
In: Proceedings of the International Conferences on Software Engineering Research and Practice 2003, Volume I, Las Vegas, NV, June 2003, pp. 398-404.

3CoFramework: A Component-based Framework for Distributed Applications ∗

Shifeng Zhang
Computer Science & Engineering
University of Nebraska-Lincoln

Lincoln, Nebraska 68588-0115, U.S.A
shzhang@cse.unl.edu

Steve Goddard
Computer Science & Engineering
University of Nebraska-Lincoln

Lincoln, Nebraska 68588-0115, U.S.A
goddard@cse.unl.edu

Abstract
The software engineering community has introduced component
and connector concepts to support architecture-based software
descriptions. However, there still exists a gap in transitioning
component and connector concepts from the design level to the
implementation level. This paper proposes a framework which can
implement components and connectors based on the separation of
three types of meta-information of a component: interface infor-
mation, composition information, and instance information. With
the proposed framework, architects and developers can get a clear
architectural view of a component-based distributed application,
and flexibly implement and maintain it. The National Agricultural
Decision Support System (NADSS), a component-based distributed
decision support system, is discussed as a case study to illustrate
the framework.

Keywords:component, connector, coordinator, framework, soft-
ware architecture

1 Introduction

The software engineering community has introduced
component and connector concepts to support architecture-
based software descriptions:a component represents an in-
dependent computational unit; a connector represents an in-
teraction among a set of components[1]. Architecture De-
scription Languages (ADLs) were proposed, as modelling
notations based on component and connector concepts, to
support architecture-based development. Example ADLs in-
clude ACME [7], C2 [10], Darwin [9], Unicon [13], and
Wright [3]. Though ADLs provide semantic notation and
formal analysis based on component and connector con-
cepts, few ADLs provide the corresponding implementation
for such concepts, and little support for the dynamic archi-
tecture. On the other hand, existing Interface Definition

∗This work was supported, in part, by a grant from the NSF
(EIA-0091530) and a cooperative agreement with USDA FCIC/RMA
(2IE08310228).

Languages (IDLs) have been extended to contain more ar-
chitectural and composition information at the implementa-
tion level. Example extended IDLs include Scientific-IDL
(SIDL) [4] and Component-IDL (CIDL) [11]. However,
component frameworks with extended IDLs do not view
the connector as a first class entity at the implementation
level. Rather, they distribute the connection information to
the components without support for connectors.

Viewing component-based software as a collection of
components and connectors is important at both the design
level and the implementation level. However, there still ex-
ists a gap in transitioning component and connector con-
cepts from the design level to the implementation level. In
this paper, a framework, separating components and connec-
tors at the implementation level, is proposed. The proposed
framework consists of three major roles: the component, the
connector, and the coordinator, corresponding to the three
types of meta-information for a component:interface infor-
mation, composition information, andinstance information.
We call the framework 3CoFramework. The component im-
plements computational logic functions, the connector com-
bines different components or connectors to create new com-
putational logic functions, and the coordinator manages in-
stances of components and connectors by collecting their
non-functional property information at run-time. The con-
nector and the coordinator are viewed as first class entities
with the component.

Our proposed framework can be applied in component-
based applications. The National Agricultural Decision Sup-
port System (NADSS) is a component-based distributed ap-
plication built on a layered architecture from our earlier
work [8]. This paper, as an example, applies the 3CoFrame-
work to the NADSS.

The rest of this paper first discusses related research in
software architecture and software composition in Section
2, and then presents the conceptual view of the proposed
framework in Section 3. Section 4 describes an implemen-
tation view of the proposed framework based on CORBA
middleware. Section 5 presents the layered NADSS archi-

In: Proceedings of the International Conferences on Software Engineering Research and Practice 2003, Volume I, Las Vegas, NV, June 2003, pp. 398-404.

tecture and how to apply the proposed framework to it. We
introduce our future work in Section 6 and conclude in Sec-
tion 7.

2 Background and related work

2.1. ADLs and extended IDLs

Architecture Description Languages, such as ACME, C2,
Darwin, Unicon, and Wright, were proposed to provide
the formal description of the architecture and component
interaction. Most ADLs separate the connector from the
computational component; however, they have limited sup-
port for the component and connector at the implementation
level, and the dynamic architecture at run-time [2]. ACME
and Wright are used strictly as modeling notations though
Wright can also provide formal analysis [7,1]. Darwin uses
implicit connections, which are distributed in the compo-
nents without support for the connector [9]. Unicon provides
compilers only for pre-built connectors [13]. C2 does better
with the ArchStudio tool, an architecture-based software de-
velopment environment [10]. Though C2 only supports a
particular architecture style, the C2 architectural style, we
consider it a good example in transferring component and
connector concepts from the design level to the implementa-
tion level. However, as a research prototype, C2 is still under
experimental “alpha” state and has less support for real ap-
plications.

Existing Interface Definition Languages (IDLs) lack sup-
port for components. The CORBA Component Model
(CCM) from OMG, known as CORBA Specification 3.0,
adds new elements to the IDL, which make it component-
aware as a Component IDL (CIDL). The Scientific IDL
(SIDL) is another similar specification that extends the
CORBA IDL to the scientific computing environments.
Component frameworks with extended IDLs, like CIDL and
SIDL, can implement applications with composite compo-
nents. However, the components combine theinterface in-
formation and composition informationtogether withpro-
videdandrequiredinterfaces. There does not exist a role like
connector, and thecomposition informationis distributed to
the components. This interaction enforces an asymmetric
model of interaction, which implies the connection is not in-
dependent of the component that provides it. A couple of
weaknesses follow from such a model: the connection may
change when the system evolves; the computation modules
may be reused in other systems with different connection re-
lations [5].

2.2. 3CoFramework

Viewing software architecture as a collection of compo-
nents and connectors is important at both the design level
and the implementation level. The advantages of separat-
ing components and connectors at the implementation level

are as follows. First, localizing composition information in
the run-time entity can eliminate the loss of design infor-
mation. It is especially useful for reverse engineering the
application. Second, the component implementation inde-
pendent of composition information makes the component
more reusable. Third, the separation of the components and
connectors at the implementation level makes the applica-
tion evolvable; new components or connectors can be added
with less impact on existing components and connectors.

The 3CoFramework separates components and connec-
tors at the implement level. We observed that there are
three types of meta-information related to a component:
interface information, instance information, and composi-
tion information. Interface informationdescribes the pro-
grammable interface of a component.Instance informa-
tion describes component non-functional property informa-
tion at run-time. Examples of non-functional property infor-
mation include reference and security information.Compo-
sition informationdescribes cooperative relationships with
other components and connectors needed to implement new
computational logic functions. Both theinstance informa-
tion and composition informationmay change at run-time
or maintenance-time. The separation of these three types of
meta-information at the implementation level makes the de-
velopment clear and flexible. It is also natural to find that
the meta-information has a direct linkage to component and
connector concepts introduced at the design level. In the
3CoFramework there are three major roles corresponding
to the three types of meta-information. The connector is
used to separate thecomposition informationfrom theinter-
face information; the coordinator is used to separate thein-
stance informationfrom theinterface informationandcom-
position information; the component is independent of the
composition informationandinstance information. Further,
we believe ADLs, which can describe both the static archi-
tecture and the dynamic architecture, are necessary for the
3CoFrameWork. Section 6.1 introduces our on-going work
on an XML-based ADL.

3 3CoFramework conceptual view

The 3CoFramework consists of the component, the con-
nector and the coordinator. They correspond to the three
types of meta-information for a component:interface in-
formation, composition information, and instance informa-
tion. Figure 1 shows the relationship between the three el-
ements. The component and the connector should register
themselves with the coordinator when instantiated. The con-
nector depends on the instantiated components and connec-
tors to process the interaction. The coordinator provides the
most suitable components’ or connectors’ reference infor-
mation to the connector at run-time.

2

Registration

Componet

Coordinator ConnectorSupport

DependenciesRegistration

Figure 1. The relationship between the component, the
connector and the coordinator.

3.1 Component

A component is an independent computational unit at a
higher level than an object, and it is the composite unit in
a software application. A component in the 3CoFramework
does not contain any composition information, and it can en-
gage in any related interaction. Below are its two functions:

a) Computation logic implementation: A component im-
plements the computational logic with exposed interfaces.

b) Self-registered function: A component has non-
functional property information in addition to its computa-
tional interface, such as reference information, access con-
trol information, mean execution time and execution time
variance information. In the 3CoFramewrok, the component
must register itself, with those information elements, to the
coordinator once it is instantiated.

Section 4.1 gives one example of the component defini-
tion.

3.2. Connector

The connector in the 3CoFramework is based on the def-
inition from [14]:

“Connectors mediate interactions among components;
that is, they establish the rules that govern component in-
teraction and specify any auxiliary mechanisms required.”

The above definition indicates that the most important
function of a connector is to mediate the interaction among
components. It leaves the unclear meaning of“any auxiliary
mechanisms required”. In the 3CoFramework, at least two
mechanisms are considered to be required for the connector.
One is the adaptation of the interaction among incompatible
components. The other is the exception handler. A connec-
tor in the 3CoFramework has the following four functions:

a) Control link: The connector specifies interaction
among components.

b) Data format conversion: The connector converts the
incompatible transferred data among components.

c) Fault tolerance: In a distributed environment, the coor-
dinator may provide outdated component property informa-
tion to the connector. For example, the desired components
do not exist because of hosts rebooting or processes crash-
ing. When such errors occur, the connector needs to handle

them by either recontacting the coordinator or terminating
the process. Such errors should be transparent to the end-
users.

d) Self-registered function: The connector performs the
same registration function with the coordinator as the com-
ponent.

Section 4.2 gives one example of the connector definition.

3.3. Coordinator

The coordinator integrates and manages the component
and connector at run-time. It has two functions:

a)Component and connector information collection: The
coordinator collects the instantiated components’ and con-
nectors’ non-functional property information with their reg-
istration functions.

b) Merit-based component and connector selection: The
connector knows its desired components or connectors type,
not their reference information at compile-time; it depends
on the coordinator to provide the most suitable instantiated
components or connectors at run-time. The coordinator pro-
vides algorithms to find the most suitable component or con-
nector based on collected information.

The coordinator can play either a decentralized or a cen-
tralized role in the 3CoFramework, depending on the appli-
cation scale and complexity. If there are many components
and connectors, which are located in different domains, de-
centralized coordinators are preferred for each domain. In
such applications, based on the domain policy, coordinators
cooperate together to collect, exchange and share the instan-
tiated component and connector information. With small
scale or single domain applications, a centralized coordina-
tor can simplify the design and implementation. The naming
conflict problem can also be prevented.

Section 4.3 gives one example of the coordinator defini-
tion.

4 3CoFramework implementation views

This section provides one implementation view based on
CORBA middleware. There are several reasons to separate
the conceptual view from the implementation view in the
3CoFramework. First, the conceptual view is more general
than the implementation view at a high level. For exam-
ple, the coordinator can be implemented as either central-
ized or decentralized in the implementation view. Second,
the conceptual view can be built on the top of different dis-
tributed computing platforms, such as CORBA, DCOM, or
Java RMI. Third, different accessory entities can be added to
the implementation, which makes the implementation more
flexible. In the following implementation view based on
CORBA middleware, object interaction are the concern of
an Object Request Broker (ORB), while the concerns of

3

organizing a set of distributed objects into a manageable
framework are dealt with by the 3CoFramework.

4.1. Component
The component is implemented as a CORBA object. All

components in the 3CoFramework are derived from the be-
low component interface definition.

interface AppServer;
interface AppServerFactory{

attribute RegisterInfo whataboutme;
attribute long number;
boolean RegisterMyself(in string ior);

};
interface AppServer{

void destroy();
};
interface AbstractComponent : AppServer {
};

Components in 3CoFramework follow the factory pat-
tern. As a daemon, a factory object occupies less resource
than its created objects; second, flexible objects can be cre-
ated from the factory object given the different parameters
for a creation function. There is a structureRegisterInfo to
describe the factory of the component. For example, one
field repositoryID in the RegisterInfo, which is similar to
the repository ID in CORBA [11], is used to identify the
component’s factory. Since the 3CoFramework is an open
framework, there exists a naming conflict problem;reposito-
ryID provides a unique identifier for the component’s factory
to avoid naming conflicts at large. Another fieldDescription
in theRegisterInfodescribes the component’s computation
functionality. The operationRegisterMyself()is used to reg-
ister the component’s factory with the coordinator. The coor-
dinator’s reference information is assumed to be well-known
to component factories.

4.2. Connector
The connector mediates interaction among components.

In CORBA, there are two methods to invoke the operations
on CORBA objects: static invocation and dynamic invoca-
tion [11]. Dynamic invocation method is prefered in this
implementation. It allows the connector implementation to
be independent of the components’ interfaces. Below is the
interface definition for connector.
interface AppServer;
interface AppServerFactory{

attribute RegisterInfo whataboutme;
attribute long number;
boolean RegisterMyself(in string ior);

};
interface AppServer{

void destroy();
};
interface AbstractConnector : AppServer {

readonly attribute
CORBAServerDescSeq rule;
ParameterSeq composition(in

ParameterSeq psin);
};

Like the component, the connector also follows the fac-
tory pattern. The connector factory also needs to register
itself with the coordinator. In addition to that, a connec-
tor has an attributerule to define the involved components
and connectors. However, arule does not have run-time ref-
erence information about the desired components and con-
nectors. The connector needs to get such information from
the coordinator at run-time. With the operationfindAppIm-
plementChain(), provided by coordinator, the returned infor-
mation from the coordinator contains the desired component
and connector reference information. The operationcompo-
sition()directs the operation invocation sequences, maps the
data conversion, and handles exceptions among components.

Unfortunately, CORBA IDL can not give detailed infor-
mation on the interactive relationship among components.
A new XML-based ADL is under development in our work,
which can provide a gray box view instead of the current
black box view.

4.3. Coordinator

A centralized coordinator is presented with the coordina-
tor interface definition as follows.

interface AbstractorCoordinator{
readonly attribute

RegisterInfoSeq registeredAppFactory;
readonly attribute

CORBAServerDescSeq registeredAppFactoryType;
long addAppServerInfo(

in RegisterInfo updateinfo);
long rmAppServerInfo(

in RegisterInfo updateinfo);

RegisterInfoSeq
findAppImplementChain(

in CORBAServerDescSeq request);
};

The operationaddAppServerInfo()receives registration
information from instantiated component and connector fac-
tories while the operationrmAppServerInfo()unregisters
the instantiated component and connector factories. The
operationfindAppImplementChain()chooses the most suit-
able component or connector factories based on their non-
functional property information and other useful informa-
tion provided during registration (see Section 4.4.2). The
algorithm to choose the most suitable component or connec-
tor factories, however, is not specified here. The coordina-
tor location information is assumed to be well-known in the
3CoFramework.

4.4. Accessory roles

The roles in this section are not necessary in the
3CoFramework. However, the 3CoFramework is more flex-
ible with them. The ClientBroker is a broker for clients to
access components and connectors in the 3CoFramework.
The NodeResourceManager (NRM) provides a node’s state
information (the node is the machine from which the compo-
nent or connector is instantiated) to the coordinator, which

4

can then help the coordinator choose the most suitable com-
ponent or connector.

4.4.1 Client broker

The client uses the ClientBroker to ask the coordinator for
the most suitable component or connector, and then accesses
the component or connector. The ClientBroker is also use-
ful for user access control; it allows only authorized clients
to access the provided services. The ClientBroker can be
implemented as part of the coordinator. To make the frame-
work clear, it is separated as an independent role in the im-
plementation view. Below is the ClientBroker’s interface
definition.

interface ClientBroker {
// client ask for all service information
CORBAServerDescSeq

getServicesInfor();
// client ask for desired component
// and connector
RegisterInfo

askforService(in CORBAServerDesc ri);
// client authentication
boolean authentication(in string);

};

Clients can get all registered component or connector fac-
tory information from the coordinator through operationget-
ServicesInfor(); to get the access information from a desired
component or connector factory, clients call the operation
askforService().

4.4.2 Node resource manager (NRM)

The non-functional property information from the compo-
nent and connector will not be enough to choose the most
suitable component and connector. The performance of the
component and connector depends largely on the nodes’
computing performance information. A NRM service can
be added to each node in the 3CoFramework. It collects the
state information of the host, including the CPU load time,
available disk space, etc. This information is then sent to the
coordinator. The NRM interface is shown below.

interface NodeResourceManager {
readonly attribute HostDesc hostinfo;

};

With the NRM, the coordinator needs to add the follow-
ing registration, un-registration, and update functions:

interface Coordinator:AbstractCoordinator{
long registerNodeResourceManager(

in NodeResourceManagerInfo self);
long unregisterNodeResourceManager(

in NodeResourceManagerInfo self);
long updateNodeResourceManagerHostInfo(in

NodeResourceManagerInfo self);
};

4.5. Cooperation in the 3CoFramework implemen-
tation view

Figure 2 describes the relationship among the coor-
dinator, component factories, connector factories, the
ClientBroker, and NRMs:
1. The client submits a request to the ClientBroker;
2. Based on the client’s request, the ClientBroker asks the
coordinator for the suitable component or connector factory.
If required, the ClientBroker will authenticate the clients;
3. Based on collected non-functional property information
and node performance information, the coordinator chooses
the most suitable component or connector factory for the
ClientBroker;
4. The ClientBroker returns the chosen component or
connector factory reference to the client;
5. The client calls the chosen component or connector
factory to create a new component or connector and process
the service. The component or connector processes the
request; if it is connector, it will call the coordinator to get
the most suitable component or connector;
6. The client receives the final result from the component or
connector.

1

2

3

Component, Connector, NRM registration

Sequence call between client and server

4
5

6

 NODE

 NODE

 NODE

Connector factory

Component factory

Component factory

Connector factory

Component factory

NRM

NRM

NRM

Component factory

Coordinator

Center−oriented

ClientBroker

Client

Figure 2. Roles cooperation in the 3CoFramework.
To simplify the figure, the procedure by which the chosen

connector asks the coordinator to retrieve the most suitable
instantiated components or connectors is not illustrated.

5 NADSS: a case study

5.1. Introduction to NADSS

NADSS is being developed for the Risk Management
Agency of the USDA. The initial focus of the NADSS
project is to improve the quality and accessibility of drought
related knowledge, information, and spatial analysis for
drought risk management. A 4-layer architecture has been
built for NADSS [8]. The 3CoFramework is applied to the

5

4-layer NADSS architecture based on the follow considera-
tions:
1. NADSS has dynamic development and composition re-
quirements throughout its life cycle. For example, new ap-
plication services (either as a component or a connector)
may be added in the future with the evolution of NADSS.
New application services should not affect the currently de-
ployed components and connectors.
2. In the NADSS 4-layer architecture, it is natural to find
composite service chains among the layers. For example,
to produce a Standardized Precipitation Index (SPI) map for
Nebraska; the constructed service chain is as follows: raw
precipitation data (data layer)→ SPI information (informa-
tion layer)→ SPI map (information layer). This service
chain can be implemented as a connector in the 3CoFrame-
work.

The 3CoFramework is suitable for such dynamic, evolv-
able application systems. By applying the 3CoFramework
to the 4-layer NADSS architecture, NADSS can be imple-
mented and deployed in a distributed computing environ-
ment.

5.2. 3CoFramework applied to NADSS

With the 3CoFramework, NADSS is built as a collection
of components and connectors. The coordinator in NADSS
is centralized; it collects and analyzes instantiated compo-
nent and connector non-functional property information to-
gether with node state information from the NRMs. A global
naming context is used to avoid potential naming conflicts.

The CORBA environments for NADSS consist of om-
niORB3.0 and Java IDL. The server side is implemented
with omniORB and the client side is implemented as a Java
applet with Java IDL classes. Java IDL and omniORB has
been tested and certified as CORBA 2.1 compliant.

6 Future work

6.1. On-going implementation for NADSS

Using the proposed 3CoFramework, the 4-layered
NADSS architecture is implemented in a dynamic, evolv-
able way. Since the requirements for the components in
each layer are not clear at the beginning of development, new
components and new connectors can be added in the future.
The 3CoFramework provides an extensible way to develop
such an evolvable distributed application as NADSS.

6.2. XML-based ADL development

ADLs, which give a description for both static and dy-
namic architectures, are necessary at the design stage. There
are some existing ADLs, such as C2, Darwin, Unicon, and
Wright which provide successful support for the architec-
ture description and analysis. However, their feature sets

and grammar are proprietary, and they lack support for dy-
namic architecture descriptions at run-time. For example,
they provide little notation and analysis for non-functional
properties, which are important to analyze the quality of
the designed architecture. XML, as a good meta-language,
can provide an open standard for architectural description.
There exist many advantages for XML-based ADLs[12]. At
present, XADL and ADML provide XML-based ADLs [6].
However, they focus on providing the notations to support
the transliteration of architectural descriptions between va-
rieties of ADLs. We are developing an XML-based ADL,
which can provide description for both static architectures
and dynamic architectures. There are three XML Schemas:
Component Schema, Connector Schema, and Deployment
Schema. Together with the 3CoFramework at the implemen-
tation level, they can provide a component-based develop-
ment environment.

7 Conclusion

Component-based software development and mainte-
nance is a challenging task. How to implement a software
application full of components and connectors is still an
open problem. Current ADLs provide architecture descrip-
tion and analysis based on component and connector con-
cepts at the design level; however, little support has been
provided to implement them. Current component frame-
works based on extended IDLs can implement applications
with composite components, but they lack support for con-
nectors in their implementations. There still exists a gap in
transferring component and connector concepts from the de-
sign level to the implementation level.

The 3CoFramework separates theinterface information,
instance information, and composition informationof a
component. Within the 3CoFramwork, design-level infor-
mation based on the component and the connector will be
kept at the implementation-level. The component is in-
dependent and more reusable; the distributed application
is evolvable. We have given a conceptual view of the
3CoFramework, which provides a detailed description of the
component, the connector, and the coordinator. Based on
that conceptual view, there can be different implementation
views for the selection of the middleware, or the scale of the
target application system, etc. We provided one implemen-
tation view based on CORBA middleware, and applied it to
NADSS.

We are developing an XML-based ADL which can pro-
vide both static architecture and dynamic architecture de-
scriptions. Our final target is to provide a component-based
software development environment, which consists of the
XML-based ADL at the design level, the 3CoFramework at
the implementation level, and development tools connecting
them together.

6

References

[1] R. Allen. “A Formal Approach to Software Architec-
ture.” Ph.D. Thesis, Carnegie Mellon University. May,
1997.

[2] R. Allen, R. Douence, and D Garlan. “Specifying and
Analyzing Dynamic Software Architectures.” Proc. of
FASE’98, pp. 21-30, March, 1998.

[3] R. Allen, and D. Garlan. “Beyond definitioin/use: Ar-
chitectural interconnections.” Proc. of Workshop on In-
terface Definition Languages, pp. 35-45, Jan. 1994.

[4] R. Armstrong, D. Gonnon, and Al. Geist. “To-
ward a Common Component Architecture for High-
Performance Scientific Computing.” Proc .of Confer-
ence on High Performance Distributed Computing, pp.
115-124, 1999.

[5] J. Bishop. “Connectors in Configuration Programming
Languages: are They Neccesary?” Proc. of 3rd Confer-
ence on Configurable Distributed Systems, pp. 11-18,
May 1996.

[6] E.M.Dashofy, A.Van, D.Hoek and R.N.Taylor. “A
Highly-Extensible, XML-Based Architecture Descrip-
tion Language.” Proc. of WICSA, pp. 103-111, 2001.

[7] D. Garlan, R.T. Monroe, and D.Wile. “Acme: An Ar-
chitecture Description Interchange Language.” Proc. of
CASCON’97, pp. 169-183, Nov. 1997.

[8] S.Goddard, S.Zhang, W.Waltman, D.Lytle, and
S.Anthony. “A Software Architecture for Distributed
Geospatial Decision Support Systems.” Proc. of 2002
national conference for digital government research,
pp. 45-52, May 2002.

[9] J.Magee, N.Dulay, S.Eisenbach and J.Kramer. “Speci-
fying distributed software architectures.” Proc. of 5th
European Software Engineering Conf, pp. 137-153,
1995.

[10] N.Medvidovic, P.Oreizy, J.E.Robbins, and R.N. Tay-
lor. “Using Object-Oriented Typing to Support Archi-
tectural Design in the C2 Style.” Proc of SIGSOFT’96,
pp. 24-32, Oct, 1996.

[11] OMG. “CORBA Components. Revision 3.0” OMG TC
Document orbos/99-02-05 March 1999.

[12] S.Pruitt, D.Suart, W.Sull and T.W.Cook. “The Merit of
XML as an Architecture Description Language Meta-
Language.” Technical Report of Microelectronics and
Computer Technology Corp, Austin, TX, Jan 2000.

[13] M.Shaw, R.DeLine, D.V.Klein, T.L.Ross, D.M.Young,
and G.Zelesnik. “Abstractions for software architecture
and tools to support them.” IEEE Trans. Soft. Eng. 21
(4) 314-335, April 1995.

[14] M.Shaw and D.Garlan. “Software Architecture: Per-
spectives on an Emerging Discipline.” Prentice Hall,
ISBN: 0-13-182957-2. April 1996.

7

