared) LSNAT (shared) single sener oge(;ser\er LS:Nf-:- — sener
—o—LSMAC (switch) —o—LSNAT (switch) ce 'tch)) LSNAT (it
—— LSMAC (switch) —0— swi
Figure 10. Connection rate for CGI trace. Figure 13. Response time for access log trace.
1000
~ 140
8 n
w120 2 800 -
<100 / E 60
2 & ‘é
S X X £ 40
§ €0 —— M %
s 40 AN ¢ X0
o - -
2 D n C C 0
2 0 sinde senver oesener twosever threesenver
one-sener two-sener three-sener —4— | SVIAC (shered) == LSNAT (shered)
—+—LSMAC (shered) —— LSNAT (shared) == LIMAC (switch) =0 LSNAT (switch)
——LSMAC (switch) —o— LSNAT (switch)

Figure 11. Server throughput for access log trace.

the improvement may be small relative to the large la-
tency involved in a wide area network, it is significant in
an intranet environment. Intranet servers usually gen-
erate a lot of dynamic content such as directory query
and database search results. Web servers now support
several means to create dynamic content [17] (e.g., CGI,

Figure 14. Response time for CGI trace.

FastCGI, vendor-dependent Web server APIs, and Java
servlets). These methods involve complex computation
on the Web server. Since Web server processing per
request has become more time-consuming, clustering is
mandatory to handle even a small number of concurrent

requests to a Web site [17].

X. Gan, T. Schroeder, S. Goddard, and B. Ramamurthy / LSMAC vs. LSNAT 11

In summary, any one of the dispatcher, the back-end
servers, or the network can “bottleneck” the operation
of a cluster-based Web server system. Our tests show
that LSMAC and LSNAT perform similarly with fully
dynamic content, which is computationally intensive
at the back-end servers. LSMAC outperforms LSNAT
with a static access log mix, though it does not show
any performance improvement in shared Ethernet envi-
ronment over the single server due to limited network
bandwidth. Hence, for cluster planning, one needs to
take into account the amount and types of information
maintained on the Web site.

4.2.8. Dispatcher and Server CPU Utilization

When considering performance bottlenecks, one of
the simplest, and often most useful, aspects to consider
is the processor utilization. In our case, processing re-
quirements proved to be the decisive difference, in terms
of performance, between LSNAT and LSMAC. For this
reason, Table 2 provides a brief summary of CPU uti-
lization on both the dispatcher and the back-end Web
servers for both LSMAC and LSNAT for a peak loads
of 42 clients in shared environment. This clearly illus-
trates the processor-intensive nature of LSNAT vis-a-vis
LSMAC.

We conjecture that the low utilization of the dis-
patcher and back-end servers on the access log trace-
driven tests for LSNAT were due to limitations in
Linux’s packet capture facilities which causes it to drop
packets [18]. Further, we believe that the cause of the
less-than-full utilization in the case of LSMAC is due
to network saturation as the throughput on the shared
Ethernet was in excess of 60 Mbps. Finally, the low uti-
lization on the CGI-driven tests for both systems may
be due to memory-thrashing on the back-end servers.
The way in which a Web server invokes a CGI pro-
gram is by forking a separate process that executes the
program. Thus, a great deal of time was spent paging
in and out of physical memory rather than performing
useful work.

4.2.4. Dispatcher and Server on Same Host

Our solutions allow the dispatcher and the Web
server to run on the same host. In LSMAC, we configure
a second network interface on the dispatcher machine
to the cluster IP address. The LSMAC dispatcher cap-
tures the packets from the first interface and dispatches

them to the second interface or other back-end servers.
One difficulty encountered during the test was the ten-
dency of the dispatcher to reply directly to the clients,
even though the packets arrived at an interface other
than the one with the cluster address. Braden refers
to this as the weak end-system model, as opposed to
the strong end-system model where datagrams are only
processed if they are received on the interface with the
address specified in the datagram’s destination address
field [19]. We believe that this case illustrates a flaw
in the weak end-system model and thus in Linux’s net-
working which is based on this model. We used IP filter-
ing to prevent the host’s network stack from receiving
these packets on the primary interface.

Tests show that combining the dispatcher and the
Web server on a same host is not a good idea (Fig-
ure 15). Three stand-alone back-end servers plus one
additional server on the dispatcher host (3.5 server clus-
ter) performs worse than three stand-alone back-end
servers (3 server cluster) in all the cases except for the
fully dynamic content, which shows a nominal improve-
ment. This is because the Web server on the dispatcher
host takes away crucial CPU time from the dispatcher.
Tests with the LSNAT dispatcher show a similar pattern
(Figure 16). Thus we do not recommend running the
dispatcher and Web server on a same host. Indeed, the
point of clustering is to offer the ability to incrementally
increase performance for very little cost. With the cost
of a PC in the cluster being only $1,000 to $2,000, it’s
relatively cheap to add another machine to the server
pool rather than trying to make the dispatcher act as a

server.
o A
51600
% oo / \\
c
8 1200 / \
< oo / AN
A / \w:'
c
£ w 2
2 400 s ke i
S 200
o e— X
0
2.5sener cluster 3 server cluster 3.5 senver cluster
—4— Ok files =02k files == access log mix == CGl

Figure 15. Connection rate with non-dedicated LSMAC.

12 X. Gan, T. Schroeder, S. Goddard, and B. Ramamurthy / LSMAC vs. LSNAT

Table 2

Processor utilization under peak loads.

File type LSMAC (%) LSNAT(%)
Dispatcher/Server Dispatcher/Server
0 KB files 100/80 100/42
2 KB files 98/80 100/40
Access log trace 45/20 65/10
CGI 20/40 67/35
0 formance improvements in LSNAT through the use of
2 a0 A checksumming hardware.
el N\
S 60
:q; 500 // \\ References
s 7 N\
S 3 Er// \\ﬁ [1] L. Bruno, “Balancing the load on Web servers,” Data Com-
é 200 munications, September 21, 1997, http://www.data.com/.
S = e « : istri
S 100 [2] V. Sunderam, “PVM: A Framework for Parallel Distributed
© 0 X/ \(Computing,” Concurrency: Practice and Ezperience, De-
2.5 server cluster 3server cluster 3.5 server cluster cember 1990, pp. 315-339.
—4— Ok files =02k files == access log mix == CGl ‘ [3] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Don-

Figure 16. Connection rate with non-dedicated LSNAT.

5. Conclusions

We implemented two cluster-based Web server sys-
tems in a simple and portable way: LSMAC and
LSNAT. They represent the first application-space im-
plementations of the two Web server clustering tech-
nologies, and achieve performance comparable to exist-
ing non-application space products. Tests show that
LSMAC significantly outperforms LSNAT for static
files. But the two systems achieve similar performance
for fully dynamic content. It is conceivable that dy-
namic content could swamp LSNAT just as static con-
tent does if we had a sufficient number of servers. The
choice of the LSMAC or LSNAT approach depends on
the network environment, Web content, and service re-
quirements. If the servers are connected in a LAN and
there are a large number of requests, the LSMAC ap-
proach is ideal. If the servers are at different sites and
there is a significant amount of dynamic content, the
To fully uti-
lize the functionality provided by the dispatchers (es-

LSNAT approach is more appropriate.

pecially LSMAC), a switched environment is needed,
even though the dispatchers in shared Ethernet envi-
ronment provide adequate performance. In the future
we will examine fault tolerance, develop adaptive op-
timized load-sharing algorithms, and investigate per-

garra, MPI: The Complete Reference, The MIT Press, Cam-
bridge, Massachusetts, 1996.

[4] T. Brisco, “DNS Support for Load Balancing,” RFC 1794,
April 1995.

[5] O. P. Damani, P. E. Chung, Y. Huang, C. Kitala, and Y.
Wang, “ONE-IP: techniques for hosting a service on a cluster
of machines,” Proc. 6th International WWW Conference,
Santa Clara, California, April 1997.

[6] P. Srisuresh and D. Gan, “Load Sharing Using IP Network
Address Translation (LSNAT)”, RFC 2391, August 1998.

[7] Cisco Systems: Local Director,
http://www.cisco.com/warp/public/751/lodir/, 1999.

[8] C. R. Attanasio and S. E. Smith, “A virtual Multiprocessor
implemented by an encapsulated cluster of loosely coupled
computers,” IBM Research Report RC18442, 1992.

[9] D. Dias, W. Kish, R. Mukherjee, and R. Tewari, “A scalable
and highly available Web server,” IEEE International Con-
ference on Data Engineering, New Orleans, February 1996.

[10] V.S. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel, W.
Zwaenepoel, and E. Nahum, “Locality-aware request distri-
bution in cluster-based network servers”, ASPLOS-VIII, San
Jose, CA, October 1998.

[11] E. Levy-Abegnoli, A. Iyengar, J. Song, and D. Dias, “Design
and performance of a Web server accelerator,” INFOCOM,
New York, NY, March 1999.

[12] Lawrence Berkeley Laboratory: Packet Capture Library,
ftp://ftp.ee.lbl.gov/libcap.tar.Z, 1999.

[13] Daemon9, Libnet: Network Routine Library,
http://www.packetfactory.net/libnet/, August 1999

[14] G. Trent and M. Sake, “WebStone: the first generation
in HTTP benchmarking,” MTS Silicon Graphics, February
1995.

[15] Mindcraft: WebStone,
http://www.mindcraft.com/webstone/, 1999.

(16]

(17]

(18]

(19]

X. Gan, T. Schroeder, S. Goddard, and B. Ramamurthy / LSMAC vs. LSNAT 13

G. Hunt, G. Goldszmidt, R. King, and R. Mukherjee, “Net-
work Dispatcher: a Connection Router For Scalable Internet
Service,” Computer Networks and ISDN Systems, vol. 30,
pp- 347-357, 1998.

R. Mukherjee, “A scalable and highly available clustered
Web server,” In: High performance cluster computing — vol.
1, Architectures and systems (Ed. R. Buyya), New Jersey:
Prentice Hall PTR, pp. 811-840, 1999.

D. Song and M. Undy, “NFR Performance Testing,”
http://www.anzen.com/products/nfr/testing/,
1999.

R. Braden, “Requirements for Internet Hosts — Communi-
cation Layers,” RFC 1122, October 1989.

February

Xuehong Gan received his B.S. and M.S. in Geology
from Peking University and University of Alabama in
1991 and 1996, respectively. He worked for Global Internet
Software Group and Cisco Systems as a Software Engineer
developing Internet firewall and network management soft-
ware. Later he received his M.S. in Computer Science from
the University of Nebraska-Lincoln in 1999. Since August
1999, he has been working for Microsoft Corporation as an
Escalation Engineer in the Internet Critical Problem Reso-
lution Team. In his job he provides reliable resolution of the
most critical and highest impact problems for Microsoft’s
strategic corporate customers. His research interests include
network security and distributed computing. He is a member
of the ACM(S).

E-mail: xuehongg@microsoft.com

Trevor Schroeder received his B.S. in Computer
Science from Wayne State College in 1998. He is currently
a M.S. student in Computer Science at the University of
Nebraska-Lincoln while working at the MIT Media Lab with
the Network+Computing Systems (NeCSys) staff where he
is responsible for network security and the maintenance of
UNIX machines. His research interests include distributed
systems and especially security in such environments. He is
a member of the ACM(S).

E-mail: tschroed@media.mit.edu.

Steve Goddard received the B.A. degree in computer
science and mathematics from the University of Minnesota
(1985). He received the M.S. and Ph.D. degrees in computer
science from the University of North Carolina at Chapel Hill
(1995, 1998). He worked as a Systems Engineer with Unisys
Corporation for four years and as a real-time, distributed,
systems consultant with S.M. Goddard & Co. Inc. for nine
years before joining the Computer Science and Engineering
faculty at the University of Nebraska-Lincoln (UNL) in
1998. He is the founding co-director of the Advanced Net-
working and Distributed Experimental Systems (ANDES)
Laboratory at UNL. His research and teaching interests
are in real-time systems, distributed systems, operating
systems, software engineering and computer networks.
E-mail: goddard@cse.unl.edu.

Byrav Ramamurthy received his B.Tech. degree in
Computer Science and Engineering from Indian Institute of
Technology, Madras (India) in 1993. He received his M.S.
and Ph.D. degrees in Computer Science from University
of California (UC), Davis in 1995 and 1998, respectively.
Since August 1998, he has been an assistant professor in the
Department of Computer Science and Engineering at the
University of Nebraska-Lincoln (UNL). He is the founding
co-director of the Advanced Networking and Distributed
Experimental Systems (ANDES) Laboratory at UNL. He
is the Feature Editor on Theses for the Optical Network
Magazine. He serves as a guest co-editor of an upcoming
special issue of IEEE Network magazine. He served as a
member of the technical program committees for the IEEE
GLOBECOM’99 Symposium on High Speed Networks, the
IEEE International Conference On Networks (ICON’99)
Conference, and the Eighth IEEE International Conference
on Computer Communication and Network (ICCCN’99).
Prof. Ramamurthy was a recipient of the Indian National
Talent Search scholarship and was a fellow of the Professors
for the Future program at UC Davis. He is a recipient of
the UNL Research Council Grant-in-Aid award for 1999.
His research areas include optical networks, distributed
systems, and telecommunications.

E-mail: byrav@cse.unl.edu.

