
In: Proceedings of the 24th IEEE Real-Time Systems Symposium, Cancun, Mexico, December 2003, pp. 52-62.

A Dynamic Voltage Scaling Algorithm for Sporadic Tasks∗

Ala′ Qadi Steve Goddard
Computer Science & Engineering
University of Nebraska—Lincoln

Lincoln, NE 68588-0115
{aqadi,goddard}@cse.unl.edu

Shane Farritor
Mechanical Engineering

University of Nebraska - Lincoln
Lincoln, NE 68588-0656
{sfarritor}@unl.edu

Abstract

Dynamic voltage scaling (DVS) algorithms save energy
by scaling down the processor frequency when the proces-
sor is not fully loaded. Many algorithms have been proposed
for periodic and aperiodic task models but none support the
canonical sporadic task model. A DVS algorithm, called
DVSST, is presented that can be used with sporadic tasks
in conjunction with preemptive EDF scheduling. The algo-
rithm is proven to guarantee each task meets its deadline
while saving the maximum amount of energy possible with
processor frequency scaling.

DVSST was implemented in theµC/OS-II real-time op-
erating system for embedded systems and its overhead
was measured using a stand-alone Rabbit 2000 test board.
Though theoretically optimal, the actual power savings re-
alized with DVSST is a function of the sporadic task set and
the processor’s DVS support. It is shown that the DVSST al-
gorithm achieves 83% of the theoretical power savings for a
Robotic Highway Safety Marker real-time application. The
difference between the theoretical power savings and the ac-
tual power savings is due to the limited number of frequency
levels the Rabbit 2000 processor supports.

1 Introduction

Many embedded real-time systems consist of a battery
operated microprocessor system with a limited battery life.
Some of these systems use rechargeable batteries (like cel-
lular phones and robots) while others use dry batteries. In
both cases it is very important to maximize the battery life.
Dynamic Voltage Scaling (DVS) aims at reducing the power
consumption of the system by operating the processor at a
lower frequency and thus on a lower voltage.

∗Supported, in part, by grants from the National Science Foundation
(grant CCR-0208619) and the National Academy of Sciences Transporta-
tion Research Board-NCHRP IDEA Program (Project #90).

In CMOS circuits the power consumed by a CMOS gate
is proportional to the square of the voltage applied to the
circuit, as shown by Equation (1) whereCL is the gate load
capacitance (output capacitance),VDD is the supply voltage
andf is the clock frequency [29]. The circuit delaytd is
given by Equation (2) wherek is a constant depending on
the output gate size and the output capacitance andVT is
the threshold voltage [29]. The clock frequency is inversely
proportional to the circuit delay; it is expressed usingtd and
the logic depth of a critical path as in Equation (3) whereLd

is the depth of the critical path [29].

PCMOS = CLV 2
DDf (1)

td = k
VDD

(VDD − V T)2
(2)

f =
1

Ld · td (3)

It is clear form Equation (1) that reducing the supply volt-
age will reduce the power consumption. However it also
reduces the clock frequency, as shown by Equations (2) and
(3), which slows down the processor, meaning that jobs will
execute at a slower rate. Thus, the challenge in applying
DVS algorithms to real-time systems is to save maximum
power while still meeting all temporal requirements of the
system.

In recent years significant research has been done in the
area of DVS (e.g., [1, 6, 7, 9, 10, 11, 14, 2, 16, 17, 19, 20, 22,
24, 25, 26, 27, 28, 30, 31]). These efforts have resulted in
a number of DVS algorithms supporting various task mod-
els for embedded and real-time systems. Successful DVS
imprementations in commercial processors include Intel’s
Xscale processor [8], Transmeta’s Crusoe processor [4] and
Rabbit Semiconductors’ Rabbit processor [23].

DVS algorithms in [1, 6, 7, 9, 11, 14, 2, 16, 19, 20, 24, 25,
26, 27, 31] support variations of the Liu and Layland peri-
odic task model [15] under RM scheduling or EDF schedul-
ing. Algorithms presented in [16, 17, 22] considered task

In: Proceedings of the 24th IEEE Real-Time Systems Symposium, Cancun, Mexico, December 2003, pp. 52-62.

models that also support aperiodic requests with soft dead-
lines or non-periodic tasks with hard deadlines in which job
release times were known a priori.

To date, however, no DVS algorithms support the canon-
ical sporadic task model defined by Mok [18] in which tasks
have a minimal inter-execution time rather than a fixed pe-
riod. In this work, a DVS algorithm is presented and eval-
uated that supports the canonical sporadic task model exe-
cuted under EDF scheduling. Each task in a sporadic task
setT = {T1, T2, . . . , Tn} has three associated parameters,
p, e,andd :

p is the minimum separation period between the release
of two consecutive jobs of a task;

e is the worst-case execution time of the job;
d is the relative deadline for the job.
It is assumed in this work thatd = p for all tasks. Thus,

each task can be described using the tuple (p, e).
The remainder of this paper is organized as follows. Sec-

tion 2 describes related work. Section 3 presents our DVS
algorithm. Section 4 proves the optimality of the algorithm
in terms schedulability and theoretical power savings. Sec-
tion 5 presents the implementation and evaluation of the al-
gorithm in a stand-alone environment and in an embedded
real-time system. We conclude with a discussion of results
in Section 6.

2. Related Work
The algorithms in [1, 19, 25, 26] assume the periodic task

model and rely on the principles of intra-task DVS. That is,
they adjust the processor voltage level, and hence the pro-
cessor speed, based on the execution path a task takes and
commonly rely on compiler support rather than operating
system support to conserve power.

The algorithms in [6, 7, 9, 10, 11, 14, 2, 20, 22, 26, 27, 31]
also assume the periodic task model, but rely on an alterna-
tive approach to intra-task DVS, called inter-task DVS. In
general, inter-task DVS algorithms determine the processor
voltage on a task-by-task basis. That is, they adjust the sup-
ply voltage at a task level such that idle time is removed from
the schedule while guaranteeing that all tasks meet their re-
spective deadlines.

The approach used in this work falls into the category of
inter-task DVS. Of the periodic inter-task DVS work identi-
fied, the Static Voltage Scaling algorithm developed by Pil-
lai and Shin in [20] is the most closely related to this work.
Their Static Voltage Scaling algorithm is an offline algo-
rithm that scales the processor voltage by a factor equal to
α whereα is the minimum utilization required for the task
to remain schedulable under EDF or RM scheduling. This
technique is also used in this work to remove deterministic
idle time from the schedule, as computed using worst-case
execution times (WCET) for each task, but in a slightly dif-
ferent way. The other two on-line algorithms in [20], Cycle

Preserving and Look Ahead, conserve energy by first using
Static Voltage Scaling to set the base processor frequency
and then further reduce the voltage level when a job exe-
cutes for less than its WCET or by deferring task execution
as much as possible. Our algorithm would give the same re-
sult as the Static Voltage Scaling algorithm if all the tasks in
the sporadic task set are executed at a periodic rate.

The algorithm presented by Shin and Choi in [26, 27]
also sets the initial voltage level using Static Voltage Scal-
ing. They then lower the voltage level further whenever a
single task is eligible for execution. Lee et al. [2] developed
their DVS algorithms using only two voltage levels and dis-
tributing the tasks into two sets, each corresponding to one
of the voltage levels:High andLow. Their work was based
on the results of Ishihara and Yasuura [9] who formulated
the processor energy optimization problem as a discrete op-
timization problem that could be solved using linear integer
programming techniques. They showed that, in theory, if the
processor has a finite number of discrete voltage levels then
it is enough to have at most two voltage levels to minimize
the energy consumption of the processor.

Kawaguchi et al. [10] presented an approach to schedule
a periodic task set by means of task slicing and queues for
fixed priority preemptive scheduling, which mainly makes
use of the fact that tasks often do not execute with their
WCET.

Hong et al. [6, 7] proposed a synthesis technique for vari-
able voltage core based systems containing a set of indepen-
dent, asynchronous periodic tasks with arbitrary start times
(phases) that were scheduled with non-preemptive fixed pri-
ority scheduling. Zhang and Chanson present three algo-
rithms in [31] that apply DVS to a periodic task model with
non-preemptable sections. This work assumes all tasks are
independent and fully preemptive.

The algorithms in [16, 17, 22] consider variations of the
periodic task model that support aperiodic requests with soft
deadlines or non-periodic tasks with hard deadlines in which
job release times are known a priori. Luo and Jha [16] pre-
sented an algorithm to schedule periodic tasks, soft aperiodic
tasks and hard aperiodic tasks with precedence constraints
using task graphs, cyclic scheduling and slack steeling.

Manzak and Chankrabarti [17] used the method of La-
grange multipliers in an iterative way to determine the min-
imum optimal voltage at which to execute the task set sub-
ject to both time and minimum energy constraints. Their
method can be applied to a periodic task set or to what they
referred to asAperiodic Single Tasks, which is a system of
tasks where each task releases a job once in a certain period
of time calledTtotal. They considered both EDF and RM
and presented exact and approximate algorithms to find the
minimum voltage, with the exact algorithm having higher
complexity. Quan et al. [22] presented an algorithm that can
be applied to a periodic task system or to a type of sporadic

2

task system in which all timing parameters, including task
release times, are known a priori.

None of the existing algorithms support the canonical
sporadic task model defined by Mok [18] and summarized
in Section 1. The next section presents a DVS algorithm for
Mok’s sporadic task model with preemptive EDF schedul-
ing, which assumes deadlines are equal to periods.

3. The Algorithm
The Dynamic Voltage Scaling for Sporadic Tasks

(DVSST) algorithm presented here is classified as an inter-
task DVS algorithm for sporadic tasks. That is, it adjusts the
processor voltage on a job-by-job basis, where a job repre-
sents the release of a sporadic task. Recall from Equations
(2) and (3) that the processor frequency is proportional to
the voltage level. As with most DVS algorithms, DVSST
is defined in terms of processor frequency, rather than volt-
age levels, since the relationship between the processor fre-
quency and task execution times can be expressed directly.

The DVSST maintains a frequency-scaling factor,α, that
represents the percent of the maximum processor frequency.
Rather than using the Static Voltage Scaling algorithm of
[20] to set the initial frequency level, DVSST starts with a
minimum possible frequency-scaling factor, which can be
theoretically zero, and scales the processor frequency up and
down depending when jobs are released. The scaling factor
α is increased by an amount ofei/pi when taskTi is first re-
leased. Letri be the last release time of taskTi. DVSST re-
ducesα at timeri +pi by the amount ofei/pi if the next job
if task Ti was not yet released. When taskTi later releases
the job,α is increased by the same amount. The algorithm
is explained in detail after we introduce a few definitions.

Definition 1: The frequency-scaling factor,α, is defined
as the ratio between the new processor frequency and the
maximum processor frequency:

α =
fnew

fmax
(4)

Corollary 1: α ≤ 1.

Proof: The maximum value that we can scale the fre-
quency to isfmax. Therefore

α ≤ αmax =
fmax

fmax
= 1.

Definition 2: The idle-state scaling factor,αidle, is the
minimum scaling factor possible when there is no job to ex-
ecute.

Theoreticallyαidle = 0, but in many systemsαidle must
be greater than zero to support platform requirements, or to
interact with external devices that trigger the release of a

sporadic task. In this section it is assumed thatαidle = 0.
This assumption is relaxed in the next section when we de-
scribe the implementation of the algorithm on a real system.

Definition 3: The delayed release task set, TD, is a subset
of the task setT = {T1, T2, . . . , Tn} whose last release was
at least pi time units ago. That is, at any time t,TD =
{Ti|Ti ∈ T ∧ (t ≥ ri + pi)} where ri is the last release time
of task Ti or -∞ if task Ti has not yet released a job.

The DVSST algorithm is shown in Figure 1. Initially,TD
= T and the processor frequency is set toαidle. When a task
Ti releases a job, the algorithm immediately increases the
scaling factorα by an amount equal toei

pi
and removes task

Ti from the setTD. If any taskTi does not release a job at
the end of its minimum separation periodpi, the algorithm
reduces the scaling factorα by an amount equal toei

pi
and

taskTi is added to the setTD. If the algorithm detects that
no job is currently executing, then it setsα to the minimum
possible valueαidle,or in other words, it sets the processor
to the idle or sleep mode.

DVSST():
setα = αidle andTD = T // set initial conditions
while(true){

sleep until (∃ Ti : (Ti releases a job andTi ∈TD) or
(Ti /∈TD and currenttime≥ ri+pi))
or (no task is executing)

if Ti released a job andTi ∈TD then
// scale up the processor frequency

setα = α + ei

pi
andTD = TD - {Ti}

else ifTi /∈TD and currenttime≥ ri + pi

// scale down the processor frequency
setα = α− ei

pi
andTD = TD + {Ti}

else // set processor to idle mode
setα = αidle andTD = T }

Figure 1. The DVSST Algorithm.
The value ofα may depend on the previous value ofα

and sinceα changes with time, we useαn to represent the
nth change toα at timet. Equation (5) shows how, if at all,
αn is changed at timet.

αn =





αidle , t = 0 or no task is executing
αn−1 − ei

pi
, t ≥ ri + pi = 0 andTi /∈ TD

αn−1 + ei

pi
, Ti is released at time t andTi ∈ TD

no change otherwise
(5)

The following example illustrates how the DVSST algo-
rithm scales the processor frequency (voltage) under EDF
scheduling.

Example 1: Let us consider the sporadic task setT1 =
(1,4), T2 = (1,5), T3 = (3,10). The (un-scaled) system uti-
lization is U = 0.75. Let us consider scheduling the jobs
that were released in the interval [0, 20) under preemptive

3

EDF while using the DVSST algorithm to scale the proces-
sor frequency (voltage). Assume that the tasks released jobs
as follows:T1 at times 0, 4, 10, and 17;T2 at times 0, 6, and
11; andT3 at times 8 and 18. Let jobJi,j represent thejth

release of taskTi. Figure 2 illustrates the execution of these
jobs without DVSST, and Figure 3 illustrates the same jobs
executed with DVSST. The specific job attributes for both
executions are listed in Table 1.

J
1,1

J
2,1

J
1,2

J
2,2

J
3,1

J
1,3

J
2,3

J
3,1

J
1,4

J
3,2

0 1 2 4 5 6 7 8 10 11 12 13 17 18 21

Figure 2. Executing the example task set un-
der EDF without DVSST.

0.25
0.3

0.45
0.5
0.55

0.75

0 2.22 4.44 5 6 7.13 8 9.21 10 11.33 12.66 15 17.0816 18.77 24.22

J
1,1

J
2,1

J
1,2

J
1,2

J
2,2

J
2,2

J
3,1

J
1,3

J
2,3

J
3,1

J
3,1

J
3,1

J
1,4

J
3,2

α

t17

J
3,1

Figure 3. Executing the example task set un-
der EDF with DVSST. The x-axis represents
time and the y-axis represents the frequency
scaling factor α, which is set at the start of
each execution interval.

Notice that in Figure 2 the processor is idle in the inter-
vals [2,4), [5,6), and [13,17) under EDF scheduling without
DVSST. For this set of release times, the DVSST algorithm
resulted in an execution in which the processor was never
idle during the observed period shown in Figure 3. How-
ever, no task missed its deadline—a fact proven in the next
section for all feasible task sets.

4. Theoretical Validation
This section addresses the temporal correctness and en-

ergy savings possible when sporadic task sets are executed
under EDF with DVSST. Section 4.1 presents the temporal
correctness and optimality of EDF with DVSST. Section 4.2
quantifies the power savings possible when both the proces-
sor voltage and frequency can be scaled, as well as when
only the processor frequency can be scaled. It is shown that
DVSST is optimal with respect to power savings when only
the frequency can be scaled and all tasks execute with their
WCET. While this may seem like a strict constraint on the

Job ri,j Di,j

EDF without
DVSST

EDF with DVSST

Exec
Inter-
val

α
% of
Job
Exe-
cuted

Execution
Interval α

% of
Job
Exe-
cuted

J1,1 0 4 [0,1) 1 100% [0,2.22) .45 100%
J2,1 0 5 [1,2) 1 100% [2.22,4.44) .45 100%
J1,2 4 8 [4,5) 1 100% [4.44,5) .45 24.3%

[5,6) .25 25%
[6,7.13) .45 50.7%

J2,2 6 11 [6,7) 1 100% [7.13,8) .45 39.33%
1 [8,9.21) .5 60.67%

J3,1 8 18 [8,10) 1 66.67% [9.21,10) .5 13.13%
[12,13) 1 33.33% [12.66,15) .75 58.34%

[15,16) .5 16.66%
[16,17) .3 10%
[17,17.08) .75 1.87%

J1,3 10 14 [10,11) 1 100% [10,11.33) .75 100%
J2,3 11 16 [11,12) 1 100% [11.33,12.66) .75 100%
J1,4 17 21 [17,18) 1 100% [17.08,18.77) .55 100%
J3,2 18 28 [18,21) 1 100% [18.77,24.22) .55 100%

Table 1. Job attributes of the example task
set when executed under EDF with and with-
out DVSST. The columns labeled ri,j and Di,j

represent the release time and absolute dead-
lines of job Ji,j . The scaling factor α is set at
the start of each execution interval.

processor and task set, Section 5 presents an implementation
on a Rabbit 2000 processor for which these constraints hold.

4.1 Temporal Correctness

A voltage (frequency) scaling scheduling algorithm for
real-time systems is correct if it guarantees that all jobs meet
their deadlines under a specified scheduling algorithm. Ex-
ample 1, in Section 3, demonstrated that scaling the pro-
cessor frequency results in new task execution times that
are proportional to the frequency-scaling factor. Theorem
1 states that under DVSST, these scaled task execution times
results in a scaled processor utilization of one if the sporadic
tasks execute at their maximum rate. This theorem provides
an intuitive understanding of Theorem 2, which states that
(un-scaled) processor utilization less than or equal to one is
a necessary and sufficient feasibility condition for sporadic
task sets. Before presenting these theorems, however, new
definitions are required.

Definition 4: Scaled-mode execution time, es, is the ex-
ecution time needed to execute a job under a frequency-
scaling factor.

Over any time interval where the scaling factorα is con-
stant,escan be calculated by Equation (6) whereesi is the
scaled execution time of taskTi, eiis the normal execution
time ofTi, andαc is the current scaling factor.

4

esi =
ei

αc
(6)

Definition 5: Scaled Mode Utilization, Us, is the processor
utilization while executing at a scaled frequency.

Us can be calculated over any time intervalτ by Equation
(7) whereα is constant overτ .

Usτ =
n∑

i=1
Ti /∈TD

esi

pi
(7)

Definition 6: Scaling Factor Change Interval,τSi, is
the time interval between two consecutive scaling factor
changesαi andαi+1.

Theorem 1: If
n∑

i=1

ei

pi
≤ 1 and the DVSST algorithm is

used to scale the processor frequency then the processor
scaled-mode utilization is always equal to 1 if the tasks are
released at their maximum rate.

Proof: Let τS be the set of all scaling-factor change inter-
vals between the end of any idle interval and the beginning
of the next idle interval whereτS = {τS0, τS1, . . . , τSm }. If
there are no idle intervals, then letτS be equal to the length
of the hyperperiod of the task set and begin at a hyperperiod
boundary. LetαS = {αS1, αS2, . . . , αSm} be the set of all
the scaling factors corresponding to the time intervals inτS .
From Equation (7), the scaled utilization over any scaling-
factor change intervalτj is

Usτj =
n∑

i=1
Ti /∈TD

esi

pi

with esi = ei

αsj
by Equation (6).

Substituting foresi we have

Usτj =
n∑

i=1
Ti /∈TD

esi

pi
=

n∑

i=1
Ti /∈TD

ei

pi · αsj

=
1

αsj

n∑

i=1
Ti /∈TD

ei

pi

butαsj =
n∑

i=1
Ti /∈TD

ei

pi
sinceTD contains all the tasks that

did not release a job at its minimum time separation before
the start of the intervalτSj .

Substituting forαsj we have

Usτj =
1

n∑
i=1
Ti /∈TD

ei

pi

n∑

i=1
Ti /∈TD

ei

pi
= 1.

The scaled-mode utilization over the whole time intervalτS

can be calculated as a sum of the products of the utilizations
over subintervals times the ratio of the interval to the sum of
all intervals, as expressed in the following equation.

USτ =
m∑

j=1

τsj

m∑
k=1

τsk

· USτj

since
m∑

k=1

τsk
is a constant with respect to the

outer summation

USτ =
1

m∑
k=1

τsk

·
m∑

j=1

τsj
· USτj

sinceUSτj
= 1

USτ =
1

m∑
k=1

τsk

·
m∑

j=1

τsj

= 1

From Theorem 1, one might suspect that U≤ 1 is a neces-
sary and sufficient feasibility condition for preemptive EDF
scheduling with the DVSST algorithm. Theorem 2 states
that this is indeed the case, but it cannot be derived directly
from Theorem 1. Theorem 1 provides some intuitive insight
into why U≤ 1 is a necessary and sufficient feasibility con-
dition for preemptive EDF scheduling with the DVSST al-
gorithm, but it does not account for processor demand that
spans scaling-factor change intervals. Accounting for this
demand is tedious but straightforward. Thus, in the interest
of space, the proof of Theorem 2 is contained in [21].

Theorem 2: Let T = {T1, T2, . . . , Tn} be a sporadic
task set with di = pi. Preemptive EDF with DVSST will

succeed in scheduling T if and only if
n∑

i=1

ei

pi
≤ 1.

Proof: See [21].

4.2 Power Savings

The amount of power that can be saved depends on
whether both frequency and voltage are scaled or frequency
alone is scaled. Some processors, such as the Crusoe pro-
cessor [4], have a feed back loop to scale voltage when the
frequency is scaled. Other processors, such as the Rabbit
processor [23], can operate on multiple voltage levels but
cannot scale the voltage with frequency changes.

Equation (1) shows that power is linearly proportional to
the frequency and quadratically proportional to the voltage.

5

If the processor automatically scales the voltage when the
frequency is scaled, then there will be a voltage level corre-
sponding to each frequency level. Letα be the frequency-
scaling factor andβ be the voltage-scaling factor corre-
sponding toα. From Equation (2) it is clear that the fre-
quency and voltage are related, but the relation betweenα
andβ depends on the gate threshold voltageVT and the volt-
age itself,V . Equation (8) shows the relation betweenα and
β.

α =
(βV − VT)2

β(V − VT)2
(8)

Let us compute the power savings of the DVSST algorithm
in both cases. First consider the case where only the fre-
quency is scaled, which is the case for the Rabbit processor
used in the application described in Section 5. Over any in-
terval in timeτ , the normalized power savings will be given
by

Power Savings =
Pmax − PDV SST

Pmax
(9)

wherePmax is the average power consumed by the proces-
sor operating at frequencyfmax andPDV SST is the aver-
age power consumed by the processor operating under the
DVSST algorithm. LetτS be the set of all scaling-factor
change intervals inτ whereτS = {τ0, τ1, . . . , τn }. Let
αS = {α1, α2, . . . , αn} be the set of all scaling factors
corresponding to the intervals inτS . Since the power over
any scaling-factor change intervalτ i is constant, the average
power consumed under DVSST in intervalτ is calculated as

PDV SST =
1
τ

n∑

i=0

Pi · τi

wherePi is the average power consumed during intervalτ i.
Therefore the normalized power savings is

Power Savings =
Pmax − 1

τ

n∑
i=0

Pi · τi

Pmax

Recall that from Equation (1) thatP = CLV 2
DDf . For

Pmax, f = fmax and V = Vmax. For PDV SST ,f = fi

because the frequency changes everyτi andV = Vmax be-
cause we do not scale the voltage. Therefore the normalized

power savings can be calculated as

Power Savings =
CfmaxV

2
max − 1

τ

n∑
i=0

CfiV
2
max · τi

CfmaxV 2
max

butfi = αifmax therefore

Power Savings =
CfmaxV

2
max − 1

τ

n∑
i=0

CαifmaxV
2
max · τi

CfmaxV 2
max

=
CfmaxV

2
max − CfmaxV 2

max
τ

n∑
i=0

αi · τi

CfmaxV 2
max

= 1− 1
τ

n∑

i=0

αi · τi

Recall thatαi =
n∑

j=1
Ti /∈TD

ej

pj
= Uτi

Power Savings = 1− 1
τ
·

n∑

i=1

Uτi
· τi

= 1− Uτ

Now consider the case where both frequency and voltage
are scaled. In this case let us keep all the previous assump-
tions but addβS = {β1, β2, . . . , βn} whereβS is the set of
voltage-scaling factors corresponding to the intervals inτS .
The normalized power savings is then computed as follows.

Power Savings =
Pmax − 1

τ

n∑
i=0

Pi · τi

Pmax

=
CfmaxV

2
max − 1

τ

n∑
i=0

CfiV
2
i · τi

CfmaxV 2
max

butfi = αifmax andVi = βiVmax

=
CfmaxV

2
max − 1

τ

n∑
i=0

Cαiβ
2
i fmaxV

2
max · τi

CfmaxV 2
max

=
CfmaxV

2
max − CfmaxV 2

max
τ

n∑
i=0

αiβ
2
i τi

CfmaxV 2
max

= 1− 1
τ

n∑

i=0

αiβ
2
i τi

We note that in this case the power savings is not equal to
1 − Uτ because of the voltage-scaling factorβi. However,
the maximum power that can be saved is still achieved by
operating the processor at a frequency equal to the processor
utilization.

6

Theorem 3: If only the frequency can be scaled and the
task set is feasibly scheduled, then the processor will save
the maximum possible amount of power under DVSST when
all tasks execute with the their WCET.

Proof: If the processor only scales the frequency, then the
minimum average power consumed in any feasible time in-
terval occurs when the processor is run at a frequency equal
to the system utilization over that time interval, assuming
WCET is realized. Equation (10) shows the power con-
sumed in this case.

P = C · f · V 2 but f =
1
τ

n∑

i=1

αi · τi · fmax

P =
C · V 2 · fmax

τ

n∑

i=1

αi · τi (10)

If the processor is running the DVSST algorithm then
average power consumed can be computed using Equation
(11).

P = 1
τ

n∑
i=1

Pi · τi

P = 1
τ

n∑
i=1

C · V 2 · fi · τibut fi = αi · fmax

P = 1
τ

n∑
i=1

C · V 2 · αi · fmax · τ

P =
C · V 2 · fmax

τ

n∑

i=1

αi · τi (11)

Equations (10) and (11) are equal. This proves that if
the processor runs the DVSST algorithm, it will consume
the same amount of power as if it was running on a single
frequency equal to the task utilization over the whole time
interval τ . Thus, DVSST achieves maximum power sav-
ings when only the processor frequency can be dynamically
scaled.

Theorem 2 states thatU ≤ 1 is a necessary and suffi-
cient condition for schedulability under EDF with DVSST.
Thus, DVSST does not affect the optimality of EDF schedul-
ing for sporadic task sets. Theorem 3 shows that, in theory,
DVSST is optimal with respect to power savings when only
the frequency can be scaled and all tasks execute with their
WCET. However, in practice, it is much harder to achieve
optimal power savings due to algorithm overhead and lim-
ited frequency levels supported by many processors. The
next section discusses these implementation issues.

5. Implementation
The DVSST algorithm was implemented in a modified

version of Jean Labrosse’sµC/OS-II (MicroC/OS-II) real

time operating system [12]. The original version ofµC/OS-
II uses the RM algorithm to preemptively schedule up to 64
tasks. The modified version used in this study supports EDF
scheduling of up to 64K tasks [13]. Algorithm overhead was
measured using a stand-alone Rabbit 2000 test board [23].
The actual power savings realized with DVSST is a func-
tion of the sporadic task set and the processor. Rather than
create random task sets, we measured the power savings pro-
duced by a specific application, the Robotic Highway Safety
Marker.

Section 5.1 describes frequency scaling in the Rabbit
2000. Section 5.2 presents slight modifications to the
DVSST algorithm required in practice since currently avail-
able embedded processors have a limited number of fre-
quency scaling levels. The overhead created by DVSST un-
der EDF scheduling on the Rabbit 2000 is reported in Sec-
tion 5.3. Section 5.4 describes the Robotic Highway Safety
Marker and power savings realized for that application.

5.1 Frequency Scaling in the Rabbit 2000

There are two crystal oscillators built into the Rabbit
2000. The main oscillator accepts crystals up to a frequency
of 29.4912 MHz and is used to derive the clock for the pro-
cessor and peripherals. The low power clock oscillator re-
quires a 32.768 kHz crystal, and is used to clock the watch-
dog timer, a battery backed time/date clock, and a periodic
interrupt. The main oscillator can be shut down in a special
low-power mode of operation, and the 32.768 kHz oscillator
is then used to clock all the things normally clocked by the
main oscillator.

The main oscillator can be doubled in frequency and/or
divided by 8. If both doubling and dividing are enabled,
then there will be a net frequency division by 4. Our
model of the Rabbit 2000 has an 18.532 MHz main oscil-
lator. Thus, there are four frequency levels available from
the main oscillator: 18.532MHz, 9.266MHz, 4.633MHz and
2.3165MHz—which correspond to 100%, 50%, 25% and
12.5% of the maximum frequency. Since the maximum fre-
quency at which we can operate the processor is 18.532 MHz
and the low power mode frequency is 32.768 kHz, the idle-
state scaling factor used by DVSST isαidle = 32.768kHz

18.532MHz =
.00176. In practice, the value ofαidle can be close to zero
but never zero as assumed in the theoretical presentation of
DVSST.

The Rabbit 2000 processor can operate at different volt-
ages but it does not change the voltage level dynamically
when the frequency level is changed. Thus, only the proces-
sor frequency will be scaled dynamically, which will result
in a linear savings in average power as explained in Section
4.2.

7

5.2 Modifying DVSST for the Rabbit Processor

There are four non-idle scaling levels available on the
Rabbit 2000, rather than the infinite number of levels of-
ten assumed in theory. Fortunately, the algorithm can be
modified slightly to allow scaling the frequency to a discrete
number of levels by rounding the value ofα to the next up-
per scaling level. For example, if we have a processor with
scaling levels 0.25, 0.5, 0.75, and 1.0 and the value ofαnat
some point in timet as calculated by DVSST is 0.58, then
the next upper scaling level to which we setαn is 0.75.

Another challenge in implementing DVSST on the Rab-
bit 2000 is that serial communication baud rates cannot
be derived from the low-power oscillator. Thus,αidle =
0.00176 cannot be used with any application that requires
serial communication. Since the wireless transceiver used
in the Robotic Highway Safety Marker uses a serial inter-
face to the processor, we useαidle = αmin = 0.125 so that
the application will not lose communication with the other
robots.

5.3 Algorithm Overhead

There are two primary sources of overhead created by
DVSST: changing frequency levels and detecting when the
frequency can be scaled. Changing the processor frequency
from one level to another is (approximately) constant, and
was measured on the Rabbit 2000 processor to be 120µs
per frequency change with the main oscillator.

The second source of overhead is largely dependent on
how the algorithm detects when it is possible to scale the
processor frequency. When a task is released, a check is
made to see if the frequency needs to be increased (i.e., if the
task∈ TD). A timer list is used to detect when it is possible
to scale down the processor frequency. A timer is set when
the task is released and canceled if the task is released again
before the timer expires. The processor frequency is scaled
down byei/pi whenever a timer expires for taskTi.

The timer list is implemented as a sorted linked list with
no effort made to optimize list insertion since most applica-
tions that use the Rabbit 2000 have very few tasks; our ap-
plication has only six tasks and the version ofµC/OS-II that
comes with the board only supports 64 tasks. Thus, insertion
into a list of sizen has costO(n). The worst case occurs
when an entry needs to be inserted at the end of the list. The
list insertion time was measured for up to 512 tasks with ran-
dom deadlines. For each list length from one to 512, the test
was repeated a number of times equal to the list length with
random timer values to be inserted. The insertion time was
measured for each insertion and the average time of these
values for each list length was recorded. The graph shown
in Figure 4 plots the average timer list insertion time verses
the number of tasks from 20 such experiments. Time is mea-

Figure 4. Timer list insertion overhead

sured in terms of periodic clock ticks on the Rabbit 2000,
which occur at a rate of 2kHz or one clock tick every 488µS.

The average insertion time is less than 1 clock tick for a
list with less than 125 entries, as shown in Figure 4. The
insertion time is about 4 clock ticks (2 ms) for 512 en-
tries. Clearly a more efficient implementation of the timer
list should be used for large task sets.

5.4 Power Savings for a Robotic Highway Safety
Marker

The Robotic Highway Safety Marker (RSM) is an auto-
mated safety device designed to improve road construction
work-zone design and safety. A RSM is a semi-autonomous
mobile robot that carries a highway safety marker, com-
monly called a barrel. The RSMs operate in groups that con-
sist of a single lead robot—called the foreman—and worker
robots. To date, one foreman and six worker prototype
RSMs have been developed. Each worker RSM has a Rabbit
2000 processor running our modifiedµC/OS-II. The proto-
type foreman is more sophisticated than the worker RSMs.

Control of the RSM group is hierarchical and broken
into two levels—global and local control—to reduce the per-
robot cost. The foreman robot performs global control. To
move the robots, the foreman locates each RSM, plans its
path, communicates destinations points (global waypoints),
and monitors performance. Local control is distributed to
individual RSMs, which do not have knowledge of other
robots and only perform local tasks.

The code for the RSM is implemented as a sporadic task
set. The task set only executes after it receives a new way-
point from the foreman. A path from the initial position of
the RSM to the new waypoint is computed as a parabola

8

decomposed into multiple local waypoints. The number of
local waypoints depends on the length of the path. The fol-
lowing six sporadic tasks comprise the RSM task set.

• Serial Task: reads commands from the foreman via a
RF transceiver, converts the command to target destina-
tions, and stores the destinations in a shared queue data
structure.

• Length Task: calculates the path length, number of
iterations, and other values for each target destination.

• Waypoint Task: calculates the desired wheel angles
for each iteration of a PID control loop.

• PID Task: does the PID control for each iteration.

• Encoder Task: reads the current wheel angles.

• Motor Task: sends commands to each motor.

An abstract processing graph for this task set is shown in
Figure 5.4. The precedence relations shown in Figure 5.4
represent the logical precedence constraints on the data pro-
cessing and do not reflect actual release patterns. For ex-
ample, to reduce latency in the processing graph, the last
four nodes in the processing graph can be released simulta-
neously with deadline ties broken in favor of producer nodes,
as described in [3]. The Serial task is released when data is
available on the serial port. When data arrives, the Serial
task converts it to a target destination, places it in a shared
data structure and releases the Length task. Semaphores are
not needed to synchronize access to the data structure, which
results in a fully preemptable task set. The Length task cal-
culates the first two local waypoints before the robot begins
to move. As the robot moves to waypointi, waypointi+2
is computed. The design ensures that waypointi+2 is com-
puted before waypointi is reached.

Serial Task Length Task Waypoint
Task

Encoder
Task

PlD Task Motor Task

k Releases

Figure 5. RSM processing graph.
This task set is modeled as a sporadic task set because the

serial task receives commands with a minimum separation of
7.8125ms. The length task is executed the same number of
times the serial task is executed. The number of times that
Waypoint, PID, Encoder and Motor are executed depends on
the number of local waypoints that need to be computed to
reach the next global waypoint, which is dependent on the
path length. Thus, for each execution of the serial task there
may be a different number of executions for the Waypoint,

PID, Encoder and Motor tasks. However, each task has a
minimum separation period, as shown in Table 2.

The execution time for these tasks is very deterministic
for two reasons. First the Rabbit 2000 has no cache mem-
ory, which eliminates memory-caching effects on execution
time. Second the tasks repeat almost the same operation
each time, with the exception of system initialization where
some of the tasks execute a few more lines. Therefore the
execution time of these tasks is usually very close to their
WCET. The task execution times, shown in Table 2, were
determined using an oscilloscope and free I/O pins on the
processor.

Task Period Execution Time ei /pi

Serial 7.8125ms 100µs .0128
Length 7.8125ms 1ms .128
Way Point 3 ∗7.8125ms 2.5ms .1066
Encoder 3 ∗7.8125ms 350µs .0149
PID 3 ∗7.8125ms 1.06ms .04522
Motor 3 ∗7.8125ms 250µs .0106

Table 2. RSM sporadic task set parameters.
The maximum utilization for the task set isU= 0.31812,

which occurs when all of the tasks execute in a periodic
mode for an extended interval of time. If we have no idle
periods over an extended interval of time, the lower bound
on utilization is when we have only one execution of the
serial and length task followed by a very large number of
executions of the other tasks. This will result in a processor
utilization slightly greater than

eWaypoint

pWaypoint
+

eEncoder

pEncoder
+

ePID

pPID
+

eMotor

pMotor
= .17732

Depending on when commands arrive and the length of the
path to be computed, a wide range of utilization values is
possible. For any case, the theoretical maximum power sav-
ings will be1−Uτ (as shown in Section 4.2), whereUτ is the
utilization over the time intervalτ . The actual power savings
achieved is less because we cannot scale the frequency to the
desired value; instead we scale it to the nearest upper level
of frequency available on the Rabbit 2000, as described in
Section 5.2.

As mentioned in Section 5.1, the Rabbit 2000 provides
frequency scaling but does not directly adjust the voltage
with the frequency. Thus, power savings can be linearly pro-
portional to frequency scaling at best. However, since the
Rabbit 2000 provides only a limited number of levels, rather
than the unlimited number assumed in theory, there will be
a difference between the actual savings and the theoretical
power savings.

Figures 6 and 7 show the difference between the actual
and the theoretical power savings. The normalized average
power savings is plotted against relative utilization values,

9

where the relative utilization is the ratio of a possible task
utilization value to the maximum task utilization (0.31812).
Figure 6 shows the normalized theoretical and actual power
savings for the task set verses the relative utilization when
there are no idle periods. That is, the robot is constantly
moving but with destination commands of varying distance.
In this case, the minimum relative utilization is 0.55739.
Figure 7 shows the normalized theoretical and actual power
savings when we have idle periods. That is, when the robot
stops for intervals of time.

Figure 6. Power savings with the robot con-
stantly moving.

Figure 7. Power savings with the robot not
constantly moving.

Note that the actual power savings deviate from a linear

pattern even though only the processor frequency is scaled
and the voltage remains constant. This is because when the
frequency is scaled on the Rabbit 2000, it draws less current
and the rate at which the current increases or decreases with
each frequency level is not exactly linear.

The average ratio of the actual savings to the theoretical
savings in both cases is about 83%. This means that DVSST
achieved 83% of the theoretical power savings on the Rabbit
2000 for this application.

If the task set were executed at a periodic rate, the DVSST
would run the processor at a frequency equal to the task
utilization, which is the same as the Static Voltage Scaling
algorithm of [20], in this case DVSST will give the same
power savings as the Static Voltage Scaling but with more
overhead. Other DVS algorithms from the literature are un-
likely to improve power savings much, even if the task set
executes periodically, because they try to take advantage of
the case when tasks do not execute with their WCET. In this
application, however, task execution time is very determin-
istic and there is very little difference between average exe-
cution time and WCET.

6. Conclusion
A dynamic voltage-scaling algorithm called DVSST

was presented for sporadic task sets executed under EDF
scheduling. It was shown thatU ≤ 1 is a necessary and
sufficient schedulability condition for fully preemptive task
sets. DVSST is an inter-task DVS algorithm and the only
attempt to save power when jobs execute for less than their
WCET is to scale the processor to a minimum frequency
level whenever no jobs are pending. DVSST assumes that
resources are not shared between tasks; DVS for resource-
sharing sporadic tasks remains an open problem.

DVSST has been implemented in a modified version of
µC/OS-II that supports EDF scheduling, and tested with
a real-time embedded application, the Robotic Highway
Safety Marker (RSM). Though DVSST is theoretically opti-
mal, results shows that DVSST saves an average of 83% of
the maximum possible theoretical power savings for that ap-
plication on the Rabbit 2000 processor. Differences between
theoretical and actual savings are due to the limited number
of frequency levels supported by the Rabbit 2000 processor.

References

[1] A. Azevedo, I. Issenin, R. Cornea, R. Gupta, N. Dutt. A.
Veidenbaum, and A. Nicolau. Profile-Based Dynamic Volt-
age Scheduling Using Program Checkpoints in the COPPER
Framework.Proceeding of Design, Automation and Test in
Europe Conference (DATE),March 2002.

[2] Y. Doh and C. M. Krishna. EDF Scheduling Using Two-
Mode Voltage-Clock-Scaling for Hard Real-time Systems.
Proc. of CASES 2001,pp. 221-228, 2001.

10

[3] S. Farritor,M. Rentchler. Robotic Highway Safety Markers.
Proceedings of ASME International Mechanical Engineering
Congress, New Orleans, Louisiana, November 17-22, 2002.

[4] M. Fleischmann. Crusoe Processor Products and
Technology, LongRun Power Management - Dy-
namic Power Management for Crusoe Processors.
http://www.transmeta.com/pdf/whitepapers/papermfleis-
chmann17jan01.pdf, Transmeta Inc., January 17, 2001.

[5] S. Goddard and K. Jeffay. Analyzing the Real-Time Prop-
erties of a Data flow Execution Paradigm using a Syn-
thetic Aperture Radar Application.Proc. 3rd IEEE Real-
Time Technology & Applications Symp., Montreal, Canada,
pp. 60–71, June 1997.

[6] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. B. Sri-
vastava. Power Optimization of Variable-Voltage Core-Based
Systems.IEEE Trans. Computer-Aided Design, vol. 18, no.
12, pp. 1702-1714, Dec. 1999.

[7] I. Hong, G. Qu, M. Potkonjak, and M. B. Srivastava. Synthe-
sis Techniques for Low-Power Hard Real-Time Systems on
Variable Voltage Processors.Proceedings of the IEEE Real-
Time Systems Symposium, pp. 178–187, December 1998.

[8] Intel XScale microarchitecture,
http://developer.intel.com/design/intelxscale.

[9] T. Ishihara and H. Yasuura. Voltage Scheduling Problem for
Dynamically Variable Voltage Processors.Proc. of ISLPED,
pp. 197–202, Aug. 1998.

[10] H. Kawaguchi, Y. Shin, and T. Sakurai. Experimental Evalu-
ation of Cooperative Voltage Scaling (CVS): A Case Study.
Proceedings of IEEE Workshop on Power Management for
Real-Time and Embedded Systems, pp. 17-23, May 2001.

[11] W. Kim, J. Kim and S –L. Min. A Dynamic Voltage Scaling
Algorithm for Dynamic-Priority Hard Real-Time Systems
Using Slack Time Analysis.Proceedings of Design Automa-
tion and Test in Europe (DATE’02), Paris, France, March
2002.

[12] J. Labrosse.The Real Time Kernel MicroC/OS-II, CMP
Books, May 2002.

[13] C-M. Lee, Implementing Rate-Based Execution in
MicroC/OS-II. Mater’s Project, Dept. of CSE, University of
Nebraska-Lincoln, November 27, 2002.

[14] Y.-H. Lee and C. M. Krishna. Voltage-Clock Scaling for Low
Energy Consumption in Real-Time Embedded Systems.Pro-
ceedings of the Sixth Int’l Conf. on Real Time Computing Sys-
tems and Applications, pp. 272-279, 1999.

[15] C.L.Liu and J. Layland. Scheduling Algorithms for Multi-
programming in a Hard Real-Time Environment.Journal of
the ACM, Vol.20, pp.46–61, 1973.

[16] J. Luo and N. K. Jha. Power-conscious Joint Scheduling of
Periodic Task Graphs and Aperiodic Tasks in Distributed
Real-time Embedded Systems.Proceedings of ICCAD, pages
357–364, Nov 2000.

[17] A. Manzak and C. Chakrabarti. Variable Voltage Task
Scheduling for Minimizing Energy or Minimizing Power.
Proceedings IEEE Int. Conf. on Acoustic, Speech, and Sig-
nal Processing (ICASSP’00), pp. 3239–3242, June 2000.

[18] A.K.-L. Mok. Fundamental Design Problems of Distributed
Systems for the Hard Real Time Environment. Ph.D.
Thesis,MIT, Dept. of EE and CS, MIT/LCS/TR-297, May
1983.

[19] D. Mosse, H. Aydin, B. Childers and R. Melhem, Compiler-
Assisted Dynamic Power-Aware Scheduling for Real-Time
Applications.Workshop on Compilers and Operating Sys-
tems for Low-Power (COLP’00), Philadelphia, PA, Oct.
2000.

[20] P. Pillai and K. G. Shin. Real-Time Dynamic Voltage Scaling
for Low-Power Embedded Operating Systems.Proc. of the
18th ACM Symp. on Operating Systems Principles, 2001.

[21] A. Qadi, S. Goddard, and S. Farritor. DVSST: A Dy-
namic Voltage Scaling Algorithm for Sporadic Tasks,
University of Nebraska - Lincoln, Dept. of CSE, TR-
CSE-UNL-2003-2, May 2003. Available via the Web:
http://cse.unl.edu/∼goddard/Papers/TR-CSE-UNL-2003-
2.pdf.

[22] G. Quan and X. Hu. Energy Efficient Fixed-Priority Schedul-
ing for Real-Time Systems on Variable Voltage Processors.
Proceedings of DAC’01: IEEE/ACM Design Automation
Conference, pp. 828-833, June 2001.

[23] Rabbit Semiconductors. Rabbit 2000
Microprocesser User’s Manual,
http://www.rabbitsemiconductor.com/documentation/docs/
manuals/ Rabbit2000/ UsersManual.

[24] D. Shin and J. Kim. A Profile-Based Energy-Efficient Intra-
Task Voltage Scheduling Algorithm for Hard Real-Time Ap-
plications,Proc. of ISLPED, 2001.

[25] D. Shin, J. Kim, and S. Lee. Intra-Task Voltage Scheduling
for Low-Energy Hard Real-Time Applications.IEEE Design
and Test Computers, 18(2): 20–30, 2001.

[26] Y. Shin and K. Choi. Power Conscious Fixed Priority
Scheduling for Hard Real-Time Systems.Proceedings of the
Design Automation Conference, pp. 134–139, June 1999.

[27] Y. Shin, K. Choi, and T. Sakurai. Power Optimization
of Real-Time Embedded Systems on Variable Speed Pro-
cessors.Proceedings of the International Conference on
Computer-Aided Design, pp. 365–368, November 2000.

[28] M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling
for Reduced CPU Energy.Proceedings of the Symposium on
Operating Systems Design and Implementation (OSDI), pp.
13–23, November 1994.

[29] W. Wolf. Modern VLSI Design, Prentice Hall Modern Semi-
conductor Design Series, Third Edition 2002.

[30] F. Yao, A. Demers, and S. Shenker. A Scheduling Model
for Reduced CPU Energy.IEEE Symposium on Foundations
Computer Science, pp. 374–382, Oct. 1995.

[31] F. Zhang and S. T. Chanson, Processor Voltage Scheduling
for Real-Time Tasks with Non-Preemptable Sections.Pro-
ceedings of the 23rd IEEE International Real-Time Systems
Symposium, Austin, Texas, pp. 235–245, Dec. 2002.

11

