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Abstract

Aperiodic requests withunknown execution times and
unknownarrival patterns are dynamically mapped to rate-
based execution (RBE) tasks with variable rates and sched-
uled such that the real-time tasks are guaranteed to meet
their deadlines. The aperiodic requests dynamically share
the available processor capacity without reserving a fixed
processor capacity for any one aperiodic request (or class
of requests). This approach was selected over the tradi-
tional approach of using a static set of server tasks to pro-
cess aperiodic requests so that the available processor ca-
pacity could be proportionally shared between active aperi-
odic requests.

1. Introduction
The rate-based execution (RBE) task model was devel-

oped to support the real-time execution of event-driven tasks
in which no a priori characterization of theactual arrival
rates of events is known; only theexpectedarrival rates of
events is known [14]. The RBE model is a generalization of
Mok’s sporadic task model [22] in which tasks are expected
to execute with an average execution rate ofx times every
y time units, and was motivated, in part, by distributed mul-
timedia applications. A strength of the RBE task model is
that it supports theburstypacket arrival pattern common in
networked environments.

The RBE model is an attractive execution model for sys-
tems that execute in unpredictable environments where the
arrival pattern of events is neither periodic nor sporadic. For
this reason, the RBE model was selected to model the work
load in a mobile robot, which interacts with peer robots and
a base station. Each robot has a small set of hard-real-time
tasks that execute with well-defined average rates. However,
the robots also receive aperiodic requests from the base sta-
tion to transmit information about its state or to initiate tasks
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such as sensor fusion and correlation, which execute for ex-
tended periods of time and transmit intermediate results to
be used by the base station or other mobile robots. Fre-
quently a set of these long-running requests will arrive at
once and it is desirable for them to time-share available pro-
cessor capacity with each other and aperiodic tasks already
executing.

This work addresses the theory of integrating RBE tasks
with aperiodic requests on a uniprocessor. The only known
scheduling algorithm for RBE tasks is based on the earliest-
deadline-first (EDF) scheduling algorithm, which requires
the specification of task parameters that are generally un-
known for aperiodic requests (or too pessimistic to be useful
in this case).

The canonical approach to supporting aperiodic requests
in a uniprocessor real-time system has been to add a server
that processes the aperiodic (non-real-time) requests [17, 27,
25, 10, 26, 8, 9, 1, 5, 4, 6, 16]. The server is allocated a
portion of the CPU bandwidth such that it progresses at a
constant rate (or a fixed minimum rate). Within a server, the
aperiodic requests are usually scheduled in FIFO order. An
obvious drawback is that it neglects the aperiodic request’s
urgency, which can be represented by weight. Other draw-
backs of existent server methods is that a fixed number of
aperiodic request servers is assumed or they are allocated
a “constant bandwidth.” Even moderately complex systems
have dynamic work loads in which it is desirable to support a
variable number of servers, servers with variable bandwidth,
or both.

In many proportional-share algorithms, the concept of
virtual time was developed to solve the problem of dynamic
work loads (e.g., [34, 24, 30]). Since virtual time maintains
the order of finish times or deadlines (depending on the pri-
ority mechanism) with respect to the order they occur in real
time, it avoids priority adjustment when the system work-
load changes. However, when hard real-time tasks (which
have hard deadlines in real time) are combined with aperi-
odic requests (which are assigned soft deadlines in virtual
time), the priority of real-time tasks must be mapped to vir-
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tual time to satisfy their time constraints [31, 11]. Thus,
the primary advantage of using virtual time is lost when the
number of real-time tasks is greater than the number of ape-
riodic requests in a dynamic system.

The approach presented here combines elements of Ear-
liest Eligible Virtual Deadline First (EEVDF) [30], Constant
Bandwidth Server (CBS) [1], and GRUB [18]. Instead of
creating a static set of servers for aperiodic requests, we dy-
namically map aperiodic requests to RBE tasks with variable
rates (the rates change as the system workload changes). The
primary limitation with the method presented is that the al-
located bandwidth ratio between any two aperiodic servers
must remain constant. This limitation is an artifact of the
system requirement that aperiodic requests share available
processor capacity in proportion to an associated weight.
Rather than using a weight to share processor capacity, a
(variable) fraction of the processor capacity could be speci-
fied for each aperiodic request as long as an admission con-
trol algorithm ensured the sum of the fractions did not ex-
ceed the portion of processor capacity allocated to aperi-
odic requests. In this sense, the proportional sharing mech-
anism presented here could be applied to a set of aperiodic
server tasks that dynamically change their size (e.g., a Total
Bandwidth Server [25]) or period (e.g., Constant Bandwidth
Sever [1])—assuming the bandwidth ratio between any two
servers remained constant. The bandwidth ratio limitation
could also be removed by changing the deadline assignment
function.

The rest of this paper is organized as follows. Section 2
introduces the processing model assumed in this work. Sec-
tion 3 discusses related work in proportional share schedul-
ing and canonical approaches to scheduling aperiodic re-
quests in uniprocessor, real-time system. Section 4 presents
the mapping of aperiodic requests to RBE specified tasks.
Section 5 discusses the feasibility of scheduling the inte-
grated RBE task set using a simple extension of the EDF
scheduling algorithm. The issue of fairness for aperiodic re-
quests is also discussed in Section 5. We conclude with a
summary and discussion of future work in Section 6.

2. The Model

A uniprocessor system is assumed that consists of a set of
two distinct classes of tasks: real-time tasks with hard dead-
lines and tasks representing aperiodic requests without dead-
lines. All tasks are independent of each other (i.e., they do
not share resources) and are preemptable at arbitrary points.
Real-time tasks make a sequence of requests that can be de-
scribed with a RBE rate specification, as described in Sec-
tion 2.1. Aperiodic requests consist of a single request with
unknownduration that terminates (and leaves the system) af-
ter its processing requirement has been fulfilled. Noa priori
characterization of the arrival rates of aperiodic requests is
known.

Real-time tasks are modeled as a set of RBE tasks whose
membership is static during the life of the system. Aperi-
odic requests are mapped to a set of tasks whose member-
ship changes over time. Thus, from a scheduling theory per-
spective, the system consists of two distinct classes of tasks:
RBE tasks andaperiodic tasks. Formally, the task system
T (t) at timet consists of the setA(t) of aperiodic tasks at
timet and the setR of RBE tasks, which is independent oft:
T (t) = A(t)∪R. The set of aperiodic requests over an inter-
val of time [t1, t2] is specified asA([t1, t2]) =

⋃t2
t=t1

A(t).
Thus, over the interval[t1, t2], the task system is specified
asT ([t1, t2]) = A([t1, t2]) ∪ R. When the context is clear
the temporal parameter will be dropped from the notation:
T = A ∪R.

The rest of this section provides a more detailed descrip-
tion of the model assumed for real-time and (non-real-time)
aperiodic tasks. Section 2.1 provides an overview of the
RBE task model and the execution semantics of RBE tasks.
Section 2.2 describes the execution semantics assumed for
aperiodic tasks.

2.1. RBE Tasks

A RBE task is specified by a four-tuple(x, y, d, c) of in-
teger constants. The pair(x, y) is referred to as therate
specificationof a RBE task;x is the maximum number of
executions expected to be requested in any interval of length
y. Parameterd is a response time parameter that specifies
the maximum desired time between the release of a task
instance and the completion of its execution (i.e.,d is the
relative deadline of the task). Parameterc is the maximum
amount of processor time required for any job of taskT to
execute to completion on a dedicated processor.

A RBE task set is schedulable if there exists a schedule
such that thejth release of taskTi at timeti,j is guaranteed
to complete execution by timeDi(j), where

Di(j) =

{
tij + di if 1 ≤ j ≤ xi

max(tij + di, Di(j − xi) + yi) if j > xi

(1)

Thus the deadline of a job is the larger of the release time
of the job plus its desired deadline or the deadline of the
xth previous job plus they parameter of the task. There-
fore, up tox jobs of a task may contend for the processor
with the same deadline. Note that for allj, deadlines of jobs
Jij andJi,j+xi of taskTi are separated by at leasty time
units. Without this restriction, if a set of jobs of a task were
released simultaneously it would be possible to saturate the
processor. With the restriction, the time at which a task must
complete its execution is not wholly dependent on its release
time. This is done to bound processor demand. See [14] for
a more detailed discussion on the RBE task model.
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2.2. Aperiodic Requests

Neither the arrival rate nor the execution cost of aperi-
odic requests is assumed a priori. However, it is assumed
that each aperiodic requests is associated with a weight. A
request’s weight, relative to the weight of other aperiodic
requests, determines the rate at which the request is exe-
cuted. This is equivalent to the approach taken by many
proportional-share resource allocation models to ensure fair-
ness in resource sharing (e.g., [2, 21, 23, 30, 32, 33]). The
term variable rate is used rather than proportional share to
be more consistent with the concept of the RBE model.

More formally, a weightwi > 0 is associated with each
aperiodic requestAi ∈ A. Let F̂ denote the fraction of
the CPU capacity allocated to processing aperiodic requests.
This fraction will be shared by the aperiodic tasks in propor-
tion to their respective weights. Thus, ifA(t) denotes the
set of aperiodic requests at timet, the fractionfi(t) of the
CPU each aperiodic requestAi ∈ A(t) should receive can
be computed as

fi(t) =

{
0 if Ai 6∈ A(t)

wiP
j∈A(t) wj

F̂ otherwise.
(2)

The goal in scheduling aperiodic requests is to achieve a
variable rate of execution based on a proportional sharing of
the CPU capacity allocated for aperiodic requests. In any
interval of timeL, aperiodic taskAi would receivefi(t)L
time units in aperfectly fair system. However, the model
only approximates a perfectly fair system in that the CPU
will be allocated to aperiodic requests in discrete quanta less
than or equal to a maximum system specified quantumq.
(Real-time tasks are not so restricted.)

Generally following the terminology and notation intro-
duced by Stoicaet al. in [30], the CPU time aperiodic re-
questAi would receive in a perfectly fair system during the
time interval[t1, t2] is

Si(t1, t2) =
∫ t2

t1

fi(t)dt (3)

time units. Letsi(t1, t2) be the actual number of time units
allocated to aperiodic requestAi in the same interval. The
difference between the amount of time the request would
receive in a perfectly fair system and the time it actually re-
ceives in a given interval is calledlag. The lag ofAi at time
t is

lag i(t) = Si(ti, t)− si(ti, t) (4)

where Ai first becomes eligible for execution at timeti.
Since a perfectly fair system cannot be implemented with
discrete allocation quanta, the goal in scheduling will be to
bound the lag for all aperiodic requests such that∀t ≥ 0, i ∈
A(t) : lag i(t) < q whereq is a system specified parameter
that defines the request quantum used to execute aperiodic

requests. In fact, we will show that, when aperiodic requests
are mapped to variable-rate tasks and scheduled as described
in Section 4, the lag of aperiodic requests is bounded such
that

∀t ≥ 0, i ∈ A(t) : lag i(t) ≤ q(1− fi)

wherefi is the minimum non-zero fraction of the processor
allocated to aperiodic requestAi.

The next section relates the work presented here to prior
research results found in the literature.

3. Related Work
One obvious method for supporting aperiodic requests in

the RBE model is to extend the theory of aperiodic servers
to the RBE model. However, we did not want the aperi-
odic requests to execute in a FIFO manner with respect to
each other. A preemptive aperiodic server could have been
implemented, as described for the Total Bandwidth Server
(TBS) in [26], but the execution cost of some of the aperi-
odic requests is unknown a priori.

A better approach than using a TBS would be to use a
CBS [1], or a set of such servers, with each CBS repre-
senting a class of aperiodic requests. Each CBS could be
modeled as a RBE task with a server budgetQs = q and
a periodTs = q

fi
whereq is a system specified parame-

ter that defines the request quantum used to execute aperi-
odic requests andfi is the fraction of the processor capac-
ity allocated to CBSi. The RBE parameters would then be
(1, TS , TS , Qs). Whenever the CBS budget was exhausted,
the server would be preempted and a new deadline set with
Equation (1) as though one RBE job had terminated and an-
other was released. Doing so results in the same deadline
assignments described in [1] as long as only one aperiodic
request was ever processed by a CBS at a time. However,
this requires reserving a fixed fraction of CPU capacity for
each CBS, which would go unclaimed if there was no pend-
ing aperiodic request for that server. The unused capacity
would then be shared byall tasks in the system, including
real-time tasks. The CASH algorithm presented in [4] could
be used to share unused capacity with another CBS server.
However, the CASH algorithm allocates the unused capac-
ity of one server to the next server that needs it, independent
of the classification of the server. In our case, it was more
desirable to share the available capacity between active ape-
riodic requests in proportion to their weight, which results in
a variable number of aperiodic request servers with dynamic
execution rates.

Most research in proportional share resource allocation
(e.g., [21, 23, 32, 33, 3, 15, 30, 28, 29]) is based on the
seminal work in bandwidth allocation for packet-switched
networks by Demers et al. [7], Golestani [13], and Parekh
and Gallager [24]. Weighted Fair-Queueing (WFQ) (also
known as packet-by-packet generalized processor sharing)
allocates a proportional share of a network’s bandwidth to
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a session by employing a two-level hierarchical scheduler.
The WFQ scheduler creates a queue for each session. Each
queue is parameterized by a weight and an expected finish
time for its first packet. When the first packet in queuei
departs, the expected finish timefti is recomputed for the
next packet asfti = max(ri, fti) + l

Bi
, whereBi is the

bandwidth reserved for sessioni, l is the size of the next
packet,ri is the arrival time of the next packet, andfti is the
finish time of the packet. Packets within a queue are sched-
uled under the FIFO principle, which can be substituted with
other scheduling policies as described in [3]. Although orig-
inally proposed as a non-preemptive scheduling algorithm
(for network packets), WFQ can be easily modified to sup-
port preemptive task scheduling [19].

Rather than employing the two-level WFQ hierarchy, the
EEVDF algorithm [30] schedules tasks according to their
eligible times and deadlines in the virtual-time time domain
(as proposed by Zhang [34] and independently by Parekh
and Gallager [24]) using a simple EDF algorithm. Based on
the weights of the tasks in the system, virtual time is com-
puted; virtual time may progress faster, slower or at the same
rate as real time. According to task weights, release time and
execution time, the virtual eligible timeve and virtual dead-
line vd of a task is computed using equations presented in
[30] and summarized as follows:

ve1 = V (ti0); vdk = vek +
r(k)

wi
; vek+1 = vd(k).

Tasks are scheduled by observing the Earliest Eligible Vir-
tual Deadline First rule. Eligible time was introduced to pre-
vent a task from being executed earlier than when it should
in the generalized processor share model, which is similar to
WF 2Q [3].

Virtual time is widely used in proportional-share algo-
rithms to cancel the affect of dynamic work loads. Since vir-
tual time maintains the order of deadlines with respect to the
order they occur in real time, it avoids deadline adjustment
when system workload changes. However, when hard real-
time tasks are combined with aperiodic requests (which do
not have hard deadlines), deadlines of real-time tasks must
be recomputed to preserve the share they require with re-
spect to the aperiodic requests [31, 11]. Thus, the primary
advantage of using virtual time is lost when the number of
real-time tasks is greater than the number of aperiodic re-
quests.

The work presented here combines elements from WFQ,
EEVDF, CBS and GRUB. In some sense, it is a generaliza-
tion of the CBS to support variable execution periods and
a variable number of servers in the system, but the exten-
sion does not yet support resource sharing. The mapping of
aperiodic requests to variable-rate RBE tasks appears to be
equivalent to maintaining a CBS server with a variable rate
for each aperiodic request, though this has not yet been ver-

ified. The total processor share of all aperiodic servers is
fixed, equal to the share allocated to aperiodic requests.

4. Scheduling Aperiodic Requests
Rather than creating a dedicated server process to sched-

ule a class of aperiodic requests, each aperiodic request in
A is dynamically mapped to a variable-rate RBE task when
the request arrives and scheduled with the RBE tasks ofR
using a simple EDF algorithm. Since the actual computa-
tion time of an aperiodic request is not known a priori we
model the aperiodic request as a variable-rate RBE task with
each job requiringq time units until the request terminates.
A timer will be used to enforce a maximum request duration
of q time units for each release of an aperiodic request.

The mapping is achieved by setting the RBEx parameter
to 1 and the RBEc parameter toq. Using the same concept
proposed by Spuri and Buttazzo in [25], the response time
parameterd is set to q

fi(t)
. To complete the RBE specifi-

cation, they parameter is set to the same value,qfi(t)
. In

any interval between aperiodic requests arriving or terminat-
ing, fi(t) is equal to some constantfi and these parameters
are equal to the more familiar looking constantq

fi
from [25]

whereq is the duration of the aperiodic request.
More formally, the functionψ(Ai) : Ai → T̂i maps ape-

riodic requestAi ∈ A(t) to variable-rate RBE task̂Ti as
follows:

ψ(Ai) : Ai → T̂i = (xi, yi(t), di(t), ci)

= (1,
q

fi(t)
,

q

fi(t)
, q)

(5)

wherefi(t), defined by Equation (2) in Section 2.2, is the
fraction of the CPU allocated to aperiodic taskAi ∈ A(t)
andq is the maximum allocation quantum for aperiodic re-
quests. Sincedi(t) = yi(t), the fraction of the processor
reserved for task̂Ti is xici

yi(t)
. This is the same share of the

processor that needs to be allocated to aperiodic requestAi

with weightwi:

xici
yi(t)

=
q
q

fi(t)

= fi(t) =
wi∑

j∈A(t) wj
F̂ .

See Section 4.3.1 for an example of two aperiodic requests
being executed as RBE tasks.1

In its simplest form, the scheduling of an aperiodic re-
quest proceeds as follows. When aperiodic requestAi ar-
rives at timeti, it is mapped to a variable-rate RBE task and
assigned a deadline using Equation (1). That is,ψ(Ai) :
Ai → T̂i maps aperiodic requestAi to variable-rate RBE
task T̂i and the first job ofT̂i is assigned a deadline of
ti + di(ti) = ti + q

fi(ti)
. Since the processor share allocated

1Rather than inserting examples after each new concept, Section 4.3
provides an extended example composed of subsections that illustrate each
concept separately but with a common context.
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to aperiodic requestAi does not change until the member-
ship ofA changes,fi = fi(ti) andDi(1) = ti + q

fi
until

an existing aperiodic request terminates or a new aperiodic
request arrives.

The taskT̂i is inserted into the ready queue with other
RBE tasks and scheduled with the EDF scheduling algo-
rithm. When jobJij of task T̂i is dispatched (i.e., begins
to execute), an execution timer is set to preempt the execu-
tion of job Jij after q time units. If taskT̂i is preempted
by another task, the execution timer state is saved with the
context of taskT̂i and restored when jobJij resumes exe-
cution. When the timer set for jobJij expires, taskT̂i is
preempted and, as though one job had completed and a new
job released, a new deadline is set for jobJij+1 using Equa-
tion (1) and the RBE parameters ofT̂i, which is similar to
the method used by a CBS in [1] when a request overruns
the server’s budget.

The actual scheduling of aperiodic requests is a little
more complicated in practice than described above, and il-
lustrated in the simple example of Section 4.3.1, because
the set of aperiodic requests is dynamic. The next section
addresses the complexities of scheduling dynamic sets of
aperiodic requests with a deadline driven algorithm, such as
EDF.

4.1. Dynamic Deadline Adjustment

When a new aperiodic request arrives, the processor share
of existing aperiodic requests decreases. When the process-
ing required for an aperiodic request represented by taskT̂k

completes and the task leaves the system, the processor share
of other aperiodic requests increases. In both cases, the frac-
tion fi of the processor allocated to each existing aperiodic
request must be recomputed using Equation (2). The change
in processor share results in a change in the rate at which
each aperiodic request is executed and, consequently, in the
deadline for all pending aperiodic jobs. (Note that the dead-
lines for jobs of real-time applications remain unchanged.)

We show in Section 5 that if the task set was schedulable
before the deadline changes, it will be schedulable after the
deadline change and no task will miss its deadline.

There are two cases to be considered. The first is when
an aperiodic request joins the system, which moves the dead-
lines of pending aperiodic jobs back (i.e., their deadlines oc-
cur later). The second is when an aperiodic request termi-
nates and leaves the system, which moves the deadlines of
pending aperiodic jobs up (i.e., their deadlines occur earlier).

Case 1: Aperiodic requestAx joins the system at timetx.
Let f ′i be the new fraction computed forAi 6= Ax ∈ A(tx)
using Equation (2) at timetx. Pending deadlines at timetx
are re-computed by dividing the expected remaining service
time required to complete pending jobJij by its new fraction
f ′i and adding this to timetx. Let ri be the expected remain-
ing service time required to complete jobJij . That is,ri

denotes the amount of remaining service time jobJij would
have in a perfectly fair system. Since aperiodic requestAi

is modeled as variable-rate RBE taskT̂i with xi = 1 and
yi(t) = di(t), the new deadline for the current jobJij of
taskT̂i is computed using Equation (6).

D′
i(j) = tx +

ri

f ′i
(6)

In a perfectly fair system, the remaining service timeri for
job Jij is computed as

ri = S̄i(t, Di(j)) =

Z Di(j)

tx

fi(t)dt = (Di(j)− tx) · fi (7)

whereS̄i(t1, t2) denotes the service time task̂Ti would re-
ceive in a perfectly fair system if none of the weights were
changed at timetx (andfi is the fraction of the processor
that would have allocated tôTi in the interval).

By combining Equations (6) and (7), the deadline for
pending aperiodic requests can be rewritten using Equa-
tion (8).

D′
i(j) = tx +

S̄i(tx, Di(j))

f ′i
= tx +

(Di(j)− tx) · fi

f ′i

= tx + (Di(j)− tx) · fi

f ′i

(8)

See Section 4.3.2 for an example of deadline adjustments
made when a new aperiodic request joins the system.

Case 2: Aperiodic requestAx terminates at timetfx. Af-
ter Ax terminates at timetfx, the processor share allocated
to each pending aperiodic request should increase since the
total weight of all aperiodic requests decreases. In a per-
fectly fair system, the change in processor shares would hap-
pen immediately and the deadlines of pending aperiodic jobs
would be updated using Equation (8) by substitutingtx with
tfx. However, Equation (8) can only be used to update dead-
lines whenAx terminates withlagx(tfx) = 0.

Aperiodic requestAx may terminate with non-zero lag
since a perfectly fair system can only be approximated. To
accommodate this approximation, the termination of aperi-
odic requestAx is treated as though it occurred at an ex-
pected finish timetex such thatlagx(tex) = 0. Deadlines of
pending aperiodic requests can then be adjusted by substi-
tuting tx with tex in Equation (8). The deadline updates are
made at timetfx and requestAx is allowed to leave the sys-
tem immediately. However, the change in processor shares
for the remaining aperiodic requests does not take effect un-
til the expected finish timetex of requestAx. In what fol-
lows, we show from a proportional share perspective that the
deadlines of pending aperiodic jobs are changed to the same
value whether we wait until timetex to make the updates or
if we update the deadlines immediately at timetfx.

The request is expected to terminate at its deadline. That
is, tex = Dx(l) whereDx(l) is the deadline whenAx termi-
nates. Note:Dx(l) ≥ tfx always holds if all deadlines are
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met, and a sufficient condition for determining the schedu-
lability of the task set is presented and proven in Section 5.
Since the actual service time is the same and only the ex-
pected service times differ, the lag ofAx at timeDx(l) can
be expressed as

lagx(Dx(l)) = lagx(tfx) + Sx(tfx, Dx(l))

= lagx(tfx) +
∫ Dx(l)

tf
x

fx(t)dt

= lagx(tfx) + (Dx(l)− tfx) · fx(tfx).

(9)

Therefore, the lag ofAx at timetfx can be expressed as

lagx(tfx) = lagx(Dx(l))− (Dx(l)− tfx) · fx(tfx)

= lagx(Dx(l)) + (tfx −Dx(l)) · fx(tfx).
(10)

ThusDx(l) = tfx− lagx(tf
x)

fx(tf
x)

becauselagx(Dx(l)) = 0 when

the task set is schedulable.
Dx(l) can now be substituted fortx in Equation (8) to

compute the new deadlines for pending aperiodic requests.
Let W represent the weight summation of aperiodic re-
quests, includingwx of requestAx, andW ′ represent the
weight summation excludingwx. The new deadlines for
pending aperiodic requests are computed as follows.

D′
i(j) = Dx(l) + (Di(j)−Dx(l)) · fi

f ′i

= (tf
x − lagx(tf

x)

fx
) + (Di(j)− (tf

x − lagx(tf
x)

fx
)) · fi

f ′i

= tf
x + (Di(j)− tf

x) · fi

f ′i
− lagx(tf

x)

fx
(1− fi

f ′i
)

= tf
x + (Di(j)− tf

x) · fi

f ′i
− lagx(tf

x)

fx

 
1−

wi
W

F̂
wi
W ′ F̂

!
= tf

x + (Di(j)− tf
x) · fi

f ′i
− lagx(tf

x)

fx
(1− W ′

W
)

= tf
x + (Di(j)− tf

x) · fi

f ′i
− lagx(tf

x)

fx
(
wx

W
)

= tf
x + (Di(j)− tf

x) · fi

f ′i
− lagx(tf

x)
wx
W

F̂
(
wx

W
)

= tf
x + (Di(j)− tf

x) · fi

f ′i
− lagx(tf

x)

F̂
(11)

Observe that if aperiodic requestAx terminates with
lagx(tfx) = 0, thenDx(l) = tfx and Equation (11) reduces
to Equation (8), just as one would expect to occur under this
condition.

The effect of Equation (11) is to distribute non-zero lag to
the remaining aperiodic requests and allow requests to leave
the system as soon as they terminate even though changes in
processor share do not take effect until the deadline of the
completed request. The same concept was used by Stoica

et al in [30]. However, in this work the lag is distributed
proportionally to the remaining aperiodic requests through
deadline adjustments. The main difference between our ap-
proach and that used in [30] is that our method operates in
real time and not in virtual time. The approaches are sim-
ilar in that each pending aperiodic requestAi will have its
lag adjusted bylagi = lagx(tfx) · wi

W ′ . In real-time this is

accomplished by subtractinglagi

f ′i
from the updated dead-

line computed by Equation (8) for each pending aperiodic
request represented by jobJij . Sincef ′i = wi

W ′ F̂ , a pro-
portional distribution of the remaining lag of requestAx to
pending aperiodic requests by modifying Equation (8) (with
tx = tfx) reduces to Equation (11).

Thus, using Equations (8) and (11) the deadlines of all ex-
isting aperiodic jobs can be updated whenever an aperiodic
request enters or leaves the system (respectively). More-
over, Equation (11) shows that, in an implementation, one
can distribute lag proportionally by updating pending dead-
lines without actually tracking the lag; the new deadlines
can be computed using the deadline of the leaving request,
as shown in the first form of the equality expressed by Equa-
tion (11).

See Section 4.3.3 for an example of deadline adjustments
made when an aperiodic request terminates and leaves the
system.

4.2. Deadline Assignments

The previous section presented a method for dynamically
adjusting the deadline of pending aperiodic requests when
the membership ofA changes. We now address the issue
of initial deadline assignment and then summarize the com-
putation of deadlines for all aperiodic requests with a single
deadline assignment function, Equation (15).

When a new aperiodic requestAi enters the system with
existing aperiodic requests, it is assigned a deadline ofti +
di(ti) = ti + q

fi(ti)
. However, if the last aperiodic jobJxl

in the system finishes and then another aperiodic requestAn

arrives before the deadline of jobJxl, the deadline of jobJn1

will be set too early unless the lag of requestAx is tracked
and transferred to the new request.

Let Dx(l) be the deadline of jobJxl (recall that
lagx(Dx(l)) = 0), tfx be the actual finish time, andtn be
the arrival time of requestAn. To simplify notation, let
dn = dn(tn). Intuitively, if requestAn arrives at timetn
such thattfx < tn ≤ Dx(l), the deadline of jobJn1 should
be set toDx(l) + dn rather thantn + dn. Observe that

∀t ∈ [tfx, Dx(l)] : lagx(t) = Sx(tx, t)− sx(tx, t)

= Sx(tx, tfx) + (t− tfx)fx − sx(tx, tfx)

= Sx(tx, tfx)− sx(tx, tfx) + (t− tfx)fx

= lagx(tfx) + (t− tfx)fx (12)
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Thus, the intuitive deadline assignment equationDn(1) =
Dx(l) + dn can be derived from Equation (1) such that the
remaining lag of requestAx at timetn is transferred to re-
questAn as follows.

Dn(1) = tn + dn − lagx(tn)
F̂

= tn + dn − lagx(tfx) + (tn − tfx)fx

F̂

= tn+dn− lagx(Dx(l)) + (tfx −Dx(l))fx + (tn − tfx)fx

F̂

= tn + dn − lagx(Dx(l)) + (tn −Dx(l))fx

F̂

= tn+dn−(tn−Dx(l)) sincefx = F̂ andlagx(Dx(l)) = 0

= Dx(l) + dn (13)

If requestAn arrives after timeDx(l) (i.e., tn > Dx(l)),
then Equation (1) should be used to assign a deadline to job
Jn1 sincelagx(tn) = 0 (and hence, the system lag is also
zero).

Thus, the auxiliary variableθ is introduced to record the
point in time at which the system lag reaches zero. Initially
θ = 0. Each time the last aperiodic job in the system termi-
nates, the expected finish time of that job,Dx(l), is recorded
asθ = Dx(l). Using the auxiliary variableθ, the deadline of
job Ji1 for each newly arriving aperiodic requestAi at time
ti is computed using Equation (14).

Di(1) = max(θ, ti) + di (14)

See Section 4.3.4 for an example using Equation (14) to
set the deadline of an aperiodic request.

To summarize, Equations (1), (8), (11), and (14) for
computing deadlines of aperiodic requests are combined in
Equation (15) to form a single expression for computing
deadlines of̂Ti = ψ(Ai).

Di(j) =

8>>>><>>>>:
max(θ, ti) + di(ti) if j = 1

max(tij + di(tij), Di(j − 1) + yi(tij)) if j > 1

tx + (Di(j)− tx) fi
f ′i

if Ax arrives attx

Dx(l) + (Di(j)−Dx(l)) fi
f ′i

if Ax terminates attf
x

(15)

When the task set is schedulable, the second line of Equa-
tion (15) can be reduced toDi(j − 1)+yi(tij) since jobJij

of T̂i is released as soon as jobJij−1 has executed forq time
units.

4.3. Examples

This section provides an extended example composed of
subsections that illustrate each concept separately with a
common context. The fraction of the CPU allocated to aperi-
odic request processing iŝF = 0.4 and the system assigned

D2(2)
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D1(1) D1(2) D1(3) D1(4)
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225 475

A1

100 350 600

A2

Figure 1. Execution pattern when no change
in share allocations occur.

request quantum for aperiodic requests is 10 (i.e.,q = 10).
Neither values will change during the life of the system. Ini-
tially, the weight summation of all aperiodic requests inA is
70, which will change over time.

4.3.1. Nominal execution ofA1 and A2

At time 100A1 andA2 join the system withw1 = 20 and
w2 = 10. The summation of weights in the system,W , now
changes from 70 to 100. By Equation (2), the fraction of
the processor allocated to each request isf1 = 20

1000.4 =
0.08 andf2 = 10

1000.4 = 0.04 respectively. Using Equa-
tion (5), A1 andA2 are mapped to variable-rate RBE tasks
T̂1 = (1, 125, 10, 125) andT̂2 = (1, 250, 10, 250). If no re-
quest enters or leaves the system after time 100,A1 andA2

will follow the execution pattern shown in Figure 1.

4.3.2. A New Aperiodic Request Arrives

To illustrate deadline adjustment when a new aperiodic re-
quest arrives, assumeAx arrives at time 250 withwx = 100.
W now changes from 100 to 200. Consequently the frac-
tions of the CPU capacity allocated toA1, A2, andAx at
time 250 are set using Equation (2) as follows:

f1 =
w1

W
F̂ =

20
200

0.4 = 0.04, f2 =
10
200

0.4 = 0.02, and

fx =
wx

W
F̂ =

100
200

0.40 = 0.2.

The RBE specifications are then changed usingψ(), de-
fined by Equation (5): T̂1 = (1, 250, 10, 250), T̂2 =
(1, 500, 10, 500), T̂x = (1, 50, 10, 50). Finally, the dead-
lines of pending aperiodic requests are modified. Deadlines
D1(2) and D2(1) are modified as follows and illustrated
in Figure 2: D1(2) = 250 + (350 − 250) · 200

100 = 450,
D2(1) = 250 + (350− 250) · 200

100 = 450.

4.3.3. An Aperiodic Request Terminates

Assume aperiodic requestAx terminated at some point be-
tween time 350 and time 475, with no other changes in the
set of aperiodic requests, and deadlines were adjusted ac-
cordingly with W = 100. Then at time 670, assume ape-
riodic requestA1 terminates. At this point, the summa-
tion of weights in the system,W , changes from 100 to 80.

7



Dx(1) Dx(2) Dx(3)

D2(1) (1)D’2

D1(2) D’1(2)D1(1)

������������

���
�

���
�

���
�

		




���
�

�
�

t =250

A1

2A

Ax

100 225 350 475
x

Figure 2. Deadline adjustments when a new
aperiodic request arrives.
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Figure 3. Deadline adjustment when an aperi-
odic request terminates.

Let W ′ = 80 represent the new weight summation. The
fraction of the CPU allocated to requestA2 is changed to
f ′2 = w2

W ′ F̂ = 10
800.4 = 0.05 and the deadline ofA2 needs to

be changed. Using Equation (15), the new deadline is

D2(2) = D1(5) + (D2(2)−D1(5))
f2

f ′2

= 775 + (900− 775)
0.04
0.05

= 875.

Figure 3 illustrates this change.

4.3.4. Deadline Assignment with Variableθ

Assume the last aperiodic requestA2 terminates and leaves
the system at time840. The deadline ofA2 is recorded by
θ = D2(l) = 855. If a new aperiodic requestAn with
weightwn = 50 arrives at time843, it will take over theF̂ =
0.4 fraction of the CPU allocated to aperiodic processing.
The RBE specification ofAn will be T̂n = (1, 25, 10, 25)
and its first deadline isDn(1) = max(843, 855)+25 = 880
as shown in Figure 4.

������������ �������
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�

		




An

Dn(3)Dn(l) Dn(4)

830 880 905 930 955

D2(l)=855

Dn(2)
A2

Figure 4. Deadline adjustment when an aperi-
odic request joins the system with no aperi-
odic requests pending.

5. Schedulability and Bounding Lag
A task set is schedulable if there exists a schedule

such that no task instance misses its deadline. Thus, if
Demand(L) represents the total processor demand in an
interval of lengthL, a task set is schedulable ifL ≥
Demand(L) for all L > 0. Section 5.1 summarizes a
prior result from [14] that bounds the processor demand of
RBE tasks in an interval. Section 5.2 bounds the proces-
sor demand created by aperiodic requests. Section 5.3 com-
bines the results of the first two subsections to create a suf-
ficient schedulability condition for a task setT = A ∪ R
whereA is the set of aperiodic tasks at any timet ≥ 0
andR = {(x1, y1, d1, c1), . . . (xn, yn, dn, cn)} is the set
of real-time RBE tasks. Section 5.4 presents a least upper
bound on the lag of any aperiodic request that holds when
the task set is schedulable.

5.1. Bounding Demand for RBE Tasks
Lemma 5.1 was presented as Lemma 4.1 in [14] to bound

the processor demand of a RBE taskTi in an interval. It is
reproduced here (in a slightly different form) since it is used
in the sufficient condition of Theorem 5.6 for the set of tasks
T considered in this work.

Lemma 5.1. For a RBE taskTi = (xi, yi, di, ci),

∀t > 0, dbf i(t) =

{
0 if t ∈ [0, di)
b t−di+yi

yi
cxici if t ∈ [di,∞]

(16)

is a least upper bound on the number of units of processor
time required to be available in the interval[0, L] to ensure
that no job ofTi misses a deadline in[0, L].

5.2. Bounding Demand for Aperiodic Requests
The demand bound function defined by Equation (16) as-

sumes that the task may begin executing at time0 and will
continue to execute for the life of the system with fixed RBE
parameters. Aperiodic requests enter and leave the system
dynamically, which results in changing RBE parameters dur-
ing the life of an aperiodic requestAi.

Let ti denote the arrival time of aperiodic requestAi,
T̂i = ψ(Ai), and Di(l) be the deadline time of the last
job Jij of T̂i representing aperiodic requestAi. Under
these assumptions, the processor demand forT̂i in the in-
tervals [0, ti) and (Di(l),∞] is 0 since the first job is not
released until timeti and the last jobJil of T̂i completes
by time Di(l). It should be the case, since we are trying
to give each aperiodic requestAi a portion of the CPU ca-
pacity equal tofi(t) that the processor demand created by
T̂i is never greater than

∫ l

ti
fi(t)dt for all l ∈ [ti, Di(l)].

Lemma 5.2 shows that this is indeed the case. Observe that
when fi = fi(t) is constant over the interval[ti, l], then∫ l

ti
fi(t)dt = (l − ti)fi, which yields the expected demand

for a fixed interval and processor share.

8



Lemma 5.2. Let T̂i = ψ(Ai) represent the aperiodic re-
questAi ∈ A(t). If no job ofT̂i released before timet0 ≥ 0
requires processor time in the interval[t0, l] to meet a dead-
line in the interval[t0, l], then

∀l > t0, d̂bf i([t0, l]) =
∫ l

t0

fi(t)dt (17)

is an upper bound on the processor demand in the interval
[t0, l] created byT̂i whereψ(Ai) is defined by Equation(5)
andfi(t) is defined by Equation(2).

Proof: For space considerations, the proofs of this section
are contained in [12].

Clearlyt0 = 0 satisfies the requirement specified fort0 in
Lemma 5.2. Thus, with the simple substitution oft0 = 0 and
l = L, Corollary 5.3 follows immediately from Lemma 5.2.

Corollary 5.3. Let T̂i = ψ(Ai) represent the aperiodic re-
questAi ∈ A(t). The processor demand created byT̂i will
never exceed its processor share. That is,

∀L > 0, d̂bf i([0, L]) =
∫ L

0

fi(t)dt

is an upper bound on the processor demand in the interval
[0, L] whereψ(Ai) is defined by Equation(5) and fi(t) is
defined by Equation(2).

Lemma 5.2 bounds the processor demand created by
a single aperiodic requests in an interval. The following
lemma extends this result to bound the processor demand
created by all aperiodic requests in an interval.

Lemma 5.4. If no job of an aperiodic request released be-
fore timet0 ≥ 0 requires processor time in the interval[t0, l]
to meet a deadline in the interval[t0, l], then

∀l > t0, (l − t0)F̂ (18)

is an upper bound on the processor demand in the interval
[t0, l] created by the set of aperiodic requestsA([t0, l]).

Proof: See [12].

With the simple substitution oft0 = 0 andl = L, Corol-
lary 5.5 follows immediately from Lemma 5.4.

Corollary 5.5. The processor demand created by the set of
aperiodic requestsA will never exceed its processor share,
F̂ . That is,

∀L > 0, LF̂

is an upper bound on the processor demand in the interval
[0, L] created by the set of aperiodic requestsA([0, L]).

5.3. A Sufficient Schedulability Condition

The following Theorem presents a sufficient condition for
determining the schedulability of the task setT = A ∪ R
whereA is the set of aperiodic tasks at any timet ≥ 0
andR = {(x1, y1, d1, c1), . . . (xn, yn, dn, cn)} is the set of
real-time RBE tasks. Corollary 5.7 shows that the schedula-
bility of the task setT can be evaluated efficiently in poly-
nomial time when all RBEd parameters are equal to their
respectivey parameters.

Theorem 5.6. Let the task setT = A ∪ R be the set
A =

⋃∞
t=0A(t) of aperiodic tasks and the setR =

{(x1, y1, d1, c1), . . . (xn, yn, dn, cn)} of RBE tasks. Pre-
emptive EDF will succeed in schedulingT if

∀L > 0, L ≥
n∑

i=1

dbf i(L) + LF̂ (19)

whereF̂ is the portion of the CPU capacity allocated to ape-
riodic requestsA anddbf i(L) is as defined in Lemma 5.1.

Proof: See [12].

Corollary 5.7. Let the task setT = A ∪ R be the set
A =

⋃∞
t=0A(t) of aperiodic tasks and the setR =

{(x1, y1, d1, c1), . . . (xn, yn, dn, cn)} of RBE tasks with
di = yi, 1 ≤ i ≤ n. Preemptive EDF will succeed in
schedulingT if Equation(20) holds whereF̂ is the portion
of the CPU capacity allocated to aperiodic requestsA.

n∑

i=1

xi · ci
yi

+ F̂ ≤ 1 (20)

5.4. Bounding Lag

The goal in scheduling aperiodic requests is to execute
each request with a variable-rate such that it makes progress
relative to other aperiodic requests in proportion to its asso-
ciated weight. By breaking the request into a sequence of
request, each of durationq time units, we are able to identify
exact points in time at which the request will have received
its processor share. It is shown in [12] that if the task set is
schedulable, the lag of aperiodic requestAi is guaranteed to
be less than or equal to zero at the deadline of each job of
T̂i = ψ(Ai). The lag may be less than zero when, for exam-
ple, real-time RBE tasks execute at lower rates than speci-
fied or for less than their worst-case execution times. When
that happens, the aperiodic requests execute at faster rates
than specified, receiving more than their “expected share”
of the processor. Without using eligible times to control the
rate of execution of an aperiodic request, its lag can become
negative because it receives more processor time than would
otherwise be possible.
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In this work, we are not interested in completely bound-
ing fairness; we are only interested ensuring aperiodic re-
quests receive a minimum processor share while real-time
tasks meet all deadlines. Only an upper bound on the max-
imum lag that can accumulate for any aperiodic request can
be derived when it is scheduled under the RBE model since
tasks are allowed to execute faster than their rate specifica-
tion if processor capacity is available. (This is a desirable
feature for the application with which we are working.) One
way to provide a lower bound on processor lag (should one
be needed), is to map aperiodic requests to sporadic tasks,
track eligible times, and only release jobs of aperiodic re-
quests when they are eligible—as was done by Stoicaet al.
in [30].

As the following theorem from [12] shows, when the task
set is schedulable, our approach to scheduling aperiodic re-
quests provides a least upper bound oflag i(t) ≤ q(1 − fi)
on the maximum lag for aperiodic requestAi.

Theorem 5.8. Let the task setT = A ∪ R be the set
A =

⋃∞
t=0A(t) of aperiodic tasks and the setR =

{(x1, y1, d1, c1), . . . (xn, yn, dn, cn)} of RBE tasks. If the
task set is schedulable under preemptive EDF when dead-
lines are assigned using Equation(15), the lag of aperiodic
requests is bounded such that

∀t ≥ 0, i ∈ A(t) : lag i(t) ≤ q(1− fi) (21)

wherefi is the minimum non-zero fraction of the proces-
sor allocated to aperiodic request (i.e.,fi = min{fi(t)|t ∈
[ti, t

f
i ]}).

Proof: See [12].

6. Summary
We have presented a task model and scheduling algorithm

capable of executing RBE tasks and aperiodic requests using
a simple EDF scheduler. Neither the arrival rate nor the exe-
cution duration of aperiodic requests must be known a priori.
Our approach differs from the canonical approach in that we
do not create a static set aperiodic request servers. Instead
each aperiodic request is dynamically mapped to a variable-
rate RBE task that shares the allocated processor capacity
in proportion to its weight. If the sufficient schedulability
condition of Theorem 5.6 is met, the hard deadlines of all
real-time tasks are guaranteed to be met while aperiodic re-
quests dynamically and proportionally share their allocation
of processor capacity.

The primary contributions of this work are to introduce
the concept of variable-rate RBE tasks and to generalize the
theory of aperiodic request scheduling in hard-real-time sys-
tems when resources are not shared. Since deadline driven
scheduling of periodic or sporadic task sets is a special case
of scheduling RBE tasks, the theory and approach presented

can be applied to periodic and sporadic task models by en-
forcing an inter-release time for jobs of an aperiodic request.

Rather than a weight, a fraction of the processor capac-
ity could be specified for each aperiodic request as long as an
admission control algorithm ensured the sum of the fractions
did not exceed the portion of processor capacity allocated to
aperiodic requests and the bandwidth ratio between any two
aperiodic servers remained constant. The server bandwidth-
ratio limitation is an artifact of the system requirement that
aperiodic requests share available processor capacity in pro-
portion to an associated weight. Removal of this require-
ment requires new deadline adjustment equations that are
beyond the scope of this paper.

Instead of associating either a weight or bandwidth frac-
tion, a specific quantum and period could be associated
with each request. Thus, the proportional sharing mecha-
nism presented could be applied to a set of Total Bandwidth
Servers that dynamically change their size or a set of Con-
stant Bandwidth Servers that dynamically change their pe-
riod or budget—as long as the resulting bandwidth ratio be-
tween any two servers remained constant.

Even as presented, our approach for scheduling aperi-
odic requests represents a generalization of the CBS first
proposed in [1]. Each task̂Ti represents an instance of a
CBS with a server budgetQs = q and a periodTs = q

fi

that serves jobs for that task until the request terminates.
When there exists only one aperiodic request in the system
at a time, the execution schedule created by our approach is
identical to one created by a CBS. Similarly, if each request
requires at mostq time units, the execution schedule created
by our approach is identical to one created by the original
TBS presented in [25].
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