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Abstract

This work is an application of the Variable-Rate Execu-
tion (VRE) model in Linux to support dynamic Quality of
Service (QoS). Based on conventional time-sharing schedul-
ing algorithms, Linux does not adequately support QoS re-
quirements. The VRE scheduler can assign a specified ex-
ecution rate to any application, and dynamically adjust the
execution rate during runtime. Rate controller components
are introduced to adjust a task’s execution rate based on pre-
defined rules and runtime feedbacks, such as the suspension
time, the queue length, and so on.

A significant feature of this work is its ability to support
legacy applications at the binary level. On conventional op-
erating systems, millions of applications have been built un-
der time-sharing schedulers, which we call legacy applica-
tions. Under the VRE model, a legacy application can ob-
tain a guaranteed variable execution rate. We also designed
a simple default rate controller for legacy multimedia appli-
cations.

The Linux kernel was slightly modified in our implemen-
tation to achieve reconfigurability. Both the VRE scheduler
and the default rate controller are implemented as Linux
loadable modules, which can be dynamically loaded into the
kernel to replace the Linux scheduler or change the behav-
ior of the scheduler. We provide a set of interfaces for users
to design and use their own schedulers and rate controllers.

1 Introduction

In recent years, many QoS-sensitive applications, typi-
cally multimedia applications, have brought out many QoS-
supported execution models [2, 12, 16, 20] and schedulers
[4, 25, 11, 29]. However, only static QoS support is not
enough. In practice it is hard to determine the execution rate.
Many applications have variable execution rates. For exam-
ple, a multiple-target multiple-sensor radar tracking system

pays more attention to fast-moving targets than to slow tar-
gets. And the platforms also affect the execution rate. Ob-
viously, a program runs faster on an 800MHz P3 processor
than on a 400MHz P2 processor.

On conventional operating systems, millions of applica-
tions have been built under time-sharing schedulers. We
call those applicationslegacy applications. Many legacy ap-
plications, especially multimedia applications, already have
QoS demands. However, conventional time-sharing systems
do not provide any QoS support. Considering the millions of
legacy applications, it is actually infeasible to rebuild all of
those applications upon a completely new platform. A likely
solution is to support legacy applications at the binary level.

The Variable-Rate Execution (VRE) model [10] was ini-
tially designed to solve the above problems. The VRE model
is an extension of the Rate-Based Execution (RBE) model
[12]. While the RBE model schedules tasks at a fixed av-
erage rate, the VRE model supports variable execution rates
by allowing variableperiod andexecution timeparameters
during runtime. It also allows tasks to join and leave the
system at arbitrary times.

Work similar to the VRE model is therate-based earliest
deadline(RBED) scheduler presented in [6], which was in-
dependently and simultaneously developed. Although the
theoretical model is not the main focus of this paper, we
highlight the difference between the RBED scheduler and
the VRE model in Section 2.

This paper mainly focuses on solving three problems: (i)
modeling legacy applications under the VRE model; (ii) how
to adjust the execution rates during runtime; (iii) the imple-
mentation and programming interface.

To be compatible with the time-sharing schedulers, we
split the execution of a legacy application into sequential
time slices. The difference in our execution model is that
each task is described by two parameters,period (p) and
size of time slice (c), and each time slice is assigned a dead-
line based on the period. The Earliest Deadline First (EDF)
scheduler guarantees that the task will receive a time slice of
sizec in every period ofp time units. We adjust the values of
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c andp to control the execution rate of a legacy application.
The rate controller component is introduced to solve

problem (ii). Since different applications can have differ-
ent execution patterns, it is difficult to provide a universal
rate controller for all applications. Therefore, we provide
a set of interfaces for users to customize their specific rate
controllers. The construction of specific rate controllers is
beyond the scope of this work. But, we designed a simple
rate controller as a default rate controller for legacy multi-
media applications.

This work, including the VRE scheduler and the rate
controller mechanism, was implemented in Linux. We
slightly modified the Linux kernel to be able to dynamically
load user-customized schedulers. Theloadable scheduler
mechanism separates specific scheduling policies from the
scheduling mechanism. Users can load their specific sched-
ulers without rebooting the system as long as the schedulers
are built in compliance with theschedulerinterface intro-
duced in Section 4.1. Moreover, users can change the ex-
ecution pattern of a VRE task by attaching a specific rate
controller.

The rest of this paper is organized as follows. Section 2
discusses related work. Section 3 introduces the processing
model assumed in this work. Section 4 gives an overview
on the programming interface. Section 5 presents the ex-
periments and results. We conclude with a summary and
discussion of future work in Section 6.

2 Related Work

In practice many QoS-supported systems are derived
from proportional share scheduling algorithms. The
SMART [25] and BERT [4] are derived from the Weighted
Fair Queueing (WFQ) [9] algorithm, which is also known as
packet-by-packet generalized processor sharing (GPS). The
WFQ scheduler associates a weight to each task; all the tasks
are executed in proportion to their weights. Each task is
tagged with a dynamic expected finish time. When the first
job of a task finishes, the expected finish time is updated
according to the size of the next job. The WFQ scheduler al-
ways selects the task with the earliest finish time. The Worst-
case Fair Weighted Fair Queuing (WF 2Q) [5] extends the
WFQ to prevent a task from getting executed faster than ex-
pected in a perfect fair share scheduler.

QLinux [11, 29] employs the Hierarchical Start-time Fair
Queuing (H-SFQ) algorithm, which is similar to WFQ.
Rather than using an expected finish time in WFQ, each job
is assigned astart timetag which is computed in a similar
manner as the virtual finish time. The Start-time Fair Queu-
ing scheduler always chooses the job with the earlieststart
time tag. QLinux partitions all threads into groups; each
group reserves a bandwidth in proportion to its weight. Each
group also has a scheduler that schedules the group members

in proportion to their weights.
The proportional share scheduling algorithms make no

QoS guarantees if the sum of total weights grows very large.
The Constant Bandwidth Server[2] algorithm avoids this
problem by usingutilization instead ofweight. Applications
are run on a CBS server which is assigned a fixed band-
width. The execution of an application is decomposed into
a sequence of time slices, called a budget in the CBS server,
and each time slice is assigned a deadline which is repre-
sented by the deadline of the CBS server. While a server is
executing, its budget is reduced until it reaches zero. The
server gets replenished when its budget expires. The VRE
model follows the CBS method to handle legacy applica-
tions. To some extent, we can view a VRE task as avariable
bandwidth server.

Several researchers have developed techniques for sup-
porting variable computation times and/or release patterns
(e.g., [20, 21]). However, each of these provides relatively
strict bounds on how much these parameters are allowed to
vary, as compared to the VRE model. Researchers have also
proposed methods for reducing task execution rates or com-
putation times in overload conditions (e.g., [1, 14, 15, 23]).

The first work to provide explicit increasing and decreas-
ing hard QoS guarantees on a task-by-task basis appears to
be theelastic task model created by Buttazzo, Lipari, and
Abeni [8]. In the elastic task model, a task is parameterized
by a five-tuple(C, T0, Tmin, Tmax, e) whereC is the tasks’s
WCET,T0 is the nominal period for the task,Tmin andTmax

denote minimum and maximum periods for the task, ande is
an elastic coefficient. The elastic coefficiente “specifies the
flexibility of the task to vary its utilization” [8]. In this case,
the utilization is varied by changing the length of the period,
which is allowed to “shrink” toTmin or “stretch” toTmax,
depending on the system load. The VRE model used in this
work also allows the period of a task to shrink or stretch.
In the VRE model, however, no bounds on the length of the
period are defined a priori. Moreover, the VRE model also
supports increasing and decreasing the WCET, which is not
supported by the elastic task model.

Other researchers have taken a system-level approach to
support adaptive real-time computing (e.g., [7, 18, 19, 28,
13, 26]). Most of these systems focus on over-load condi-
tions and use various combinations of value-based schedul-
ing, mode changes, and/or feedback mechanisms to shed or
reduce load in an attempt to meet the most critical deadlines.

The work most similar to the VRE model is therate-
based earliest deadline(RBED) scheduler presented by
Brandt et al. in [6]. In that work, the authors try to “flatten
the scheduling hierarchy” by supporting hard real-time, soft
real-time, and non-real-time tasks with a single scheduler.
Their algorithm allows periodic tasks to dynamically change
utilizations and periods. However, the RBED scheduler does
not provide any method to adjust pending deadlines. Thus,
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any rate change has to delay until all related pending jobs
are finished. For example, suppose a best-effort task,T1,
is the only task in the system at time0, thenT1 utilizes all
computing capacity (u1 = 1 whereu1 is T1’s utilization).
SupposeT1’s deadline isD1 = 10 and a hard real-time task
T2 arrives with utilizationu2 = 0.5 at time5, T2 has to wait
until T1 terminates and releases its bandwidth, which might
be fatal for hard real-time tasks. In the VRE model, how-
ever, we can immediately acceptT2 by changingD1 to 15.
Generally speaking, the total utilization of a hybrid system
is always1 as long as there exist any non-real-time tasks.
The acceptance of new tasks or rate change of existing tasks
implies immediately changing the utilizations of other best-
effort tasks.

Moreover, the underlying task model assumed by Brandt
et al. in [6] is a generalization of the Liu and Layland peri-
odic task model [17]. As stated, previously, the VRE model
is a generalization of the RBE task model, which is a gener-
alization of Mok’s sporadic task model [22]. The VRE task
model reduces to the task model in [6] whenxi(t) = 1, ∀i, t,
and jobs are released with a strictly (variable) periodic pat-
tern rather than a (variable) sporadic pattern.

3 The Task Model

This section discusses the processing model. Section 3.1
introduces the VRE model. Section 3.2 presents how legacy
applications are processed under the VRE model. Sec-
tion 3.3 discusses the schedulability condition. Section 3.4
introduces the concept of rate controllers.

3.1 Variable Rate Tasks

The VRE model is an extension of the RBE model [12]
which schedules tasks at their average rates. A RBE task is
specified by a four-tuple(xi, yi, di, ci) of integer constants.

• The pair(xi, yi) is referred to as the rate specification
of a RBE task;xi is the maximum number of execu-
tions expected to be requested in any interval of length
yi.

• Parameterdi is a response time parameter that specifies
the maximum desired time between the release of a task
instance and the completion of its execution (i.e.,di is
the relative deadline of the task).

• Parameterci is the maximum amount of processor time
required for any job of taskTi to execute to completion
on a dedicated processor.

A RBE task set is schedulable if there exists a schedule
such that thejth release of taskTi at timetij is guaranteed

to complete execution by timeDi(j), where

Di(j) =

(
tij + di if 1 ≤ j ≤ xi

max(tij + di, Di(j − xi) + yi) if j > xi

(1)

The second line of Equation (1) prevents the processor
from being saturated by early job releases.

The VRE model extends the RBE model to support
variable execution rate. Following the notation of the
RBE model, a VRE task is described by four parameters
(xi(t), yi(t), di(t), ci(t)), which allows the parameters to
change during runtime. Thus, the deadline assignment equa-
tion evolves to Equation (2).

Di(j) =

(
tij + di(t) if 1 ≤ j ≤ xi(t)

max(tij + di(t), Di(j − xi(t)) + yi(t)) if j > xi(t)

(2)

wheretij is the release time of jobJij .
The variable execution rate is achieved primarily by ad-

justing either or both theperiod (yi(t)) and theexecution
time(ci(t)) parameters. As an example, a video player might
change its QoS requirements by either reducing resolution
or skipping frames, which requires a change to theci(t) or
yi(t) parameter respectively.

There might be pending jobs when a VRE task wants to
change its rate. Several options are available to handle the
pending jobs. A lazy and feasible way is to delay the rate
change until all pending jobs are done. That is the approach
Brandt et al. adopted in [6]. As we already mentioned in
Section 2, there exist cases where we want the rate change
to immediately take effect. Thus, we change the deadlines
of the pending jobs as follows.

• Rule 1:ci(t) changes at timetx. Let Di(j) be a pend-
ing deadline,D′

i(j) be the modified deadline according
to the rate change, andsi(tx) be the received execution
time by timetx, then,

D′i(j) = tx +max((Di(j)− tx) · ci(tx−1)
ci(tx)

, ci(tx−1)−si(tx))

• Rule 2:yi(t) changes at timetx,

D′i(j) = tx + ((Di(j)− tx) · yi(tx)
yi(tx−1)

, ci(tx − 1)− si(tx))

• Rule 3:xi(t) changes at timetx,

D′i(j + m) = tx + yi(tx) · (b m
xi(tx)

c+ 1), 0 ≤ m ≤ k

In [10] and this work, we assumeyi(t) = di(t) to obtain
an efficient schedulability test that can be used on-line as an
admission control condition. See [10] for more details.

3.2 Modelling Legacy Applications

The intended applications of this work are legacy appli-
cations which have been built on conventional time-sharing
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schedulers. Since legacy applications are sequential instruc-
tion streams, the processing of a legacy application under
the VRE task model follows the way of conventional time-
sharing systems, being executed by time slices. The differ-
ence in the VRE model is that each time slice is treated as
a job and assigned a deadline. A legacy taskTi is inserted
into the ready queue with other VRE tasks, and scheduled
with the EDF scheduling algorithm. When jobJij of task
Ti is dispatched (i.e., begins to execute), an execution timer
is set to preempt the execution of jobJij after ci(t) time
units. If taskTi is preempted by another task, the execution
timer state is saved with the context of taskTi and restored
when jobJij resumes execution. When the timer set for job
Jij expires, taskTi is preempted and, as though one job had
completed and a new job released, a new deadline is set for
job Jij+1 using Equation (2) and the rate parameters ofTi,
which is similar to the method used in [2] when a request
overruns the server’s budget.

The deadline assignment of a legacy application requires
two parameters,pi(t) and ci(t), wherepi(t) is the period
and ci(t) is the size of a time slice. To be consistent
with the VRE model, a legacy application is described as
(1, pi(t), pi(t), ci(t)), which means the task will be allo-
cated1 time slice of sizeci(t) every period of lengthpi(t).
The rate adjustment is implemented by the adjustment of ei-
ther thepi(t) parameter or theci(t) parameter.

A main problem with the legacy applications is that con-
ventional time-sharing systems are unaware of the execution
rate or the time constraints. On this problem, the VRE model
shows a significant advantage over other algorithms (CBS,
RBE, etc.). Users have no need to know the exact execution
rate in advance. Instead, they can just assign an approxi-
mate execution rate and adjust the rate during runtime. In
practice, most multimedia applications have a fixed period.
Suppose in a video, people will notice excessive jitter if the
rate is less than 15 frames per second, then66ms can be
used as its period (pi(t)). Theci(t) parameter is a variable
which we can change during runtime. The rate adjustment
is like a feedback-based control loop. We allocate an initial
rate to a legacy application, monitor the actual execution and
adjust the rate based on the feedbacks, for example, the sus-
pension time in a given interval or the percentage of missed
deadlines.

Figure 1 and Figure 2 are two simple examples that illus-
trate how the variable rate execution model works. For sim-
plicity, the rate changes in these examples are made at task
deadlines, but this is not required. In Figure 1, the initial ex-
ecution rate is(1, 4, 4, 2), and theci(t) parameter is adjusted
during runtime. At timet = 4, the WCET is changed from
2 to 1. Thus, execution rate changes to(1, 4, 4, 1), and the
next two execution intervals each require at most 1 time unit.
At time t = 12, the task’sci(t) parameter is changed to 2,
and the execution rate changes back to its initial specifica-
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Figure 1. The initial execution rate is (1, 4, 4, 2).
At time 4, the execution rate changes to
(1, 4, 4, 1), and the execution rate changes back
to (1, 4, 4, 2) at time 12.
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Figure 2. The initial execution rate is (1, 4, 4, 1).
At time 8, the execution rate changes to
(1, 3, 3, 1), and the execution rate changes back
to (1, 4, 4, 1) at time 14.

tion: (1, 4, 4, 2). This example might represent a scenario in
which a video player changes its resolution and needs more
or less execution time in an interval ofyi(t) time units.

A scenario in which a video player skips frames is shown
in Figure 2. In this case, theyi(t) parameter is adjusted
during runtime. The initial execution rate specification is
(1, 4, 4, 1), and at timet = 8 the execution rate changes to
(1, 3, 3, 1). The execution rate changes back to(1, 4, 4, 1) at
time t = 14.

3.3 Schedulability Condition

A sufficient schedulabity condition for the VRE task set
was given in [10]. We summarize the schedulability theo-
rems from [10] in this section.

Lemma 3.1 defines a loose upper bound for the demand
of a variable rate task in any given interval; Theorem 3.2
gives a sufficient but not necessary schedulability condition
for a VRE task set.

Lemma 3.1. [10] Let Vi be a variable rate task
(xi(t), yi(t), yi(t), ci(t)). If no job of Vi released before
time t0 ≥ 0 requires processor time in the interval[t0, l]
to meet a deadline in the interval[t0, l], then

∀l > t0, d̂bf ([t0, l]) =
∫ l

t0

fi(t)dt (3)
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is an upper bound on the processor demand in the interval
[t0, l] created byVi wherefi(t) is the fraction function ofVi

computed byfi(t) = xi(t)·ci(t)
yi(t)

.

Theorem 3.2. [10] Let the task setV =
⋃∞

t=0 V (t) be a
set of variable rate tasks withdi(t) = yi(t), 1 ≤ i ≤ n.
Preemptive EDF will succeed in schedulingV if

∀L > 0, L ≥
∑

j∈V
d̂bf j(L) (4)

Corollary 3.3. [10] Let the task setV =
⋃∞

t=0 V (t) be a set
of variable rate tasks withdi(t) = yi(t), 1 ≤ i ≤ n. Pre-
emptive EDF will succeed in schedulingV if Equation (5)
holds.

∀t,
∑

i∈V (t)

fi(t) ≤ 1 (5)

Equation (5) looks like the necessary and sufficient con-
dition of EDF in [17], but it is actually different. The VRE
model supports a dynamic task set in which tasks are al-
lowed to release jobs early. This means we can have inter-
vals of time in which the utilization function is greater than
1 adjacent to intervals of time in which the utilization func-
tion is less than1, and the task set may still be schedulable.
Thus, Equation (5) is only sufficient, and not necessary. To
develop a tighter condition, which is both sufficient and nec-
essary, the actual times of rate changes must be known a
priori. Thus, it is infeasible to evaluate such a condition.

Corollary 3.3 can be used as the condition for admission
and rate-change control. When a new variable rate task ar-
rives or an existing variable rate task requests to change its
rate, the system will recompute the sum of the fractions. If
the sum is less than or equal to1, accept the request; other-
wise, reject the request.

3.4 Rate Controller

The rate adjustments might be complicated. In this sec-
tion, we introduce arate controllercomponent to automati-
cally accomplish rate adjustments. The role of the rate con-
troller is to monitor the execution and adjust the rate based
on specific feedback and predefined rules.

In practice, different applications can have different exe-
cution patterns, and we believe it is infeasible to construct a
general-purpose rate controller. For example, we were try-
ing to solve thereceive livelockproblem in a recent work
[30]. In that work, we adaptively adjust the execution rate
of a network application according to the buffer utilization
of its socket layer queue. We provide a set of interface for
users to design their own rate controllers. Section 4.3 intro-
duces the programming interface for rate controllers. Each
variable rate task can have its own rate controller adjusting
the execution rate.

We designed a simple rate controller as the default rate
controller for legacy multimedia applications. The design
assumes a legacy application will suspend itself when it runs
faster than its need. Take a video decoder as an example, the
decoder shall decode 30 frames in a second. If the decoder
decodes 30 frames in the middle of a second, then it will
suspend itself for the rest of the second.

SupposeVi = (xi(t), yi(t), di(t), ci(t)) is a variable rate
task. Let si(t) be the received execution time ofVi by
time t andSi(t) be the expected execution time by timet,
Si(t) =

∫ t

0
fi(t)dt wherefi(t) = xi(t)·ci(t)

yi(t)
. The default

rate controller acts as follows.

• periodically check the execution time (si(t)). Suppose
we check the execution time at timet (si(t)), then we
check the execution time afterp time units (si(t + p)).

• compute the received execution time in the period[t, t+
p], ∆si = si(t + p)− si(t).

• compare∆si with the expected execution time (∆Si =
Si(t + p)− Si(t) = p · fi(t) = p · xi(t)·ci(t)

yi(t)
).

– If ∆Si −∆si > δu whereδu is a pre-defined up-
per bound, then reduce the execution rate, either
decreasingci(t) or increasingyi(t).

– If ∆Si−∆si < δl whereδl is a pre-defined lower
bound, then increase the execution rate, either in-
creasingci(t) or decreasingyi(t).

– Otherwise, keep the execution rate.

4 Programming Interface

This section introduces some implementation details and
the programming interface. Section 4.1 presents the loadable
scheduler mechanism. Section 4.2 introduces the program-
ming interface for variable rate tasks. Section 4.3 introduces
the programming interface for rate controllers.

4.1 Loadable Schedulers

The loadable scheduler mechanism is implemented by
pre-planting several hooks in the original Linux kernel. The
hooks are pre-planted as follows:

int do_fork(unsigned long clone_flags,
unsigned long stack_start,
struct pt_regs *regs,
unsigned long stack_size)

{
...
#ifdef LOADABLE_SCHEDULER

p->policy=SCHED_EDF;
if(p_sched!=NULL)

(*p_sched->sched_fork)(p);
#endif
...
}
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When a scheduler is loaded, thep schedpointer is di-
rected to that scheduler. Then, the user-definedschedfork
function will be invoked when a thread is created by the
do fork function. When the scheduler is removed, it sets
thep schedpointer back toNULL.

The interface for user-customized schedulers is defined
by a data structurescheduler, which is shown in the follow-
ing code.

/*scheduler structure*/

/*this structure defines the hook table in kernel*/

struct scheduler{
struct prio (*sched_goodness)

(struct task_struct * p, int this_cpu,
struct mm_struct *this_mm);

void (*sched_fork)
(struct task_struct *task);

void (*sched_exit)
(struct task_struct *task);

void (*sched_sleep)
(struct task_struct *task);

void (*sched_wakeup)
(struct task_struct *task);

struct task_struct *(*sched_choose_next)
(struct task_struct*, int);

void (*sched_nice)
(struct task_struct*, int, void*);

void (*sched_handle_ticks)
(struct task_struct*, unsigned long );

void (*sched_replenish)
(struct task_struct*);

};

4.2 Variable Rate Threads

The programming model of variable rate threads is
consistent with conventional time-sharing systems. Thus,
legacy applications need no modification to run under the
VRE scheduler. Variable rate threads bridge the gap be-
tween legacy time-sharing applications and QoS-based ap-
plications. The system callset execution rate transfers a
legacy application to a variable rate thread and set its execu-
tion rate. Typically, we set the rate of a legacy application as
follows.

set_execution_rate(pid, 1, y, y, c);

The above statement sets the execution rate of threadpid
to (1, y, y, c) which meanspid will run c time units everyy
time units.

4.3 Rate Controller

A rate controller is currently defined as follows:

struct rate_ctlr{
unsigned long period;
void (*control)(struct task_struct *p_task);

}

whereperiod is the period that the functioncontrol is in-
voked.

Three system calls dealing with rate controllers are shown
below.

• add controller(char *nameof ctlr, struct ratectlr
*ctlr) adds a rate controllerctlr into the system;

• rm controller(struct ratectlr *ctlr) removes a rate con-
troller ctlr from the system;

• set controller(pid t pid, char *nameof ctlr, unsigned
long period)assigns a rate controllernameof ctlr to a
threadpid.

5 Evaluation

The programming and task models have been imple-
mented in Linux and evaluated with non-real-time and
legacy multimedia applications. The scheduler is imple-
mented as a loadable Linux module on a Redhat 8.0 distri-
bution with a 2.4.18 Linux kernel. Most functions are imple-
mented by the loadable modules; only a small modification
is made to the kernel.

Our experiments focus on three aspects: QoS support, the
variable rate mechanism and the default rate controller. The
experiments were done on a PC with an Athlon Thunderbird
1GHz processor. We selectedMPlayeras the legacy multi-
media application.

The first experiment is to evaluate the QoS support. We
ran MPlayer on both the original Linux scheduler and our
new scheduler. In our scheduler, the execution rate of
MPlayer is set to(1, 10, 10, 1). That is, theMPlayer shall
receive1 time tick (10 microseconds) every10 time ticks,
which is actually faster than its required execution rate. As
shown in Figure 3, the actual execution rate ofMPlayer is
close to(1, 12, 12, 1). Every 15 seconds, we check the ex-
ecution time ofMPlayer and create20 non-real-time pro-
cesses which do nothing but execute infinite loops. As we
can see in Figure 3, the original Linux scheduler provides
no QoS guarantee; the execution rate (the slope) decreases
when new processes are created. But our model provides
constant service quality when new processes are created.

The second experiment is on the execution pattern of
legacy multimedia applications under the rate adjustment
mechanism. We changed the execution rate ofMPlayer at
selected points and checked the execution time ofMPlayer
every3 seconds.

Table 1 shows the execution rate adjustments and the
times when they are made. We use different time units for
the two columns, which might be confusing at first. We use a
secondas the time unit in theTimecolumn, while in theRate
column we use atick (which is 10ms in Linux by default)
as the time unit. For example, the second entry in Table 1
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Figure 3. The execution rate in the original
Linux scheduler decreases as the system load
increases while the new scheduler maintains a
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rate in our scheduler is close to (1, 12, 12, 1),
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Time(in seconds) Rate (x,y,d,c) (in 10ms ticks)
0 (1,50,50,1)
30 (1,30,30,1)
60 (1,20,20,1)
90 (1,10,10,1)
120 (1,10,10,2)

Table 1. Rate adjustment.

means we change the rate to1 tick every30 ticks at the30th
second.

The execution time ofMPlayer with rate adjustment is
shown in Figure 4. To highlight the execution rate of
MPlayer, the null program execution is not included in Fig-
ure 4. We can verify that the rate changes are consistent with
our adjustments shown in Table 1.

An interesting thing in Figure 4 is the rate change around
time 155 where we did not adjust the rate. It appears that
rate(1, 10, 10, 2) is faster than the actual rate of job releases.
When the execution rate was changed to(1, 10, 10, 2) at time
120, MPlayer had to finish the pending jobs accumulated
through the interval[0, 120]. Thus,MPlayerexecuted at its
full rate (1, 10, 10, 2) in the interval[120, 155]. When the
accumulated pending jobs were finished, its execution rate
dropped to the actual rate of job releases.

The third experiment is on the default rate controller. We
initially setMPlayerto run at a low rate ((1, 20, 20, 1)). The
actual execution rate is a little bit slower than the assigned
rate because of the roundoff in the implementation. Then we
attached the default rate controller toMPlayer at time45.
As we can see from Figure 5, the default controller immedi-
ately detected the contention and accelerated the execution
rate. When all pending jobs were finished, the execution rate
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Figure 4. The actual execution rate increases
when we increase its rate specification, but
falls around time 155 when the rate specifica-
tion is greater than the actual job release rate.
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Figure 5. The default rate controller detected
contention at time 45 and accelerated the ex-
ecution rate.

dropped to the regular rate. The results look similar to the
second experiment, but the rate adjustment was done auto-
matically by the controller.

In the Linux kernel, all running processes are put in a list
called runqueue. The Linux scheduler scans the entire list
and selects the process with the highest priority. Our im-
plementation also follows this pattern though another imple-
mentation might be more efficient. Thus, the overhead shall
be a linear function of the number of running processes. We
measured the overhead of our scheduler, and compared it
with the overhead of the original Linux scheduler. The over-
head was measured in CPU cycles, which was retrieved by
the “rdtsc” instruction (read timestamp counter). Figure 6
shows our results of the measurements. These results are
consistent with Brandt et al in [6] where a slightly simpler
variable rate task model was implemented in Linux, with the
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change made to the kernel rather than as a loadable module.
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Figure 6. The overhead is a linear function of
the number of processes under both the orig-
inal Linux scheduler and our scheduler. The
overhead of our scheduler is a little bit higher
than the original Linux scheduler.

6 Conclusion

This work enhanced the Linux kernel to dynamically
load user-customized schedulers. A variable rate execution
scheduler is implemented to provide dynamic QoS support.
Variable rate tasks run at a variable rate which is subject to
change. Each variable rate thread can attach a rate controller
to adjust its execution rate during runtime. A schedulability
condition is given for admission control.

Legacy applications are modeled as specific VRE tasks.
The VRE model does not require the exact execution rate to
be known in advance. Users can assign an initial execution
rate to a legacy application and adjust its rate later.

The implementation is done on a Redhat 8.0 distribution.
Our experiments show that it is possible to approximate the
execution rate of a legacy application without knowing the
internal time constraints.
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