’ In: Proceedings of the International Conferences on Software Engineering Research and PracticéoR0@8 |, Las Vegas, NV, June 2003, pp. 398—4p4.

3CoFramework: A Component-based Framework for Distributed Applications *

Shifeng Zhang Steve Goddard
Computer Science & Engineering Computer Science & Engineering
University of Nebraska-Lincoln University of Nebraska-Lincoln
Lincoln, Nebraska 68588-0115, U.S.A Lincoln, Nebraska 68588-0115, U.S.A
shzhang@cse.unl.edu goddard@cse.unl.edu
Abstract Languages (IDLs) have been extended to contain more ar-

The software engineering community has introduced componenthitectural and composition information at the implementa-
and connector concepts to support architecture-based softwardion level. Example extended IDLs include Scientific-IDL
descriptions. However, there still exists a gap in transitioning (SIDL) [4] and Component-IDL (CIDL) [11]. However,
component and connector concepts from the design level to theomponent frameworks with extended IDLs do not view
implementation level. This paper proposes a framework which carthe connector as a first class entity at the implementation
implement components and connectors based on the separation tével. Rather, they distribute the connection information to
three types of meta-information of a component: interface infor-the components without support for connectors.
mation, composition information, and instance information. With ~ Viewing component-based software as a collection of
the proposed framework, architects and developers can get a cleacomponents and connectors is important at both the design
architectural view of a component-based distributed application, level and the implementation level. However, there still ex-
and flexibly implement and maintain it. The National Agricultural ists a gap in transitioning component and connector con-
Decision Support System (NADSS), a component-based distributezepts from the design level to the implementation level. In
decision support system, is discussed as a case study to illustratthis paper, a framework, separating components and connec-
the framework. tors at the implementation level, is proposed. The proposed
framework consists of three major roles: the component, the
connector, and the coordinator, corresponding to the three
types of meta-information for a componeiiterface infor-
mation composition informationandinstance information
) We call the framework 3CoFramework. The component im-
1 Introduction plements computational logic functions, the connector com-
bines different components or connectors to create new com-
The software engineering community has introducedputational logic functions, and the coordinator manages in-
component and connector concepts to support architecturgtances of components and connectors by collecting their
based software descriptions:component represents an in- non-functional property information at run-time. The con-
dependent computational unit; a connector represents an inhector and the coordinator are viewed as first class entities
teraction among a set of componefity Architecture De- ~ With the component.
scription Languages (ADLs) were proposed, as modelling Our proposed framework can be applied in component-
notations based on component and connector concepts, ®ased applications. The National Agricultural Decision Sup-
support architecture-based development. Example ADLs inport System (NADSS) is a component-based distributed ap-
clude ACME [7], C2 [10], Darwin [9], Unicon [13], and Pplication built on a layered architecture from our earlier
Wright [3]. Though ADLs provide semantic notation and Work [8]. This paper, as an example, applies the 3CoFrame-
formal analysis based on component and connector corwork to the NADSS.
cepts, few ADLs provide the corresponding implementation The rest of this paper first discusses related research in
for such concepts, and little support for the dynamic archi-software architecture and software composition in Section
tecture. On the other hand, existing Interface Definition2, and then presents the conceptual view of the proposed
framework in Section 3. Section 4 describes an implemen-
“This work was supported, in part, by a grant from the NSF tation view of the proposed framework based on CORBA

g:é&%%%gi%)) and a cooperative agreement with USDA FCICRMA i qieware. Section 5 presents the layered NADSS archi-

Keywords: component, connector, coordinator, framework, soft-
ware architecture

In: Proceedings of the International Conferences on Software Engineering Research and PracticéoR008 |, Las Vegas, NV, June 2003, pp. 398-4p4.

tecture and how to apply the proposed framework to it. Weare as follows. First, localizing composition information in
introduce our future work in Section 6 and conclude in Sec-the run-time entity can eliminate the loss of design infor-

tion 7. mation. It is especially useful for reverse engineering the
application. Second, the component implementation inde-

2 Background and related work pendent of composition information makes the component
more reusable. Third, the separation of the components and

2.1. ADLs and extended IDLs connectors at the implementation level makes the applica-

tion evolvable; new components or connectors can be added

. . . .~ 'with less impact on existing components and connectors.
Darwin, Unicon, and Wright, were proposed to provide P 9 P

the formal description of the architecture and component The 3CoFramework separates components and connec-

interaction. Most ADLs separate the connector from thelors at the implement level. We observed that there are

computational component; however, they have limited sup{"f€€ types of meta-information related to a component:

port for the component and connector at the implementatiodt€rface informationinstance informationand composi-
level, and the dynamic architecture at run-time [2]. ACME tion information Interface informationdescribes the pro-

and Wright are used strictly as modeling notations thoughgrarzmabl_‘; interface of a compongntnsltance infqrma-
Wright can also provide formal analysis [7,1]. Darwin uses lon describes component non-functional property informa-

implicit connections, which are distributed in the compo- tion at run-time. Examples of non-functional property infor-

nents without support for the connector [9]. Unicon provides Mation include reference and security informati@umpo--
compilers only for pre-built connectors [13]. C2 does betterSition informationdescribes cooperative relationships with
with the ArchStudio tool, an architecture-based software de°ther cOmponents and connectors needed to implement new
velopment environment [10]. Though C2 only supports acomputauonal logic functions. Both thastance informa-

particular architecture style, the C2 architectural style, wellon apd composmon |nformat|0rm:_;1y change at run-time
consider it a good example in transferring component and’ Maintenance-time. The separation of these three types of

connector concepts from the design level to the implementaMéta-information at the implementation level makes the de-
It is also natural to find that

tion level. However, as a research prototype, C2 is still unde’€/0Pment clear and flexible.

experimental “alpha” state and has less support for real apt_he meta-information has a direct linkage to component and

plications connector concepts introduced at the design level. In the
Existing Interface Definition Languages (IDLs) lack sup- 3CoFramework there are three major roles corresponding

port for components. The CORBA Component Model to the three types of meta-information. The connector is
(CCM) from OMG kﬁown as CORBA Specification 3.0 used to separate tlowmposition informatiofrom theinter-

adds new elements to the IDL, which make it component-face information the coordinator is used to separate ithe

aware as a Component IDL (CIDL). The Scientific IDL stance informatiofrom theinterface informatiorandcom-

(SIDL) is another similar specification that extends the position information the component is independent of the
CORBA IDL to the scientific computing environments. composition informatiomndinstance informationFurther,
Component frameworks with extended IDLs, like CIDL and we believe ADLs, which can describe both the static archi-

SIDL, can implement applications with composite Compo_tecture and thekdynan_nc arch_ltectgre, are necessary for tlr(1e
nents. However, the components combineittierface in- 3CoFrameWork. Section 6.1 introduces our on-going wor

formation and composition informatioriogether withpro- on an XML-based ADL.
videdandrequiredinterfaces. There does not exist a role like
connector, and theomposition informatiotis distributed to
the components. This interaction enforces an asymmetric
model of interaction, which implies the connection is not in-
dependent of the component that provides it. A couple of The 3CoFramework consists of the component, the con-
weaknesses follow from such a model: the connection mayector and the coordinator. They correspond to the three
change when the system evolves; the computation modulelgpes of meta-information for a componerinterface in-
may be reused in other systems with different connection reformation composition informationandinstance informa-
lations [5]. tion. Figure 1 shows the relationship between the three el-
ements. The component and the connector should register
themselves with the coordinator when instantiated. The con-
Viewing software architecture as a collection of compo- nector depends on the instantiated components and connec-
nents and connectors is important at both the design levabrs to process the interaction. The coordinator provides the
and the implementation level. The advantages of separatmost suitable components’ or connectors’ reference infor-
ing components and connectors at the implementation levaiation to the connector at run-time.

Architecture Description Languages, such as ACME, C2,

3CoFramework conceptual view

2.2. 3CoFramework

them by either recontacting the coordinator or terminating
the process. Such errors should be transparent to the end-
users.

d) Self-registered functionThe connector performs the
same registration function with the coordinator as the com-
ponent.

Section 4.2 gives one example of the connector definition.

Dependencies

Figure 1. The relationship between the component, the

Registration

3.3. Coordinator

connector and the coordinator. The coordinator integrates and manages the component
and connector at run-time. It has two functions:
3.1 Component a) Component and connector information collectidine

coordinator collects the instantiated components’ and con-
A component is an independent computational unit at ahectors’ non-functional property information with their reg-
higher level than an object, and it is the composite unit inistration functions.
a software application. A component in the 3CoFramework b) Merit-based component and connector selectibhe
does not contain any composition information, and it can enconnector knows its desired components or connectors type,
gage in any related interaction. Below are its two functions:not their reference information at compile-time; it depends
a) Computation logic implementatio component im- on the coordinator to provide the most suitable instantiated
plements the computational logic with exposed interfaces. components or connectors at run-time. The coordinator pro-
b) Self-registered functian A component has non- vides algorithms to find the most suitable component or con-
functional property information in addition to its computa- nector based on collected information.
tional interface, such as reference information, access con- The coordinator can play either a decentralized or a cen-
trol information, mean execution time and execution timetralized role in the 3CoFramework, depending on the appli-
variance information. In the 3CoFramewrok, the componenication scale and complexity. If there are many components
must register itself, with those information elements, to theand connectors, which are located in different domains, de-

coordinator once it is instantiated. centralized coordinators are preferred for each domain. In
Section 4.1 gives one example of the component definisuch applications, based on the domain policy, coordinators
tion. cooperate together to collect, exchange and share the instan-

tiated component and connector information. With small
scale or single domain applications, a centralized coordina-
The connector in the 3CoFramework is based on the deftor can simplify the design and implementation. The naming
inition from [14]: conflict problem can also be prevented.
“Connectors mediate interactions among components; Section 4.3 gives one example of the coordinator defini-
that is, they establish the rules that govern component intjon.
teraction and specify any auxiliary mechanisms required”
The above definition indicates that the most important . . .
function of a connector is to mediate the interaction among4 3CoFramework implementation views
components. It leaves the unclear meanintaafy auxiliary
mechanisms required’In the 3CoFramework, at least two This section provides one implementation view based on
mechanisms are considered to be required for the connectctEORBA middleware. There are several reasons to separate
One is the adaptation of the interaction among incompatibléhe conceptual view from the implementation view in the
components. The other is the exception handler. A connec3CoFramework. First, the conceptual view is more general
tor in the 3CoFramework has the following four functions: than the implementation view at a high level. For exam-
a) Control link The connector specifies interaction ple, the coordinator can be implemented as either central-

3.2. Connector

among components. ized or decentralized in the implementation view. Second,
b) Data format conversianThe connector converts the the conceptual view can be built on the top of different dis-
incompatible transferred data among components. tributed computing platforms, such as CORBA, DCOM, or

c¢) Fault tolerance In a distributed environment, the coor- Java RMI. Third, different accessory entities can be added to
dinator may provide outdated component property informa-the implementation, which makes the implementation more
tion to the connector. For example, the desired componentfexible. In the following implementation view based on
do not exist because of hosts rebooting or processes crasBORBA middleware, object interaction are the concern of
ing. When such errors occur, the connector needs to handlen Object Request Broker (ORB), while the concerns of

organizing a set of distributed objects into a manageable Like the component, the connector also follows the fac-
framework are dealt with by the 3CoFramework. tory pattern. The connector factory also needs to register
4.1. Component itself with the _coordinator. I_n additi_on to that, a connec-
tor has an attributeule to define the involved components
The component is implemented as a CORBA object. All 3ng connectors. Howeverrale does not have run-time ref-
components in the 3CoFramework are derived from the begrence information about the desired components and con-

low component interface definition. nectors. The connector needs to get such information from
interface AppServer; the coordinator at run-time. With the operatifimdAppIm-
interface AppSer_/erFactory{h _ plementChain()provided by coordinator, the returned infor-
attribute Registerinfo whataboutme; .) . .
attribute long number; mation from the coordinator contains the desired component
boolean RegisterMyself(in string ior); and connector reference information. The operati@mpo-

g sition() directs the operation invocation sequences, maps the

'”ter\‘;gfg &%@%%’?r{ data conversion, and handles exceptions among components.

h ' Unfortunately, CORBA IDL can not give detailed infor-

interface AbstractComponent : AppServer { mation on the interactive relationship among components.

; A new XML-based ADL is under development in our work,
Components in 3CoFramework follow the factory pat- Which can provide a gray box view instead of the current

tern. As a daemon, a factory object occupies less resourcelack box view.

than its created objects; 'secor.1d, erxibIg objects can be Crer 3. Coordinator

ated from the factory object given the different parameters)])))

for a creation function. There is a structiRegisterinfoto A centralized coordinator is presented with the coordina-

describe the factory of the component. For example, ondOr interface definition as follows.

field repositorylDin the Registerinfo, which is similar to interface AbstractorCoordinator{

the repository ID in CORBA [11], is used to identify the reﬁg&g%rﬁggggae registeredAppFactory:

component’s factory. Since the 3CoFramework is an open readonly attribute _

framework, there exists a naming conflict probleaposito- CORBAServerDescSeq registeredAppFactoryType;

rylD provides a unique identifier for the component’s factory loiﬂg R%%?Qgﬁﬁ%"ﬁgg;?éimo).

to avoid naming conflicts at large. Another fi@éscription long rmAppServerinfo(_
in the Registerinfodescribes the component’s computation in-Registerinfo updateinfo);
functionality. The operatioRegisterMyself()s used to reg- RegisterinfoSeq

findApplmplementChain(

ister the component’s factory with the coordinator. The coor- in CORBAServerDescSeq request);

dinator’s reference information is assumed to be well-known};

to component factories. .) .)
The operatioraddAppServerinfo(Jeceives registration

4.2. Connector information from instantiated component and connector fac-
The connector mediates interaction among componentdories while the operatiommAppServerinfo(Junregisters

In CORBA, there are two methods to invoke the operationsthe instantiated component and connector factories. The

on CORBA objects: static invocation and dynamic invoca- operationfindAppimplementChain@hooses the most suit-

tion [11]. Dynamic invocation method is prefered in this able component or connector factories based on their non-

implementation. It allows the connector implementation tofunctional property information and other useful informa-

be independent of the components’ interfaces. Below is thdion provided during registration (see Section 4.4.2). The

interface definition for connector. algorithm to choose the most suitable component or connec-
interface AppServer; tor facto_ries_, howevgr, i_s not specified here. The coqrdina-
interface AppSer_/erFactory{h tor location information is assumed to be well-known in the
attribute Registerinfo whataboutme; 3CoFramework
attribute long number; :
boolean RegisterMyself(in string ior); 4.4. Accessory roles
interface AppServer{ The roles in this section are not necessary in the
void destroy(); 3CoFramework. However, the 3CoFramework is more flex-
interface AbstractConnector : AppServer { ible with them. The ClientBroker is a.broker for clients to
readonly attribute access components and connectors in the 3CoFramework.

CORBAServerDescSeq rule;

ParameterSeq composition(in
ParameterSeq psin);

The NodeResourceManager (NRM) provides a node’s state
information (the node is the machine from which the compo-
nent or connector is instantiated) to the coordinator, which

can then help the coordinator choose the most suitable con4.5. Cooperation in the 3CoFramework implemen-
ponent or connector. tation view

Figure 2 describes the relationship among the coor-
4.4.1 Client broker dinator, component factories, connector factories, the

.)) ClientBroker, and NRMs:
The client uses the ClientBroker to ask the coordinator for{ The client submits a request to the ClientBroker;

the most suitable component or connector, and then accessgs Based on the client's request, the ClientBroker asks the
the component or connector. The ClientBroker is also usegoordinator for the suitable component or connector factory.
ful for user access control; it allows only authorized clients if required, the ClientBroker will authenticate the clients;

to access the provided services. The ClientBroker can bg Based on collected non-functional property information
implemented as part of the coordinator. To make the frameang node performance information, the coordinator chooses

work clear, it is separated as an independent role in the imthe most suitable component or connector factory for the
plementation view. Below is the ClientBroker’s interface cjientBroker:

definition. 4. The ClientBroker returns the chosen component or
interface ClientBroker connector factory reference to the client;
/I client _ask for aﬁ service information 5. The client calls the chosen component or connector
C&thg:r\aggvse”r]lf)oer?)cﬁeq factory to create a new component or connector and process
/I client ask for desired component the service. The component or connector processes the
{ée%?sc{eﬁ%?gector request; if it is connector, it will call the coordinator to get
askforService(in CORBAServerDesc ri); the most suitable component or connector;
/I client authentication _ 6. The client receives the final result from the component or
. boolean authentication(in string); connector.

Clients can get all registered component or connector fac-
tory information from the coordinator through operatiget-
ServiceslInfor()to get the access information from a desired
component or connector factory, clients call the operation

askforService()
4.4.2 Node resource manager (NRM)

The non-functional property information from the compo-
nent and connector will not be enough to choose the most

NODE

-7-[{ Component factory
e - o
<" Component factory

Center—oriented
Coordinator

suitable component and connector. The performance of the v
component and connector depends largely on the nodes’ - = ’

computing performance information. A NRM service can Companent, Connector, NRMEregistaon A
be added to each node in the 3CoFramework. It collects the suquence at between clent an server

state information of the host, including the CPU load time,
available disk space, etc. This information is then sent to the

coordinator. The NRM interface is shown below. Figure 2. Roles cooperation in the 3CoFramework.

To simplify the figure, the procedure by which the chosen
interface NodeResourceManager { connector asks the coordinator to retrieve the most suitable
readonly attribute HostDesc hostinfo; instantiated components or connectors is not illustrated.

1

_ With the NRM, the coordinator needs to add the follow- 5 NADSS: a case study
ing registration, un-registration, and update functions:)
5.1. Introduction to NADSS
interface Coordinator:AbstractCoordinator . . .
long registerNodeResourceManager NADSS is being developed for the Risk Management
| In Node_Resc:\lIJrgel\R/lanagerlr,l;o Sef)?(Agency of the USDA. The initial focus of the NADSS
ong unregisterNodeResourceManager At i 10 i ; il
in NodeResourceManagerinfo self); project is to improve t_he quallt_y and access@hty ofdrqught
long updateNodeResourceManagerHostinfo(in related k_nowledge, information, and spa_tlal analysis for
_ NodeResourceManagerinfo self); drought risk management. A 4-layer architecture has been
y built for NADSS [8]. The 3CoFramework is applied to the

4-layer NADSS architecture based on the follow considera-and grammar are proprietary, and they lack support for dy-
tions: namic architecture descriptions at run-time. For example,
1. NADSS has dynamic development and composition rethey provide little notation and analysis for non-functional
qguirements throughout its life cycle. For example, new ap-properties, which are important to analyze the quality of
plication services (either as a component or a connectorjhe designed architecture. XML, as a good meta-language,
may be added in the future with the evolution of NADSS. can provide an open standard for architectural description.
New application services should not affect the currently de-There exist many advantages for XML-based ADLs[12]. At
ployed components and connectors. present, XADL and ADML provide XML-based ADLs [6].
2. In the NADSS 4-layer architecture, it is natural to find However, they focus on providing the notations to support
composite service chains among the layers. For exampldhe transliteration of architectural descriptions between va-
to produce a Standardized Precipitation Index (SPI) map forieties of ADLs. We are developing an XML-based ADL,
Nebraska; the constructed service chain is as follows: rawvhich can provide description for both static architectures
precipitation data (data layery SPI information (informa- and dynamic architectures. There are three XML Schemas:
tion layer) — SPI map (information layer). This service Component Schema, Connector Schema, and Deployment
chain can be implemented as a connector in the 3CoFrameschema. Together with the 3CoFramework at the implemen-
work. tation level, they can provide a component-based develop-
The 3CoFramework is suitable for such dynamic, evolv-ment environment.
able application systems. By applying the 3CoFramework
to the 4-layer NADSS e.\rchite.ctu.re, NADSS can be im.ple—7 Conclusion
mented and deployed in a distributed computing environ-

ment. .
Component-based software development and mainte-

5.2. 3CoFramework applied to NADSS nance is a challenging task. How to implement a software

application full of components and connectors is still an

With the 3CoFramework, NADSS is built as a collection open problem. Current ADLs provide architecture descrip-
of components and connectors. The coordinator in NADSSjon and analysis based on component and connector con-
is centralized; it collects and analyzes instantiated compogepts at the design level; however, little support has been

nent and connector non-functional property information to-provided to implement them. Current component frame-
gether with node state information from the NRMs. A global works based on extended IDLs can implement applications
naming context is used to avoid potential naming conflicts. with composite components, but they lack support for con-

The CORBA environments for NADSS consist of om- nectors in their implementations. There still exists a gap in

niORB3.0 and Java IDL. The server side is implementediransferring component and connector concepts from the de-
with omniORB and the client side is implemented as a Javasign level to the implementation level.

applet with Java IDL classes. Java IDL and omniORB has The 3CoFramework separates theerface information

been tested and certified as CORBA 2.1 compliant. instance information and composition informationof a
component. Within the 3CoFramwork, design-level infor-

6 Future work mation based on the component and the connector will be
kept at the implementation-level. The component is in-

6.1. On-going implementation for NADSS dependent and more reusable; the distributed application

) is evolvable. We have given a conceptual view of the
Using the proposed 3CoFramework, the 4-layeredscorramework, which provides a detailed description of the
NADSS architecture is implemented in a dynamic, evolv-comnonent, the connector, and the coordinator. Based on
able way. Since the requirements for the components ifpat conceptual view, there can be different implementation
each layer are not clear at the beginning of development, newiews for the selection of the middleware, or the scale of the
components and new connectors can be added in the fUturf‘arget application system, etc. We provided one implemen-

The 3CoFramework provides an extensible way to develoRation view based on CORBA middleware, and applied it to
such an evolvable distributed application as NADSS. NADSS.

6.2. XML-based ADL development _ We are dev_eloping an XML-based AD_L which can pro-
vide both static architecture and dynamic architecture de-
ADLs, which give a description for both static and dy- scriptions. Our final target is to provide a component-based
namic architectures, are necessary at the design stage. Theseftware development environment, which consists of the
are some existing ADLs, such as C2, Darwin, Unicon, andXML-based ADL at the design level, the 3CoFramework at
Wright which provide successful support for the architec-the implementation level, and development tools connecting
ture description and analysis. However, their feature setshem together.

References [13] M.Shaw, R.DeLine, D.V.Klein, T.L.Ross, D.M.Young,

[1]

(2]

(3]

[4]

[5]

[6]

[7]

(8]

9]

[10]

[11]

[12]

and G.Zelesnik. “Abstractions for software architecture

R. Allen. “A Formal Approach to Software Architec- and tools to support them.” IEEE Trans. Soft. Eng. 21
ture.” Ph.D. Thesis, Carnegie Mellon University. May, (4) 314-335, April 1995.
1997.

[14] M.Shaw and D.Garlan. “Software Architecture: Per-
spectives on an Emerging Discipline.” Prentice Hall,

R. Allen, R. Douence, and D Garlan. “Specifying and)
ISBN: 0-13-182957-2. April 1996.

Analyzing Dynamic Software Architectures.” Proc. of
FASE'98, pp. 21-30, March, 1998.

R. Allen, and D. Garlan. “Beyond definitioin/use: Ar-
chitectural interconnections.” Proc. of Workshop on In-
terface Definition Languages, pp. 35-45, Jan. 1994.

R. Armstrong, D. Gonnon, and Al. Geist. “To-
ward a Common Component Architecture for High-
Performance Scientific Computing.” Proc .of Confer-
ence on High Performance Distributed Computing, pp.
115-124, 1999.

J. Bishop. “Connectors in Configuration Programming
Languages: are They Neccesary?” Proc. of 3rd Confer-
ence on Configurable Distributed Systems, pp. 11-18,
May 1996.

E.M.Dashofy, A.Van, D.Hoek and R.N.Taylor. “A
Highly-Extensible, XML-Based Architecture Descrip-
tion Language.” Proc. of WICSA, pp. 103-111, 2001.

D. Garlan, R.T. Monroe, and D.Wile. “Acme: An Ar-
chitecture Description Interchange Language.” Proc. of
CASCON’97, pp. 169-183, Nov. 1997.

S.Goddard, S.Zhang, W.Waltman, D.Lytle, and
S.Anthony. “A Software Architecture for Distributed
Geospatial Decision Support Systems.” Proc. of 2002
national conference for digital government research,
pp. 45-52, May 2002.

J.Magee, N.Dulay, S.Eisenbach and J.Kramer. “Speci-
fying distributed software architectures.” Proc. of 5th
European Software Engineering Conf, pp. 137-153,
1995.

N.Medvidovic, P.Oreizy, J.E.Robbins, and R.N. Tay-
lor. “Using Object-Oriented Typing to Support Archi-

tectural Design in the C2 Style.” Proc of SIGSOFT’96,
pp. 24-32, Oct, 1996.

OMG. “CORBA Components. Revision 3.0"OMG TC
Document orbos/99-02-05 March 1999.

S.Pruitt, D.Suart, W.Sull and T.W.Cook. “The Merit of

XML as an Architecture Description Language Meta-
Language.” Technical Report of Microelectronics and
Computer Technology Corp, Austin, TX, Jan 2000.

