’ In: Proceedings of the 24th IEEE Real-Time Systems SympdSamun, Mexico, December 2003, pp. 52—ér2.

A Dynamic Voltage Scaling Algorithm for Sporadic Tasks

Ala’ Qadi Steve Goddard Shane Farritor
Computer Science & Engineering Mechanical Engineering
University of Nebraska—Lincoln University of Nebraska - Lincoln
Lincoln, NE 68588-0115 Lincoln, NE 68588-0656
{agadi,goddard@cse.unl.edu {sfarritor}@unl.edu
Abstract In CMOS circuits the power consumed by a CMOS gate

is proportional to the square of the voltage applied to the

Dynamic voltage scaling (DVS) algorithms save energycircuit, as shown by Equation (1) whef, is the gate load
by scaling down the processor frequency when the processapacitance (output capacitance),y is the supply voltage
sor is not fully loaded. Many algorithms have been proposedand f is the clock frequency [29]. The circuit delay is
for periodic and aperiodic task models but none support thegiven by Equation (2) wherg is a constant depending on
canonical sporadic task model. A DVS algorithm, called the output gate size and the output capacitancelgnds
DVSST, is presented that can be used with sporadic taskihe threshold voltage [29]. The clock frequency is inversely
in conjunction with preemptive EDF scheduling. The algo- proportional to the circuit delay; it is expressed usipgnd
rithm is proven to guarantee each task meets its deadlinghe logic depth of a critical path as in Equation (3) whége
while saving the maximum amount of energy possible withis the depth of the critical path [29].
processor frequency scaling.

DVSST was implemented in th€/OS-II real-time op- Pcenos = CLVipf (1)
erating system for embedded systems and its overhead
was measured using a stand-alone Rabbit 2000 test board. ty=k Vbp)
Though theoretically optimal, the actual power savings re- (Vbp = Vr)?
alized with DVSST is a function of the sporadic task set and 1
the processor's DVS support. It is shown that the DVSST al- f ()

gorithm achieves 83% of the theoretical power savings for a La-ta
Robotic Highway Safety Marker real-time application. The It is clear form Equation (1) that reducing the supply volt-
difference between the theoretical power savings and the acage will reduce the power consumption. However it also
tual power savings is due to the limited number of frequencyreduces the clock frequency, as shown by Equations (2) and
levels the Rabbit 2000 processor supports. (3), which slows down the processor, meaning that jobs will
execute at a slower rate. Thus, the challenge in applying
DVS algorithms to real-time systems is to save maximum
power while still meeting all temporal requirements of the
system.

In recent years significant research has been done in the

Many embedded real-time systems consist of a batteryea of DVS (e.g., [1, 6, 7, 9, 10, 11, 14, 2, 16, 17, 19, 20, 22,
operated microprocessor system with a limited battery Iife.24’ 25, 26, 27, 28, 30, 31]). These efforts have resulted in
Some of these systems use rechargeable batteries (like cgl-nymper of DVS algorithms supporting various task mod-
lular phones and robots) while others use dry batteries. Iny|s for embedded and real-time systems. Successful DVS
both cases it is very important to maximize the battery life. jmprementations in commercial processors include Intel's
Dynamic Voltage Scaling (DVS) aims at reducing the poweryscale processor [8], Transmeta’s Crusoe processor [4] and
consumption of the system by operating the processor at &apbit Semiconductors’ Rabbit processor [23].

lower frequency and thus on a lower VOltage. DVS algorithms in [1’ 6, 7, 9, 11' 14, 2, 16, 19, 20' 24, 25,

" , . , .26, 27, 31] support variations of the Liu and Layland peri-
Supported, in part, by grants from the National Science Foundation™ ~’ .
(grant CCR-0208619) and the National Academy of Sciences Transporta.odlc task mOdel [15] under RM scheduling or EDF schedul-
tion Research Board-NCHRP IDEA Program (Project #90). ing. Algorithms presented in [16, 17, 22] considered task

1 Introduction

In: Proceedings of the 24th IEEE Real-Time Systems SympdSamun, Mexico, December 2003, pp. 52-#2.

models that also support aperiodic requests with soft deadPreserving and Look Ahead, conserve energy by first using
lines or non-periodic tasks with hard deadlines in which job Static Voltage Scaling to set the base processor frequency
release times were known a priori. and then further reduce the voltage level when a job exe-
To date, however, no DVS algorithms support the canon-cutes for less than its WCET or by deferring task execution
ical sporadic task model defined by Mok [18] in which tasks as much as possible. Our algorithm would give the same re-
have a minimal inter-execution time rather than a fixed pe-sult as the Static Voltage Scaling algorithm if all the tasks in
riod. In this work, a DVS algorithm is presented and eval- the sporadic task set are executed at a periodic rate.
uated that supports the canonical sporadic task model exe- The algorithm presented by Shin and Choi in [26, 27]
cuted under EDF scheduling. Each task in a sporadic tasklso sets the initial voltage level using Static Voltage Scal-

setT = {Th,T>,...,T,} has three associated parameters,ing. They then lower the voltage level further whenever a
p,e,andd : single task is eligible for execution. Lee et al. [2] developed
p is the minimum separation period between the releaseheir DVS algorithms using only two voltage levels and dis-
of two consecutive jobs of a task; tributing the tasks into two sets, each corresponding to one
e is the worst-case execution time of the job; of the voltage levelsHigh andLow. Their work was based
d is the relative deadline for the job. on the results of Ishihara and Yasuura [9] who formulated
It is assumed in this work that = p for all tasks. Thus, the processor energy optimization problem as a discrete op-
each task can be described using the tuple)(timization problem that could be solved using linear integer

The remainder of this paper is organized as follows. Secprogramming techniques. They showed that, in theory, if the
tion 2 describes related work. Section 3 presents our DVProcessor has a finite number of discrete voltage levels then
algorithm. Section 4 proves the optimality of the algorithm it is enough to have at most two voltage levels to minimize
in terms schedulability and theoretical power savings. Secthe energy consumption of the processor.
tion 5 presents the implementation and evaluation of the al- Kawaguchi et al. [10] presented an approach to schedule
gorithm in a stand-alone environment and in an embeddea periodic task set by means of task slicing and queues for
real-time system. We conclude with a discussion of resultgixed priority preemptive scheduling, which mainly makes

in Section 6. use of the fact that tasks often do not execute with their
WCET.
2. Related Work Hong et al. [6, 7] proposed a synthesis technique for vari-

The algorithms in [1, 19, 25, 26] assume the periodic taskable voltage core based systems containing a set of indepen-
model and rely on the principles of intra-task DVS. That is, dent, asynchronous periodic tasks with arbitrary start times
they adjust the processor voltage level, and hence the prdPhases) that were scheduled with non-preemptive fixed pri-
cessor speed, based on the execution path a task takes a@idfy scheduling. Zhang and Chanson present three algo-
commonly rely on compiler support rather than operatingfithms in [31] that apply DVS to a periodic task model with
system support to conserve power. non-preemptable sections. This work assumes all tasks are

The algorithmsin [6, 7, 9, 10, 11, 14, 2, 20, 22, 26, 27, 31]independent and fully preemptive.
also assume the periodic task model, but rely on an alterna- The algorithms in [16, 17, 22] consider variations of the
tive approach to intra-task DVS, called inter-task DVS. In periodic task model that support aperiodic requests with soft
general, inter-task DVS algorithms determine the processod@leadlines or non-periodic tasks with hard deadlines in which
voltage on a task-by-task basis. That is, they adjust the suggob release times are known a priori. Luo and Jha [16] pre-
ply voltage at a task level such that idle time is removed fromsented an algorithm to schedule periodic tasks, soft aperiodic
the schedule while guaranteeing that all tasks meet their retasks and hard aperiodic tasks with precedence constraints
spective deadlines. using task graphs, cyclic scheduling and slack steeling.

The approach used in this work falls into the category of Manzak and Chankrabarti [17] used the method of La-
inter-task DVS. Of the periodic inter-task DVS work identi- grange multipliers in an iterative way to determine the min-
fied, the Static Voltage Scaling algorithm developed by Pil-imum optimal voltage at which to execute the task set sub-
lai and Shin in [20] is the most closely related to this work. ject to both time and minimum energy constraints. Their
Their Static Voltage Scaling algorithm is an offline algo- method can be applied to a periodic task set or to what they
rithm that scales the processor voltage by a factor equal toeferred to as\periodic Single Tasksvhich is a system of
«a wherea is the minimum utilization required for the task tasks where each task releases a job once in a certain period
to remain schedulable under EDF or RM scheduling. Thisof time calledTtotal They considered both EDF and RM
technique is also used in this work to remove deterministicand presented exact and approximate algorithms to find the
idle time from the schedule, as computed using worst-caseninimum voltage, with the exact algorithm having higher
execution times (WCET) for each task, but in a slightly dif- complexity. Quan et al. [22] presented an algorithm that can
ferent way. The other two on-line algorithms in [20], Cycle be applied to a periodic task system or to a type of sporadic

task system in which all timing parameters, including tasksporadic task. In this section it is assumed thgi. = 0.
release times, are known a priori. This assumption is relaxed in the next section when we de-

None of the existing algorithms support the canonicalscribe the implementation of the algorithm on a real system.
sporadic task model defined by Mok [18] and summarized Definition 3: The delayed release task set, TD, is a subset
in Section 1. The next section presents a DVS algorithm forof the task se1’ = {7y, T», ..., T}, } whose last release was
Mok’s sporadic task model with preemptive EDF schedul-at least p time units ago. That is, at any timeT.D =
ing, which assumes deadlines are equal to periods. {T;|T; € T A (t > r; +p;)} where 1; is the last release time

. of task T; or -cc if task T; has not yet released a job.

3. The Algorithm The DVSST algorithm is shown in Figure 1. InitiallyD

The Dynamic Voltage Scaling for Sporadic Tasks =7 and the processor frequency is settg,.. When a task
(DVSST) algorithm presented here is classified as an interd; releases a job, the algorithm immediately increases the
task DVS algorithm for sporadic tasks. That is, it adjusts thescaling factor: by an amount equal t@ and removes task
processor voltage on a job-by-job basis, where a job repre?; from the seflD. If any taskT; does not release ajob at
sents the release of a sporadic task. Recall from Equationthe end of its minimum separation peripg the algorithm
(2) and (3) that the processor frequency is proportional toreduces the scaling facter by an amount equal t¢- and
the voltage level. As with most DVS algorithms, DVSST taskT; is added to the séfD. If the algorithm detects that
is defined in terms of processor frequency, rather than voltno job is currently executing, then it setso the minimum
age levels, since the relationship between the processor frggossible valuey;q;. or in other words, it sets the processor
quency and task execution times can be expressed directlyto the idle or sleep mode.

The DVSST maintains a frequency-scaling factgrthat
represents the percent of the maximum processor frequency.DVSST():
Rather than using the Static Voltage Scaling algorithm of| seta = ;45 andTD = T // set initial conditions
[20] to set the initial frequency level, DVSST starts with a | while(true){
minimum possible frequency-scaling factor, which can be| sleep until@ T; : (T} releases a job arifi €TD) or

theoretically zero, and scales the processor frequency up and (T; ¢TDand currentime > r;+p;))
down depending when jobs are released. The scaling factor or (no task is executing)
a is increased by an amount @f/p; when task7; is first re- if T; released a job arl; eTD then
leased. Let; be the last release time of tagk DVSST re- /I scale up the processor frequency
ducesx at timer; + p; by the amount of; /p; if the next job seta = a + =+ andTD=TD - {T;}
if task T; was not yet released. When tdgklater releases else ifT; ¢TD and currentime > r; + p;
the job,« is increased by the same amount. The algorithm // scale down the processor frequency
is explained in detail after we introduce a few definitions. seta = o — % andTD=TD + {T}}
Definition 1: The frequency-scaling factax, is defined else p// set processor to idle mode
as the ratio between the new processor frequency and the seta = a;q. andTD =T }
maximum processor frequency:
Figure 1. The DVSST Algorithm.
= Jnew (4) The value ofa may depend on the previous value ®of
Jinax and sincen: changes with time, we use, to represent the

n" change tax at timet. Equation (5) shows how, if at all,
a., is changed at time
Proof: The maximum value that we can scale the fre-

Corollary 1: o < 1.

qguency to isf,,q.. Therefore Qidle , t =0 0Or no task is executing
. an,l—%7t2ri—|—pi:0andTi§éTD
QO < Qpax = fmax _ 1. =Y a4 o, Tyisreleasedat time t andT; € T'D
fmax no change otherwise
. (5)

The following example illustrates how the DVSST algo-
Definition 2: The idle-state scaling factoty;q., is the rithm scales the processor frequency (voltage) under EDF
minimum scaling factor possible when there is no job to ex-scheduling.
ecute. Example 1: Let us consider the sporadic task §&t=
Theoreticallya;4;. = 0, but in many systems; ;. must (1,4),7» = (1,5), 75 = (3,10). The (un-scaled) system uti-
be greater than zero to support platform requirements, or tdization is U = 0.75. Let us consider scheduling the jobs
interact with external devices that trigger the release of ahat were released in the interval [0, 20) under preemptive

EDF while using the DVSST algorithm to scale the proces- gegs"?thom EDF with DVSST
sor frequency (voltage). Assume that the tasks released jobsJOb Tiig | Dij ,
foll T atti 0.4.10 d1 i 0.6 d Exec % of | Execution % of
as follows:T; attimes 0, 4, 10, and 7I; attimes O, ,an inter- | | Job Interval o | Job
11; andT}; at times 8 and 18. Let jol; ; represent thg'" val Exe- Exe-
release of tasl;. Figure 2 illustrates the execution of these cuted cuted
jobs without DVSST, and Figure 3 illustrates the same jobs| 31;,1 8 ‘5‘ {Sg 1 1882;0 {(2"2-22‘21)44) -jf igggf’
. og: . . 1 y 0 . yo. 49 (1]
executgd with QVSST. The specific job attributes for both 324 [8 |45 [1| 100% | [4445) 852 3%
executions are listed in Table 1. [5.6) 28 5504
[6,7.13) 48 50.7%
ol 6 | 11| [6,7) | 1| 100% | [7.13,8) 48 39.33%
1 [8,9.21) 5| 60.67%
J1| 8 | 18| [8,10) | 1 | 66.67% [9.21,10) 5| 13.13%
e F H 3P R [12,13)| 1 | 33.33% [12.66,15) | .73 58.34%
1N il i M [15,16) 5| 16.66%
012 45678 10111213 17 18 pil [16,17) 3| 10%
[17,17.08) | .75 1.87%
.) Ji.a| 10 | 14 | [10,11)] 1 | 100% | [10,11.33) | .79 100%
Flgure 2. EXGCUtlng the example task set un- J3| 11 | 16 | [11,12)] 1 | 100% | [11.33,12.66) .75 100%
der EDF without DVSST. Ji4| 17 | 21| [17,18)] 1 | 100% | [17.08,18.77) .55 100%
Jso| 18 | 28 | [18,21)] 1 | 100% | [18.77,24.22) .58 100%

Table 1. Job attributes of the example task

o set when executed under EDF with and with-
o ‘ out DVSST. The columns labeled r;; and D; ;

4 represent the release time and absolute dead-

lines of job J; ;. The scaling factor « is set at
the start of each execution interval.

0 222 4445 6 7138 92110 1133 1266 15 16 1717.08 1877 2422

t processor and task set, Section 5 presents an implementation

)) on a Rabbit 2000 processor for which these constraints hold.
Figure 3. Executing the example task set un-

der EDF with DVSST. The x-axis represents
time and the y-axis represents the frequency

scaling factor «, which is set at the start of))]
each execution interval. A voltage (frequency) scaling scheduling algorithm for

real-time systems is correct if it guarantees that all jobs meet

Notice that in Figure 2 the processor is idle in the inter- their deadlines under a specified scheduling algorithm. Ex-
vals [2,4), [5,6), and [13,17) under EDF scheduling withoutample 1, in Section 3, demonstrated that scaling the pro-
DVSST. For this set of release times, the DVSST algorithmcessor frequency results in new task execution times that

resulted in an execution in which the processor was neveare proportional to the frequency-scaling factor. Theorem
idle during the observed period shown in Figure 3. How- 1 states that under DVSST, these scaled task execution times
ever, no task missed its deadline—a fact proven in the nextesults in a scaled processor utilization of one if the sporadic

4.1 Temporal Correctness

section for all feasible task sets. tasks execute at their maximum rate. This theorem provides
. o an intuitive understanding of Theorem 2, which states that
4. Theoretical Validation (un-scaled) processor utilization less than or equal to one is

This section addresses the temporal correctness and ea-necessary and sufficient feasibility condition for sporadic
ergy savings possible when sporadic task sets are executédsk sets. Before presenting these theorems, however, new
under EDF with DVSST. Section 4.1 presents the temporaHefinitions are required.
correctness and optimality of EDF with DVSST. Section 4.2 Definition 4: Scaled-mode execution time, is the ex-
guantifies the power savings possible when both the procescution time needed to execute a job under a frequency-
sor voltage and frequency can be scaled, as well as whescaling factor.
only the processor frequency can be scaled. It is shown that Over any time interval where the scaling factois con-
DVSST is optimal with respect to power savings when only stant,e;can be calculated by Equation (6) wherg is the
the frequency can be scaled and all tasks execute with thegcaled execution time of task;, e;is the normal execution
WCET. While this may seem like a strict constraint on the time of T;, anda.. is the current scaling factor.

€;
— (6)
Definition 5: Scaled Mode Utilization, | is the processor
utilization while executing at a scaled frequency.

U, can be calculated over any time intervddy Equation
(7) whereq is constant over.

€si =
Q¢

n

Us‘r: Z

i=1
T,¢TD

€si

p

@)

?

Definition 6: Scaling Factor Change Intervalygs; is
the time interval between two consecutive scaling facto
changesy; anda; 1 1.

n

Theorem 1: If >~ % <1 and the DVSST algorithm is
i=1""

used to scale the processor frequency then the processor
scaled-mode utilization is always equal to 1 if the tasks are

released at their maximum rate.

Proof: Let g be the set of all scaling-factor change inter-

vals between the end of any idle interval and the beginning

of the nextidle interval wheres = {750,751, .., 7sm }. If
there are no idle intervals, then let be equal to the length

The scaled-mode utilization over the whole time intemal

can be calculated as a sum of the products of the utilizations
over subintervals times the ratio of the interval to the sum of
all intervals, as expressed in the following equation.

since Z Ts,, IS @ constant with respect to the
k=1
outer summation

r

O

of the hyperperiod of the task set and begin at a hyperperiod From Theorem 1, one might suspect thatU is a neces-

boundary. Letxs = {ag1, ass,...,as,} be the set of all
the scaling factors corresponding to the time intervalsgin

From Equation (7), the scaled utilization over any scaling-

factor change intervat; is

n

€si
USTj = E -

=1 Di
T;¢TD

€4

with eg; ot by Equation (6).
Substitutiﬁg fore,; we have

n

n n
€si € 1 i
U = _— = = —

o i:lz Di i:lz Di 'asj asj i:lz Di
T,¢TD T,¢TD T,¢TD
buta,, = Z ~* sinceTD contains all the tasks that
’) Di
=1

T.éTD

did not release a job at its minimum time separation befor
the start of the intervat ;.
Substituting fore; we have

1 .
Us7'7' n Z i — 1
' Z Li =1 DPi
) i T;¢TD
T;¢TD

sary and sufficient feasibility condition for preemptive EDF
scheduling with the DVSST algorithm. Theorem 2 states
that this is indeed the case, but it cannot be derived directly
from Theorem 1. Theorem 1 provides some intuitive insight
into why U < 1 is a necessary and sufficient feasibility con-
dition for preemptive EDF scheduling with the DVSST al-
gorithm, but it does not account for processor demand that
spans scaling-factor change intervals. Accounting for this
demand is tedious but straightforward. Thus, in the interest
of space, the proof of Theorem 2 is contained in [21].
Theorem 2: Let T = {T3,T»,...,T,} be a sporadic
task set with d = p;,. Preemptive EDF with DVSST wiill

succeed in scheduling T if and onIan: ;— <1
= P

Proof: See [21].

4.2 Power Savings

The amount of power that can be saved depends on
ewhether both frequency and voltage are scaled or frequency
alone is scaled. Some processors, such as the Crusoe pro-
cessor [4], have a feed back loop to scale voltage when the
frequency is scaled. Other processors, such as the Rabbit
processor [23], can operate on multiple voltage levels but
cannot scale the voltage with frequency changes.
Equation (1) shows that power is linearly proportional to
the frequency and quadratically proportional to the voltage.

If the processor automatically scales the voltage when th@ower savings can be calculated as
frequency is scaled, then there will be a voltage level corre-

sponding to each frequency level. Letbe the frequency- C fmaxViax — & i CfV2., -7
scaling factor and? be the voltage-scaling factor corre- p,, ... Savings = i=0
sponding toa. From Equation (2) it is clear that the fre- C fmaxViax
quency and voltage are related, but the relation between but f; = a; fmax therefore
andg depends on the gate threshold voltadgeand the volt- n
age itselfV’. Equation (8) shows the relation betweeand C fraxVipax — 7 2 Cti fnaxVigax - Ti
B. Power Savings = Cfr::)(c)vn%ax
(BV — ‘/T)2 Cfmaxvn%ax - Cfmaxvxiax Z Qg - Ty
“T BV —Vip ®) - =
’ C finaxVidas
1 n
Let us compute the power savings of the DVSST algorithm =1- = Z Qi Ti
=0

in both cases. First consider the case where only the fre-

n

guency is scaled, which is the case for the Rabbit processor ' € _
used in the application described in Section 5. Over any in- Recall thato; = _12 D; = Un,
terval in timer, the normalized power savings will be given %},({TD
Power Savings =1 — — - Z U, -7
Poax — P =
Power Savings = “max - DVSST 9) —1_-U
Pmax - T

Now consider the case where both frequency and voltage
whereP,,.. is the average power consumed by the procesare scaled. In this case let us keep all the previous assump-
sor operating at frequenc,... and Ppy g7 is the aver- tions but addis = {1, B2, . . ., B} Wherefs is the set of
age power consumed by the processor operating under théltage-scaling factors corresponding to the intervalsgn
DVSST algorithm. Letrg be the set of all scaling-factor The normalized power savings is then computed as follows.

change intervals i wherers = {79,71,...,7 }. Let

as = {a1,qs,...,a,} be the set of all scaling factors n

corresponding to the intervals ity. Since the power over Prax — % > P
=0

any scaling-factor change intervglis constant, the average Power Savings =

power consumed under DVSST in intervaik calculated as Prax .
Cfrnaxvrﬁax - % Z Cfl‘/,? - T
_ =0
1 n CfmaXVnzlax
Ppyssr = — ZPL‘ T but f; = @; fmax @andV; = B;Vinax
T
=0 n
Cfmaxv;iax - % Z Caiﬂ?fmaxvn%ax * Ty
_ =0
i ina i - C fnax V2,
whereP; is the average power consumed during interval max ¥ max
[ingsi Clmax Vi,
Therefore the normalized power savings is C frnax Vs — f xViax S ;32T
=0

C fmaxVizax
1 n
=1-- E i 2 i
Tizoa@j

We note that in this case the power savings is not equal to
Recall that from Equation (1) tha® = C.V3,f. For 1 — U, because of the voltage-scaling factgr However,
Poax, [= fumax andV = Viya. FOr Ppyssr,f = fi the maximum power that can be saved is still achieved by
because the frequency changes evergndV = V.« be- operating the processor at a frequency equal to the processor
cause we do not scale the voltage. Therefore the normalizedtilization.

n
1
Pmax_; E:PZTI

=0

Power Savings =
Pmax

Theorem 3: If only the frequency can be scaled and the time operating system [12]. The original version.@t/OS-
task set is feasibly scheduled, then the processor will savll uses the RM algorithm to preemptively schedule up to 64
the maximum possible amount of power under DVSST whentasks. The modified version used in this study supports EDF
all tasks execute with the their WCET. scheduling of up to 64K tasks [13]. Algorithm overhead was
measured using a stand-alone Rabbit 2000 test board [23].
Proof: If the processor only scales the frequency, then therhe actual power savings realized with DVSST is a func-
minimum average power consumed in any feasible time in+jon of the sporadic task set and the processor. Rather than
terval occurs when the processor is run at a frequency equgkeate random task sets, we measured the power savings pro-
to the SyStem utilization over that time interval, aSSUmingduced by a Specific app“cation' the Robotic H|ghway Safety
WCET s realized. Equation (10) shows the power con-parker.

sumed in this case. Section 5.1 describes frequency scaling in the Rabbit

1 2000. Section 5.2 presents slight modifications to the
P=C.-f-V’but f= - > i T+ fmax DVSST algorithm required in practice since currently avail-
i=1 able embedded processors have a limited number of fre-
" guency scaling levels. The overhead created by DVSST un-
p_ O V2 - fmax ZO" . (10) der EDF scheduling on the Rabbit 2000 is reported in Sec-
T e tion 5.3. Section 5.4 describes the Robotic Highway Safety

.)) Marker and power savings realized for that application.
If the processor is running the DVSST algorithm then

average power consumed can be computed using Equation
(11). 5.1 Frequency Scaling in the Rabbit 2000

n
i=1 There are two crystal oscillators built into the Rabbit

P=1%C-V2 fi-mbut f; = a; - fmax 2000. The main oscillator accepts crystals up to a frequency
ot of 29.4912 MHz and is used to derive the clock for the pro-

P= % SC V2o foax T cessor and peripherals. The low power clock oscillator re-
=1

quires a 32.768 kHz crystal, and is used to clock the watch-

) " dog timer, a battery backed time/date clock, and a periodic

P= €V fmax Z ;- T (11) interrupt. The main oscillator can be shut down in a special
T = low-power mode of operation, and the 32.768 kHz oscillator

is then used to clock all the things normally clocked by the

Equations (10) and (11) are equal. This proves that 'fmain oscillator.

the processor runs the DVSST algorithm, it will consume) .)

the same amount of power as if it was running on a single _ The main oscillator can be doubled in frequency and/or
frequency equal to the task utilization over the whole timedivided by 8. If both doubling and dividing are enabled,
interval 7. Thus, DVSST achieves maximum power sav- then there will be a net frequency division by 4. Our

scaled.] lator. Thus, there are four frequency levels available from

the main oscillator: 18.532MHz, 9.266MHz, 4.633MHz and

Theorem 2 states thdf < 1 is a necessary and suffi- 2.3165MHz—which correspond to 100%, 50%, 25% and
cient condition for schedulability under EDF with DVSST. 12.5% of the maximum frequency. Since the maximum fre-
Thus, DVSST does not affect the optimality of EDF schedul-quency at which we can operate the processor is 18.532 MHz
ing for sporadic task sets. Theorem 3 shows that, in theoryand the low power mode frequency is 32.768 kHz, the idle-
DVSST is optimal with respect to power savings when only state scaling factor used by DVSSTaig;. = % =
the frequency can be scaled and all tasks execute with theifl0176. In practice, the value af;4. can be close to zero
WCET. However, in practice, it is much harder to achievebut never zero as assumed in the theoretical presentation of
optimal power savings due to algorithm overhead and lim-DVSST.
ited frequency levels supported by many processors. The The Rabbit 2000 processor can operate at different volt-
next section discusses these implementation issues. ages but it does not change the voltage level dynamically
. when the frequency level is changed. Thus, only the proces-
5. Implementation sor frequency will be scaled dynamically, which will result

The DVSST algorithm was implemented in a modified in a linear savings in average power as explained in Section
version of Jean Labrosse/sC/OS-IlI (MicroC/OS-Il) real 4.2.

5.2 Modifying DVSST for the Rabbit Processor

Timer List Insertion Overhead

There are four non-idle scaling levels available on tl *
Rabbit 2000, rather than the infinite number of levels ¢
ten assumed in theory. Fortunately, the algorithm can
modified slightly to allow scaling the frequency to a discre
number of levels by rounding the value @fto the next up-
per scaling level. For example, if we have a processor w
scaling levels 0.25, 0.5, 0.75, and 1.0 and the value,@it
some point in time as calculated by DVSST is 0.58, the
the next upper scaling level to which we sgtis 0.75.

Another challenge in implementing DVSST on the Ra
bit 2000 is that serial communication baud rates cani
be derived from the low-power oscillator. Thus;q. =
0.00176 cannot be used with any application that requi
serial communication. Since the wireless transceiver u:
in the Robotic Highway Safety Marker uses a serial inte e ™ w P m

488 ms)

Clock Ticks (1 Tick

face to the processor, we uag;. = amin = 0.125 so that Nurmber Of Tasks
the application will not lose communication with the other _ . . _
robots. Figure 4. Timer list insertion overhead

sured in terms of periodic clock ticks on the Rabbit 2000,
5.3 Algorithm Overhead which occur at a rate of 2kHz or one clock tick every 488
The average insertion time is less than 1 clock tick for a
There are two primary sources of overhead created byist with less than 125 entries, as shown in Figure 4. The
DVSST: changing frequency levels and detecting when thdnsertion time is about 4 clock ticks (2 ms) for 512 en-
frequency can be scaled. Changing the processor frequendgies. Clearly a more efficient implementation of the timer
from one level to another is (approximately) constant, andist should be used for large task sets.
was measured on the Rabbit 2000 processor to beu$20
per frequency change with the main oscillator. 5.4 Power Savings for a Robotic Highway Safety
The second source of overhead is largely dependent on Marker
how the algorithm detects when it is possible to scale the
processor frequency. When a task is released, a check is The Robotic Highway Safety Marker (RSM) is an auto-
made to see if the frequency needs to be increased (i.e., if theated safety device designed to improve road construction
taske TD). A timer list is used to detect when it is possible work-zone design and safety. A RSM is a semi-autonomous
to scale down the processor frequency. A timer is set whemnobile robot that carries a highway safety marker, com-
the task is released and canceled if the task is released agaimonly called a barrel. The RSMs operate in groups that con-
before the timer expires. The processor frequency is scaledist of a single lead robot—called the foreman—and worker
down bye;/p; whenever a timer expires for tagk. robots. To date, one foreman and six worker prototype
The timer list is implemented as a sorted linked list with RSMs have been developed. Each worker RSM has a Rabbit
no effort made to optimize list insertion since most applica-2000 processor running our modifigC/OS-Il. The proto-
tions that use the Rabbit 2000 have very few tasks; our aptype foreman is more sophisticated than the worker RSMs.
plication has only six tasks and the version&@/OS-II that Control of the RSM group is hierarchical and broken
comes with the board only supports 64 tasks. Thus, insertioimto two levels—global and local control—to reduce the per-
into a list of sizen has costO(n). The worst case occurs robot cost. The foreman robot performs global control. To
when an entry needs to be inserted at the end of the list. Theove the robots, the foreman locates each RSM, plans its
listinsertion time was measured for up to 512 tasks with ran{ath, communicates destinations points (global waypoints),
dom deadlines. For each list length from one to 512, the tesand monitors performance. Local control is distributed to
was repeated a number of times equal to the list length withndividual RSMs, which do not have knowledge of other
random timer values to be inserted. The insertion time wasobots and only perform local tasks.
measured for each insertion and the average time of these The code for the RSM is implemented as a sporadic task
values for each list length was recorded. The graph showset. The task set only executes after it receives a new way-
in Figure 4 plots the average timer list insertion time versespoint from the foreman. A path from the initial position of
the number of tasks from 20 such experiments. Time is meathe RSM to the new waypoint is computed as a parabola

decomposed into multiple local waypoints. The number of PID, Encoder and Motor tasks. However, each task has a
local waypoints depends on the length of the path. The fol-minimum separation period, as shown in Table 2.
lowing six sporadic tasks comprise the RSM task set. The execution time for these tasks is very deterministic
for two reasons. First the Rabbit 2000 has no cache mem-
e Serial Task: reads commands from the foreman via a ory, which eliminates memory-caching effects on execution
RF transceiver, converts the command to target destinatime. Second the tasks repeat almost the same operation
tions, and stores the destinations in a shared queue datach time, with the exception of system initialization where
structure. some of the tasks execute a few more lines. Therefore the
execution time of these tasks is usually very close to their
WCET. The task execution times, shown in Table 2, were
determined using an oscilloscope and free I/O pins on the

e Waypoint Task: calculates the desired wheel angles ProCessor.
for each iteration of a PID control loop.

e Length Task: calculates the path length, number of
iterations, and other values for each target destination.

Task Period Execution Time | e; /p;
e PID Task: does the PID control for each iteration. Serial 7.8125ms 100us .0128
Length 7.8125ms 1ms 128
e Encoder Task: reads the current wheel angles. Way Point| 3+7.8125ms| 2.5ms 1066
e Motor Task: sends commands to each motor. Encoder | 3+7.8125ms| 35Qus 0149
PID 3%7.8125ms| 1.06ms .04522
An abstract processing graph for this task set is shown in_Motor 3%7.8125ms| 25Qus .0106

Figure 5.4. The precedence relations shown in Figure 5.4 .
represent the logical precedence constraints on the data pro- _12Ple 2. RSM sporadic task set parameters.

cessing and do not reflect actual release patterns. For ex- 1n€ maximum utilization for the task setli&= 0.31812,
ample, to reduce latency in the processing graph, the ladi/hich occurs when aII_of the task_s execute in a perlpdlc
four nodes in the processing graph can be released simult&?0de for an extended interval of time. If we have no idle
neously with deadline ties broken in favor of producer nodesPeriods over an extended interval of time, the lower bound
as described in [3]. The Serial task is released when data i@ Utilization is when we have only one execution of the
available on the serial port. When data arrives, the Seriaf€rial and length task followed by a very large number of
task converts it to a target destination, places it in a share§*ecutions of the other tasks. This will result in a processor
data structure and releases the Length task. Semaphores &f@dization slightly greater than

not needed to synchronize access to the data structure, which
results in a fully preemptable task set. The Length task cal-
culates the first two local waypoints before the robot begins

to move. As the robot moves to waypointwaypointi+2 Depending on when commands arrive and the length of the
is computed. The design ensures that waypoi® is com- path to be computed, a wide range of utilization values is
puted before waypointis reached. possible. For any case, the theoretical maximum power sav-
ings will bel—U.. (as shown in Section 4.2), whelg is the
Releases utilization over the time intervat. The actual power savings
achieved is less because we cannot scale the frequency to the
desired value; instead we scale it to the nearest upper level
of frequency available on the Rabbit 2000, as described in
Section 5.2.
As mentioned in Section 5.1, the Rabbit 2000 provides
Figure 5. RSM processing graph. frequency scaling but does not directly adjust the voltage
This task set is modeled as a sporadic task set because thdth the frequency. Thus, power savings can be linearly pro-
serial task receives commands with a minimum separation oportional to frequency scaling at best. However, since the
7.8125ms. The length task is executed the same number &abbit 2000 provides only a limited number of levels, rather
times the serial task is executed. The number of times thathan the unlimited number assumed in theory, there will be
Waypoint, PID, Encoder and Motor are executed depends on difference between the actual savings and the theoretical
the number of local waypoints that need to be computed tgower savings.
reach the next global waypoint, which is dependent on the Figures 6 and 7 show the difference between the actual
path length. Thus, for each execution of the serial task therand the theoretical power savings. The normalized average
may be a different number of executions for the Waypoint,power savings is plotted against relative utilization values,

EW aypoint + €Encoder + €PID + €Motor =.17732

PW aypoint PEncoder bpPID PMotor

where the relative utilization is the ratio of a possible taskpattern even though only the processor frequency is scaled
utilization value to the maximum task utilization (0.31812). and the voltage remains constant. This is because when the
Figure 6 shows the normalized theoretical and actual powefrequency is scaled on the Rabbit 2000, it draws less current
savings for the task set verses the relative utilization wherand the rate at which the current increases or decreases with
there are no idle periods. That is, the robot is constantlyeach frequency level is not exactly linear.

moving but with destination commands of varying distance. The average ratio of the actual savings to the theoretical

In this case, the minimum relative utilization is 0.55739. savings in both cases is about 83%. This means that DVSST
Figure 7 shows the normalized theoretical and actual poweachieved 83% of the theoretical power savings on the Rabbit

savings when we have idle periods. That is, when the robo2000 for this application.

stops for intervals of time. If the task set were executed at a periodic rate, the DVSST
would run the processor at a frequency equal to the task
1 utilization, which is the same as the Static Voltage Scaling

algorithm of [20], in this case DVSST will give the same
power savings as the Static Voltage Scaling but with more
0.8 MN overhead. Other DVS algorithms from the literature are un-
St likely to improve power savings much, even if the task set
executes periodically, because they try to take advantage of

the case when tasks do not execute with their WCET. In this
—aTeoretical | @pplication, however, task execution time is very determin-

Power

Lt
©

]

Normlized Power Savings
(=]
o

0.4 Savings istic and there is very little difference between average exe-
0.3 o ctual cution time and WCET.
Power
0.2 Savings .
g ® | 6. Conclusion

A dynamic voltage-scaling algorithm called DVSST
was presented for sporadic task sets executed under EDF
scheduling. It was shown thaf < 1 is a necessary and
sufficient schedulability condition for fully preemptive task
sets. DVSST is an inter-task DVS algorithm and the only
Figure 6. Power savings with the robot con- attempt to save power when jobs execute for less than their
stantly moving. WCET is to scale the processor to a minimum frequency
level whenever no jobs are pending. DVSST assumes that
resources are not shared between tasks; DVS for resource-
sharing sporadic tasks remains an open problem.

0 T T T T T T T
05 055 06 065 07 075 0.8 085 0.9 095 1

Relative Utilization

! M‘ DVSST has been implemented in a modified version of
0.9 1C/OS-II that supports EDF scheduling, and tested with
éﬁo_g%T a real-time embedded application, the Robotic Highway
> 07 .| Safety Marker (RSM). Though DVSST is theoretically opti-
» mal, results shows that DVSST saves an average of 83% of
g 0.6 \\\ _ the maximum possible theoretical power savings for that ap-
S 05 T heersamgs plication on the Rabbit 2000 processor. Differences between
T 04 _eactipower | theoretical and actual savings are due to the limited number
% 03 Savings of frequency levels supported by the Rabbit 2000 processor.
g e
z 02 References
0.1
0 ‘ ‘ ‘ ‘ ‘ ‘ [1] A. Azevedo, I. Issenin, R. Cornea, R. Gupta, N. Dutt. A.
0 01 02 03 04 05 06 07 08 09 1 Veidenbaum, and A. Nicolau. Profile-Based Dynamic Volt-
Relative Utilization age Scheduling Using Program Checkpoints in the COPPER
Framework.Proceeding of Design, Automation and Test in
Figure 7. Power savings with the robot not Europe Conference (DATH)Jarch 2002
constantly moving. [2] Y. Doh and C. M. Krishna. EDF Scheduling Using Two-

Mode Voltage-Clock-Scaling for Hard Real-time Systems.
Note that the actual power savings deviate from a linear Proc. of CASES 200pp. 221-228, 2001.

10

[3] S. Farritor,M. Rentchler. Robotic Highway Safety Markers. [18] A.K.-L. Mok. Fundamental Design Problems of Distributed

(4]

(6]

(7]

(8]
9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Proceedings of ASME International Mechanical Engineering
CongressNew Orleans, Louisiana, November 17-22, 2002.
M. Fleischmann. Crusoe Processor Products
Technology, LongRun Power Management -
namic Power Management for
http://www.transmeta.com/pdf/whifeapers/papemfleis-
chmannl7jan01.pdf, Transmeta Inc., January 17, 2001.

S. Goddard and K. Jeffay. Analyzing the Real-Time Prop-

erties of a Data flow Execution Paradigm using a Syn- [20]

thetic Aperture Radar ApplicatiorProc. 3¢ |IEEE Real-
Time Technology & Applications Symplontreal, Canada,
pp. 60-71, June 1997.

I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. B. Sri-
vastava. Power Optimization of Variable-Voltage Core-Based
SystemslEEE Trans. Computer-Aided Desigwol. 18, no.

12, pp. 1702-1714, Dec. 1999.

I. Hong, G. Qu, M. Potkonjak, and M. B. Srivastava. Synthe-
sis Techniques for Low-Power Hard Real-Time Systems on
Variable Voltage ProcessorBroceedings of the IEEE Real-
Time Systems Symposiyop. 178-187, December 1998.

Intel XScale microarchitecture,
http://developer.intel.com/design/intelxscale.

T. Ishihara and H. Yasuura. Voltage Scheduling Problem for
Dynamically Variable Voltage ProcessoRyoc. of ISLPED

pp. 197-202, Aug. 1998.

H. Kawaguchi, Y. Shin, and T. Sakurai. Experimental Evalu-
ation of Cooperative Voltage Scaling (CVS): A Case Study.
Proceedings of IEEE Workshop on Power Management for
Real-Time and Embedded Systepgs 17-23, May 2001.

W. Kim, J. Kim and S —L. Min. A Dynamic Voltage Scaling
Algorithm for Dynamic-Priority Hard Real-Time Systems
Using Slack Time AnalysiProceedings of Design Automa-
tion and Test in Europe (DATE’0O2)Paris, France, March
2002.

J. Labrosse.The Real Time Kernel MicroC/OS;IICMP
Books, May 2002.

C-M. Lee, Implementing Rate-Based Execution in
MicroC/OS-Il. Mater’s Project, Dept. of CSE, University of
Nebraska-Lincoln, November 27, 2002.

Y.-H. Lee and C. M. Krishna. Voltage-Clock Scaling for Low
Energy Consumption in Real-Time Embedded Systéhrs.
ceedings of the Sixth Int'l Conf. on Real Time Computing Sys-
tems and Applicationgp. 272-279, 1999.

C.L.Liu and J. Layland. Scheduling Algorithms for Multi-
programming in a Hard Real-Time Environmedournal of

the ACM Vol.20, pp.46—61, 1973.

J. Luo and N. K. Jha. Power-conscious Joint Scheduling of
Periodic Task Graphs and Aperiodic Tasks in Distributed
Real-time Embedded Systen®soceedings of ICCApages
357-364, Nov 2000.

A. Manzak and C. Chakrabarti. Variable Voltage Task
Scheduling for Minimizing Energy or Minimizing Power.
Proceedings IEEE Int. Conf. on Acoustic, Speech, and Sig-
nal Processing (ICASSP’0®)p. 3239-3242, June 2000.

11

and
Dy- [19]
Crusoe Processors.

[21]

Systems for the Hard Real Time Environment. Ph.D.
ThesisMIT, Dept. of EE and CS, MIT/LCS/TR-297, May
1983.

D. Mosse, H. Aydin, B. Childers and R. Melhem, Compiler-
Assisted Dynamic Power-Aware Scheduling for Real-Time
Applications. Workshop on Compilers and Operating Sys-
tems for Low-Power (COLP’0Q)Philadelphia, PA, Oct.
2000.

P. Pillai and K. G. Shin. Real-Time Dynamic Voltage Scaling
for Low-Power Embedded Operating SysterRgoc. of the
18th ACM Symp. on Operating Systems Princip€91.

A. Qadi, S. Goddard, and S. Farritor. DVSST: A Dy-
namic Voltage Scaling Algorithm for Sporadic Tasks,
University of Nebraska - Lincoln, Dept. of CSE, TR-
CSE-UNL-2003-2, May 2003. Available via the Web:
http://cse.unl.eduégoddard/Papers/TR-CSE-UNL-2003-
2.pdf.

22] G.Quan and X. Hu. Energy Efficient Fixed-Priority Schedul-

(23]

[24]

(25]

[26]

[27]

(28]

[29]

(30]

(31]

ing for Real-Time Systems on Variable Voltage Processors.
Proceedings of DAC'01: IEEE/ACM Design Automation
Conferencepp. 828-833, June 2001.

Rabbit Semiconductors. 2000
Microprocesser User’s Manual,
http://www.rabbitsemiconductor.com/documentation/docs/
manuals/ Rabbit2000/ UsersManual.

D. Shin and J. Kim. A Profile-Based Energy-Efficient Intra-
Task Voltage Scheduling Algorithm for Hard Real-Time Ap-
plications,Proc. of ISLPED 2001.

D. Shin, J. Kim, and S. Lee. Intra-Task Voltage Scheduling
for Low-Energy Hard Real-Time ApplicationEEEE Design
and Test Computerd 8(2): 20-30, 2001.

Y. Shin and K. Choi. Power Conscious Fixed Priority
Scheduling for Hard Real-Time Systenoceedings of the
Design Automation Conferengep. 134—139, June 1999.

Y. Shin, K. Choi, and T. Sakurai. Power Optimization
of Real-Time Embedded Systems on Variable Speed Pro-
cessors.Proceedings of the International Conference on
Computer-Aided Desigmp. 365—-368, November 2000.

M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling
for Reduced CPU Energiproceedings of the Symposium on
Operating Systems Design and Implementation (OSip)
13-23, November 1994.

W. Wolf. Modern VLSI DesignPrentice Hall Modern Semi-
conductor Design Series, Third Edition 2002.

F. Yao, A. Demers, and S. Shenker. A Scheduling Model
for Reduced CPU EnergiEEE Symposium on Foundations
Computer Scien¢p. 374-382, Oct. 1995.

F. Zhang and S. T. Chanson, Processor Voltage Scheduling
for Real-Time Tasks with Non-Preemptable SectidPm-
ceedings of the 23rd IEEE International Real-Time Systems
SymposiumAustin, Texas, pp. 235-245, Dec. 2002.

Rabbit

