
In: Proceedings of the Fifth IEEE International Symposium on High Assurance Systems Engineering, Albuquerque, New Mexico, November 2000, pp. 177-186.

The Synthesis of Real-Time Systems from Processing Graphs

Steve Goddard
Computer Science & Engineering
University of Nebraska—Lincoln

Lincoln, NE 68588-0115
goddard@cse.unl.edu

Kevin Jeffay
Department of Computer Science

University of North Carolina at Chapel Hill
Chapel Hill, NC 27599-3175

jeffay@cs.unc.edu

Abstract

Directed graphs, called processing graphs, are a stan-
dard design aid for complex real-time systems. The pri-
mary problem in developing real-time systems with pro-
cessing graphs is transforming the processing graph into a
predictable real-time system in which latency can be man-
aged. Software engineering techniques are combined with
real-time scheduling theory to solve this problem. In the
parlance of software engineering methodologies, a synthe-
sis method is presented. New results on managing latency
in the synthesis of real-time systems from cyclic processing
graphs are also presented. The synthesis method is demon-
strated with an embedded signal processing application for
an anti-submarine warfare (ASW) system.

1. Introduction
Directed graphs, called processing graphs, are a stan-

dard design aid for complex real-time systems. Processing
graphs are large grain dataflow graphs in which nodes rep-
resent processing functions and graph edges depict the flow
of data from one node to the next. Depending on the appli-
cation domain, the flow of data represents a sampled signal
to be processed (e.g., [7, 21, 5, 3, 25, 30]) or messages to be
processed (e.g.,[6, 9, 17, 22, 24, 29, 27, 28]).

The primary problem in developing real-time systems
with processing graphs is transforming the processing graph
into a predictable real-time system in which latency can
be managed. We combine software engineering techniques
with real-time scheduling theory to solve this problem. In
the parlance of software engineering methodologies, we
present a synthesis method.

We also present new results on managing latency in
the synthesis of real-time systems from cyclic processing
graphs. The total latency encountered by a sample or mes-
sage in a processing graph is an integral unit of time created
by the sum of the latency inherent in the processing graph
and the additional latency imposed by the implementation.

Inherent latency in a graph is created by non-unity dataflow
attributes (described in Section 3) and the graph topology.
Inherent latency exists even if the graph is executed on an
infinitely fast machine. Imposed latency comes from the
scheduling and execution of nodes in the graph since we
do not have an infinitely fast machine. Thus latency has
two components: inherent latency and imposed latency. In
[14], we presented equations to compute inherent latency in
cyclic processing graphs. Here we use real-time scheduling
theory to bound imposed latency and combine these results
with our bounds on inherent latency to provide an upper
bound on the total latency any sample (or message) will
encounter in the synthesized system. If this bound is less
than or equal to the latency requirement for each path in
the graph, we can guarantee that the application will always
meet its latency requirements.

We demonstrate our synthesis method with an embedded
signal processing application for an anti-submarine warfare
(ASW) system. For simplicity and concreteness, we present
our synthesis method in terms of the U.S. Navy’s Processing
Graph Method (PGM) [23] and signal processing applica-
tions. However, our synthesis method applies to any general
processing graph paradigm and many application domains.

The rest of this paper is organized as follows. Our re-
sults are related to other work in Section 2. Section 3
presents a brief overview of the processing graph model
PGM. The synthesis of real-time uniprocessor systems from
PGM graphs, including the the verification of latency re-
quirements, is presented in Section 4. We demonstrate our
synthesis method in Section 5 with the Directed Low Fre-
quency Analysis and Recording (DIFAR) acoustic signal
processing application from the Airborne Low Frequency
Sonar (ALFS) system of the SH-60B LAMPS MK III anti-
submarine helicopter. Our contributions are summarized in
Section 6.

2. Related Work
This paper is part of a larger body of work that creates a

framework for evaluating and managing processor demand,

In: Proceedings of the Fifth IEEE International Symposium on High Assurance Systems Engineering, Albuquerque, New Mexico, November 2000, pp. 177-186.

latency, and memory usage in the synthesis of real-time sys-
tems from processing graphs [10]. Here, we demonstrate
the management of latency in the synthesis of a real-time
uniprocessor system from cyclic processing graphs devel-
oped with PGM. Portions of our synthesis method have
been presented previously [12, 13, 14]. However, this is the
first complete presentation of our synthesis method. (For
space considerations, we refer to our previous publications
as needed in the full synthesis method presented here.)

Our early work on the synthesis of real-time uniproces-
sor systems from PGM was based on acyclic PGM graphs
[12, 13]. We first introduced the concept of precise node ex-
ecution rates in [12], and we showed that dynamic, on-line
scheduling can achieve near minimal memory requirements
in [13]. In [14], we extended these results to compute node
execution rates and inherent latency for cyclic processing
graphs. This is the first time imposed latency has been com-
puted for cyclic processing graphs. Moreover, our latency
results are novel in that they assume nodes are eligible for
execution as soon as all required input data is available and
then scheduled for execution with a dynamic on-line sched-
uler.

From the real-time literature, PGM graphs are most
closely related to the Logical Application Stream Model
(LASM) [6] and the Generalized Task Graph (GTG) model
[7]. PGM, LASM, and GTG were all developed indepen-
dently and support very similar dataflow properties. PGM
was the first of these to be developed. Our work improves
on the analysis of LASM and GTG graphs by not requiring
periodic execution of the nodes in the graph. Instead, we
calculate a more general execution rate, which can be re-
duced to average execution rates assumed in the LASM and
GTG models. Our general execution rate specification pro-
vides a more natural representation of node execution for
PGM graphs. Forcing periodic execution of all graph nodes
adds latency to the processed signal, but simplifies the anal-
ysis of latency and memory requirements.

Processing graphs are a standard design aid in digital
signal processing. From the digital signal processing lit-
erature, PGM is most similar to Lee and Messerschmitt’s
Synchronous Dataflow (SDF) graphs [21] supported by the
Ptolemy system [5]. The SDF graphs of Ptolemy utilize a
subset of the features supported by PGM. Any SDF graph
can be represented as a PGM graph where each queue’s
threshold is equal to its consume value. In addition to sup-
porting a more general dataflow model, our research differs
from [21] in that we support dynamic, real-time, scheduling
techniques rather than creating static schedules.

In 1996, Bhattacharyya, Murthy, and Lee published a
method for software synthesis from dataflow graphs [3].
Their software synthesis method is based on the static
scheduling of Lee and Messerschmitt’s SDF graphs. The
main goal of Bhattacharyya et al.’s software synthesis

method and related scheduling research based on SDF
graphs has been to minimize memory usage by creating
off-line scheduling algorithms [21, 25, 30, 26, 3]. Off-line
schedulers create a static node execution schedule that is
executed periodically by the processor. In contrast, the pri-
mary goal of our research has been to manage the latency
and memory usage of processing graphs by executing them
with an on-line scheduler. Recently we have shown that
for a large class of applications, dynamic on-line schedul-
ing creates less imposed latency than static scheduling. An
even more surprising result is that, in many cases, dynamic
on-line scheduling uses less memory for buffering data on
graph edges than static scheduling [13].

Our latency analysis is related to the work of Gerber et
al. in guaranteeing end-to-end latency requirements on a
single processor [9]. However, Gerber et al. map a task
graph to a periodic task model in the synthesis of real-time
message-based systems rather than assuming a rate-based
execution. Our analysis and management of latency differs
from Gerber et al.’s in that PGM graphs allow non-unity
dataflow attributes. Finally, Gerber et al. introduce new (ad-
ditional) tasks to the task set in their synthesis method to
synchronize processing paths. Our synthesis method does
not need extra synchronization tasks since our analysis tech-
niques are rate-based rather than periodic.

3. Notation and the Processing Graph Method

The notation and terminology of this paper, for the most
part, is an amalgamation of the notation and terminology
used in [4] and [3]. A processing graph is formally de-
scribed as a directed graph (or digraph)

�����
V � E ����� .

The ordered triple (V, E, �) consists of a nonempty finite
set V of vertices, a finite set E of edges, and an incidence
function � that associates with each edge of E an ordered
pair of (not necessarily distinct) vertices of V. Consider an
edge 	�
 E and vertices �����
 V such that � � 	�� ��� ������ .
We say 	 joins � to � , or � and � are adjacent. The ver-
tex � is called the tail or source vertex of 	 and � is the
head or sink vertex of edge 	 . The edge 	 is an output edge
of � and an input edge of � . The number of input edges
to a vertex � is the indegree ��� � ��� of � , and the number
of output edges for a vertex � is the outdegree ��� � ��� of
� . A vertex � with ��� � ��� ���

is an input node. The set� ��� ������
 V !��� � ��� �"�$# denotes the set of all input
nodes. A vertex � with �%� � ��� �&� is an output node. The
set ' �(� ���)�!
 V *� � � ��� �"��# denotes the set of all out-
put nodes. For ����+
 V, there is a path between � and � ,
written as �-,.� , if and only if there exists a sequence of
vertices

�0/21 � /43 �)5)5�5)� /46 � such that
/217� � ,

/86*� � , and/49
is adjacent to

/89
�
1

for : �<; �>=���5)5�5 �@?BAC; � . The set
�ED

is the subset of input nodes
�

from which there exists a path
from �F
 � to the node � . Likewise, the set 'HG is the subset
of output nodes ' from which there exists a path from node

2

�/� ��
�

cns �������
	
prd �������� thr ��������� ,

Figure 1. A two node chain.

� to
/
 ' .

There are many processing graph models, but our syn-
thesis method begins with the U.S. Navy’s Processing
Graph Method (PGM). PGM was developed by the U.S.
Navy to facilitate the design and implementation of (acous-
tic) signal processing applications, but it is a very general
processing graph paradigm that is applicable to many other
domains. In PGM, a system is expressed as a directed
graph in which the nodes (or vertices) represent process-
ing functions and the edges represent buffered communi-
cation channels called queues. The topology of the graph
defines a software architecture independent of the hardware
hosting the application. The graph edges are First-In-First-
Out (FIFO) queues. There are four attributes associated
with each queue: a produce amount prd

� � � , a threshold
amount thr

� � � , a consume amount cns
� � � , and an initial-

ization amount init
� � � . Let queue � be directed from node �

to node
/

. The produce amount prd
� � � specifies the num-

ber of tokens (data elements) appended to queue � when
producing node � completes execution. A token represents
an instance of a data structure, which may contain multiple
data words. There must be at least thr

� � � tokens on queue� before node
/

is eligible for execution. A queue is over
threshold if the number of enqueued tokens meets or ex-
ceeds the threshold amount thr

� � � . After node
/

executes,
the number of tokens consumed (deleted) from queue � by
node

/
is cns

� � � . The number of initial data tokens on the
queue is init

� � � .
Unlike many processing graph paradigms, PGM allows

non-unity produce, threshold, and consume amounts as well
as a consume amount less than the threshold. The only
restrictions on queue attributes is that they must be non-
negative values and the consume amount must be less than
or equal to the threshold. For example consider the portion
of a chain shown in Figure 1. The queue connecting nodes
� and

/
, labeled � , has prd

� � � ��� , thr
� � � ��� , cns

� � � ��� ,
and init

� � � � � . (A queue without an init
� � � label contains

no initial data.) Node � must execute twice before node/
is first eligible for execution. After node

/
executes,

it consumes only 3 of the 8 tokens on its input queue. A
threshold amount that is greater than the consume amount
is often used in signal processing filters. The filter reads
thr
� � � tokens from the queue but only consumes cns

� � � to-
kens, leaving at least

�
thr
� � � A cns

� � ��� on the queue to be
used in the next calculation.

If a node has more then one input queue (input edge),
then the node is eligible for execution when all of its in-
put queues are over threshold (i.e., when each input queue �
contains at least thr

� � � tokens). After the processing func-
tion finishes executing, prd

� � � tokens are appended to each
output queue � . Before the node terminates, but after data
is produced, cns

� � � tokens are dequeued from each input
queue � . The execution of a node is valid if and only if the
node executes only when it is eligible for execution, no two
executions of the same node overlap, each input queue has
its data atomically consumed after each output queue has
its data atomically produced, and data is produced at most
once on an output queue during each node execution.

A graph execution consists of a (possibly infinite) se-
quence of node executions. A graph execution is valid if
and only if all of the nodes in the execution sequence have
valid executions and no data loss occurs.

4. Synthesis Method
In this section, we combine software engineering tech-

niques with real-time scheduling theory to develop a syn-
thesis method for transforming a processing graph into a
predictable real-time system in which latency can be man-
aged. The synthesis of real-time systems from PGM graphs
involves four steps:

1. Identification of the rates at which nodes in a PGM
graph must execute if they are to process data in real
time.

2. Construction of a mapping of each node to a task in a
real-time task model so that real-time processing can
be achieved.

3. Verification that the resulting task set is schedulable so
that we can guarantee real-time execution.

4. Analytical verification that latency requirements of the
application are met.

The analysis of latency requirements only holds if the
task set is schedulable. Thus, the schedulability of the task
set is tested in Step 3. If the task set is not schedulable, Steps
2 and 3 must be repeated with a modified set of parameters
used in the mapping of PGM nodes to real-time tasks. Step
4 uses analytical techniques (rather than simulation) to ver-
ify latency requirements are met. If the synthesized system
will not meet specified latency requirements, then Steps 2,
3 and 4 must be repeated with a modified set of task param-
eters.

4.1. Step 1: Computing Node Execution Rates

We have shown, in [10, 13, 14], that nodes in a PGM
graph execute with a precise rate of � executions every� time units. We call the integer pair

� � � � � an execu-
tion rate, and represent the execution rate of node

/
as��� � � � � � � � � . Moreover, given the execution rate of in-

put nodes producing input data for the application, we have

3

shown that the execution rate of every node
/

in a cyclic
PGM graph can be calculated using Equation (1):

� � �������*� cns
� � � � G� ���E� prd

� � � � G � cns
� � ��� ���

� � � � � �� / � # �
� � � � �
	�� prd

� � � � G
cns
� � � � G� ��� � �����%� � � � � � �� / � 5 (1)

We also showed in [14] how to initialize back edges in a
cycle so that they are always over threshold during graph
execution, which is necessary for Equation (1) to compute
valid execution rates in cyclic graphs. (A back edge is a
queue � that joins node � to an ancestor

/
when the graph

is topologically sorted.) We assume in this paper that all
back edges in cyclic graphs are so initialized.

4.2. Step 2: Mapping Nodes to a Real-Time Task
Model

The execution rate specifications computed using Equa-
tion (1) represent the rate at which nodes need to execute to
achieve real-time execution without losing data. We now
address issues related to scheduling nodes in accordance
with their rate specifications. To make sure nodes execute
according to their rate specifications we execute the nodes
according to the rate-based execution (RBE) model [18].
The RBE paradigm provides a natural description of node
executions in an implementation of processing graphs. The
advantage of executing nodes according to the RBE model
is that nodes are eligible for execution as soon as they are
released, even if multiple releases of a node occur at the
same time. In comparison, a periodic model of execution
requires that each release of a node be separated by a con-
stant amount of time, which imposes additional latency on
the signal.

RBE Task Model. RBE is a general task model consist-
ing of a collection of independent processes specified by
four parameters:

� � � � ��� � 	�� . The pair
� � � � � represents the

execution rate of a RBE task where � is the number of ex-
ecutions expected to be requested in an interval of length� . Parameter � is a response time parameter that specifies
the maximum desired time between the release of a task in-
stance and the completion of its execution (i.e., � is the rel-
ative deadline). The parameter 	 is the maximum amount of
processor time required for one execution of the task.

A RBE task set is feasible if there exists a preemptive
schedule such that the ����� release of task � 9 at time � 9�� � is
guaranteed to complete execution by time � 9>� ��� , where

� 9>� ��� � � � 9!� ��" � 9 if
;$# � # � 9�&%(' � � 9�� � " � 9 �)� 9 � � A � 9 � " � 9 � if �&* � 9

(2)

The RBE task model makes no assumptions regarding when
a task will be released, however Equation (2) ensures that no

more than � 9 deadlines come due in an interval of length � 9 ,
even when more than � 9 releases of � 9 occur in an interval of
length � 9 . Hence, the deadline assignment function prevents
jitter from creating more process demand in an interval by
a task than that which is specified by the rate parameters.

Mapping Nodes to RBE Tasks. To map a PGM graph to a
set of RBE tasks, a task is associated with each node. Thus
for each node � in the graph, node � is associated with
the four tuple

� � G � � G ��� G � 	 G � . The parameters � G and � G
are derived using Equation (1). The parameter 	 G is the
worst case execution time for node � , which we assume
is supplied. The only free parameter is the relative dead-
line parameter ��G , which influences processor capacity re-
quirements, latency, and buffer requirements. In general, a
smaller value chosen for ��G will result in less latency and
memory requirements than a larger ��G value, but at a cost
of increased processor capacity requirements. Execution
time, produce, threshold, consume, and deadline values all
affect schedulability, latency and buffer requirements, and
one can trade-off one metric for any other. The synthesis
method outlined here provides a framework for evaluating
schedulability and latency requirements, but leaves open the
problem of partitioning a processing graph in a distributed
system when the graph is not schedulable on a uniprocessor.

In mapping the graph to a set of RBE tasks, relative dead-
line parameters need to be selected that result in modest
buffering on the graph edges without overloading the pro-
cessor with too much processing demand. Since ��G affects
processor capacity requirements, latency and buffer require-
ments, a good starting point for the selection of � G is one
such that � G is greater than or equal to the relative dead-
line of node � ’s predecessor node and less than or equal to� G . As shown in [12], when the deadline for each node is
greater than or equal to its predecessor’s relative deadline, a
scheduling technique called release time inheritance can be
used to minimize latency. Under release time inheritance,
node � is assigned a logical release time (at the time of its
actual release) that is equal to the logical release time of
the node that enabled � during graph execution. Deadline
assignment function (2) then uses the logical release times
rather than the actual release times to assign deadlines for
the completion of node execution.

4.3. Step 3: Verifying Schedulability

After we have associated each node � in the graph with
a four tuple

� � G � � G ����G �>	 G�� , we have an RBE task sys-
tem + � � � 1 ��� 3 �)5�5)5 ���-, # . A task is released when all
of the node’s input queues are over threshold, ensuring
precedence constraints are met for correct graph execution.
Released tasks are scheduled with the RBE-EDF schedul-
ing algorithm—a simple, preemptive, earliest-deadline-first
(EDF) scheduler using deadline assignment function (2)
with release time inheritance.

4

The schedulability of the resulting task set can be
checked with Theorem 4.1 [13].

Theorem 4.1. Let + � ��� � 1 � � 1 �)� 1 � 	 1 � �)5)5�5� � , � � , ��� , �>	 , � # be a set of tasks such that for the
mapping �&
 V � : : � � 9 � � 9 ��� 9 �>	�� � � � � G � � G �)��G � 	 G�� .
The processing graph G

� �
V � E ����� is schedulable with

the RBE-EDF scheduler if Equation (3) holds for + .� � * � � ��� ,� 9��1
	 � � A � 9 " � 9� 9 	 � 9 	 	 9 (3)

where 	 ��� � � �� ��� if
� � �

�
if

��� �
An affirmative result after evaluating Condition (3)

means that the RBE-EDF scheduler can be used to exe-
cute the graph without missing a deadline. If the cumu-
lative processor utilization for an RBE task set is strictly
less than one (i.e., � ,9��1������ ���� � � ;

) then Condition (3) can
be evaluated efficiently (in pseudo-polynomial time) using
techniques developed by Baruah et al. [1]. Moreover, when� 9�� � 9 for all � 9 in + , the evaluation of Condition (3) re-
duces to the polynomial-time schedulability condition,�

9�� 1 � 9 	 	 �� 9 # ; (4)

since � ,9�� 1 ����� � �� � # ;"�"! � � * � � �#� � ,9�� 1 � 	 ����� � �� �
� ,� 9�� 1 �

� 9 	 � 9 	 	$�
� ,� 9�� 1 � A � 9 " � 9

� 9 	 � 9 	 	 �
� ,� 9�� 1 � A � 9 " � 9� 9 	 � 9 	 	$� since � 9 � � 9
� ,� 9�� 1 	 � � A � 9 " � 9� 9 	 � 9 	 	$�>5

Equation (4) computes processor utilization for the task set+ and is a generalization of the EDF feasibility condition� ,9�� 1%� �� � # ; for independent tasks with deadlines equal to
their period given by Liu & Layland [20].

4.4. Step 4: Analytical Verification of Latency Re-
quirements

Latency is the delay between when an input node pro-
duces a sample (or message), which consists of prd

� � � to-
kens, and when the graph generates a corresponding output.
The total latency encountered by a sample (or message) is
an integral unit of time created by the sum of the latency
inherent in the processing graph and the additional latency

imposed by the implementation. Inherent latency in a graph
is created by non-unity dataflow attributes and the graph
topology. Inherent latency exists even if the graph is exe-
cuted on an infinitely fast machine. Imposed latency comes
from the scheduling and execution of nodes in the graph
since we do not have an infinitely fast machine. Thus la-
tency has two components, and the total latency any sample
encounters can be expressed with the simple equation

Total Latency
�

Inherent Latency
"

Imposed Latency 5
We now show how to bound the maximum latency any sam-
ple (or message) will encounter in the synthesized system.
If this bound is less than or equal to the latency requirement
for each path in the graph, we can guarantee that the appli-
cation will always meet its latency requirements.

In [14], we showed inherent latency can be calculated
in cyclic processing graphs using Equations (5) and (6) of
Theorem 4.2.

Theorem 4.2. Let
�����

V � E ����� be a cyclic PGM graph
with rate-based input nodes. Let

/
 ' , and let the exe-
cution rate of input node �
 ��� be

� � �.� � � � � � � . Let
length

� � � denote the current number of tokens in queue�
 E. Let &' denote the set of acyclic paths from input
node � to node

/
. Let every back edge be initialized such

that it is always over threshold. The inherent latency a sam-
ple will encounter is bounded such that�&%('(�)+*, � � �.-0/ (A ;

� �21 	 � � # Sample Latency� �&%('(3)+*, � ; �54 / (
� �"6 	 � � (5)

where 7 represents a path � , / and / G98 � is defined as

:.;=<?> �
@AAAAAAAAAB AAAAAAAAAC
DFE9GFHJI$KML thr NPORQTS length NPORQ

prd NPORQ U0V if W �%X�Y ���������[Z K \ �
DFE9GFHJI$KML N^]�_�`�a5Scb�Qed cns NPORQgf thr NPORQeS length NPORQ

prd NPORQ U0V
if W �hX�Y ���������[Z K�i �kj i�l� \ j :.m <?>on I

I if W �hX3Y ���������[Z K�i �pj iql� \ j : m <?> � I
(6)

Equation (6) computes the number of times input node� must execute before enough data is produced to execute
output node

/
. Equation (5) then uses this value to bound

the interval of time in which node
/

will next be eligible to
execute, which is the inherent latency a signal encounters in
path � , / .

Using our synthesis method to transform a processing
graph into a real-time system, managing imposed latency is
a straightforward process. Moreover, unlike the computa-
tion of inherent latency, computing imposed latency is easy.

5

Inherent latency is the delay between when a sample is pro-
duced by graph input node � and when graph output node/

executes under the strong synchrony hypothesis. (Un-
der the strong synchrony hypothesis from the synchronous
programming literature [8], the system instantly reacts to
external stimuli, as though the application were executing
on an infinitely fast machine.) Thus, imposed latency is the
delay between when node

/
executes under the strong syn-

chrony hypothesis and when it actually finishes executing
in an actual implementation. Under RBE-EDF scheduling,
which uses release time inheritance, a node’s logical release
time is equal to the time it would be released (and execute)
under the strong synchrony hypothesis. By Theorem 4.1, if
the graph is schedulable with the RBE-EDF scheduling al-
gorithm (i.e., Equation (3) results in the affirmative), every
released node � finishes its execution within � D time units
of its logical release. Thus, the upper bound on imposed
latency incurred by a sample produced by input node � and
consumed by output node

/
is equal to � � . Moreover, as

shown next, computing total latency has now been reduced
to adding � � to our bound for inherent latency.

Lemma 4.3. Let
� � �

V � E ����� be a PGM graph. Let +
be an RBE task set synthesized from graph

�
. Let � be

a graph input node for which there exists a path to graph
output node

/
. If + is schedulable by Equation (3), then

the maximum imposed latency a sample incurs along the
path � , / is less than or equal to � � .

Proof: Since RBE-EDF uses release-time inheritance,
each task’s logical release time is equal to its release time
(and execution) under the strong synchrony hypothesis.
Thus, the maximum imposed latency a sample incurs along
the path � , /

is determined by when node
/

finishes exe-
cuting. An affirmative result from Equation (3) means that
every released task � will finish executing within � D time
units of its logical release time. Thus, output node

/
will

finish executing within � � time units of its logical release
time, and the maximum imposed latency a sample incurs
along the path � , / is less than or equal to � � .

Theorem 4.4. Let
� � �

V � E � � � be a PGM graph. Let+ be an RBE task set synthesized from graph
�

. Let � be
a graph input node for which there exists a path to graph
output node

/
. If + is schedulable by Equation (3), then

the latency a sample incurs along the path � , /
under

RBE-EDF scheduling is bounded such that� ��� 7��@	 � � � 	���� � �
Inherent Latency Upper Bound

" � � 5
Proof: The maximum latency a sample incurs is bounded
from above by the upper bound on inherent latency
plus the upper bound on imposed latency. Thus, by
Lemma 4.3 and the fact that inherent latency is al-
ways less than the Inherent Latency Upper Bound,

Sample Latency
�

Inherent Latency Upper Bound
"� � 5

Corollary 4.5. Let
�<� �

V � E ����� be a cyclic PGM graph.
Let + be an RBE task set synthesized from graph

�
. Let

���
be the set of nodes producing data for output node

/
 ' .
Let

� � � � � � � � � � be a well-defined execution rate for node�
 � � starting at time 0. Let &' denote the set of acyclic
paths from input node � to node

/
for all �
 ��� . If + is

schedulable by Equation (3), then the latency a sample will
incur is bounded such that

Sample Latency
� �&%('(�)%*, � ; � 40/ (

� �"6 	 � � " � � 5 (7)

Thus, verifying that the application meets its latency re-
quirements has been reduced to ensuring that the right-hand
side of Equation (7) is less than or equal to the latency re-
quirement for each path in the processing graph. Of course
Corollary 4.5 can also be used to determine the deadline pa-
rameter to be used for each node in the graph during Step
2. For example, suppose the maximum latency a signal (or
message) encounters from an input node � to output node/

must be less than
?

. Let &� � �(?BA �&%('(3)+*, 	 ; ��
�������� 	 � ��� .

If the graph is schedulable with the deadline parameter of
each node � set such that ��G � ����� � � G � &� � � , then we can
be sure that the latency requirement will be met.

5. Case Study
We demonstrate our synthesis method with a signal

processing graph in an anti-submarine warfare (ASW)
system—the Directed Low Frequency Analysis and
Recording (DIFAR) acoustic signal processing graph from
the Airborne Low Frequency Sonar (ALFS) subsystem
of the LAMPS MK III anti-submarine helicopter. The
ALFS system processes low frequency signals received by
sonobuoys in the water. Its primary function is to detect
submarines and to calculate range and bearing estimates to
each target. Our example uses the portion of the DIFAR
graph shown in Figure 2, which is an abstract representa-
tion of a one-band DIFAR graph [15]. The actual process-
ing performed by the DIFAR graph is classified by the U.S.
Government. However, an unclassified and abbreviated de-
scription of the graph was presented in [14]. An understand-
ing of the actual processing is not necessary to follow our
synthesis example.

The DIFAR graph shown in Figure 2 is a cyclic graph
with with 31 nodes and 59 queues. All queues have unity
produce, consume, and threshold attributes unless otherwise
labeled. Non-unity produce values are labeled near the tail
of the queue, and non-unity threshold and consume values
are labeled near the head of the queue. The dataflow at-
tributes used here are not the actual values from the graph

6

(the actual values are classified). However, the ratio be-
tween the attributes of a queue is the same. For example, if
queue � had a produce of 1024 tokens; a threshold of 2048
tokens; and a consume of 1024 tokens, these values would
be represented as: prd

� � � � ; , thr
� � � � = , and cns

� � � � ; .
All back edges, including self-loop edges, are initialized so
that they are over threshold. The number of initial tokens
is shown on all queues that are initialized except self-loop
edges. Self-loop edges are initialized so that they are always
over threshold, but the number of initial tokens is not shown
to reduce clutter in the figure.

The results presented here are from a study conducted
under contract to General Dynamics to determine the num-
ber of 200 MHz PowerPC processors that are needed to
meet seven different ALFS worst-case concurrent process-
ing requirements [11]. One of the concurrency modes sup-
ports processing data from 16 different sonobuoys simulta-
neously. The actual input data rates and the specific latency
requirements are classified.

Step 1: Computing Node Execution Rates. Let
�

Source
�

� ;�� � � =�� ms � be a well-defined rate specification for input
node Source beginning at time 0. That is, node Source de-
livers 16 samples of the signal (tokens) in every interval of� =�� ms. Table 1 lists, in topological order, the rate specifi-
cations for the other nodes in the graph derived using Equa-
tion (1). (We showed several examples of computing node
execution rates for this graph using Equation (1) in [14]. We
omit those details here for space considerations.)

Step 2: Map Nodes to Tasks in the RBE Model. Table 1
lists the RBE parameters associated with each node when it
is mapped to an RBE task. Parameters � G and � G are as de-
rived in the rate computation step. Parameter ��G is set to � G
for each node � in the graph. Parameter 	 G is the worst-case
execution time for node � on a 200MHz PowerPC proces-
sor.

Step 3: Verify Schedulability. The third step of the synthe-
sis method is to verify that the resulting task set is schedu-
lable so that we can guarantee real-time execution. By The-
orem 4.1, the RBE task set constructed from the DIFAR
graph is schedulable using RBE-EDF scheduling if an af-
firmative result is obtained when the following scheduling
condition is evaluated:� � * � � ��� ,� 9��1 	 � � A � 9 " � 9� 9 	 � 9 	 	 9
where 	 �T� � is the floor function defined in Theorem 4.1.
Since � G � � G for every node � in the graph, we again use
the simpler utilization expression of Equation (4) to evalu-
ate the schedulability of the graph under RBE-EDF schedul-
ing. Using the RBE parameters from Table 1, we see that
the graph is schedulable since � ,9�� 1 � � � � �� � � 5 ��� ��� # ; .
Thus, since the processor utilization is less than one, the

graph is schedulable with ��G � � G for each node � in the
graph.

Note, however, that this graph only processes one band
of one sonobuoy. If data from all 16 sonobuoys is pro-
cessed simultaneously, then 16 instances of the graph are
required, which results in a cumulative processor utiliza-
tion of

; 5 � =�= � . Thus, not all 16 instances of the graph can
be executed simultaneously on the same processor. More-
over, while theoretically we can execute with the processor
100% loaded, the U.S. Navy has a requirement that limits
resource utilization to 80% in new applications. The proces-
sor utilization limit of 80% provides room for application
enhancements as well as a margin of error for safety. Thus,
at most twelve instances of the graph may be executed on
a single processor given the deadline parameters we have
selected.

If ��G � � G for each node � and the graph is not schedu-
lable, then relaxing any of the deadline parameters will
not change the schedulability of the graph since increasing
deadline parameters in this case does not reduce utilization.
A negative result from Equation (4) when � G � � G means
that the processor is over loaded (i.e., the processor utiliza-
tion is greater than 100%).

Step 4: Verifying Latency. As with all graphs in which
each queue � is initialized with at least thr

� � � A cns
� � � to-

kens, the first sample produced encounters the maximum
latency [12]. Thus, to verify the latency requirement, only
the latency for the first sample needs to be checked. How-
ever, as there are six graph output nodes, the latency of the
first sample reaching each output node must be checked.

By Corollary 4.5, the latency between the time the first
sample arrives and when output node AliOut executes is less
than �&%(' � ; �.4 / Source8 AliOut

� Source
6 	 � Source " � AliOut

���&% ' � ; � 4 =�� �;�� 6 	 � =�� ms "";���� ��� ms

�(;�� 	 � =�� ms
"C; � ��� �

ms� = � ��� � ms� = � seconds

when all of the deadline parameters in the path from node
Source to node AliOut are less than or equal to ���
	 9�� G � .
Thus, we can manage the amount of latency any sample en-
counters by choosing appropriate deadline values for node
AliOut and its predecessors. For example, if � AliScale, � AliMrg,
and � AliOut were reduced to =��� � � ms, the maximum latency
a sample encounters from node Source to node AliOut is
less than

; =�5�� seconds.
The maximum latency the first sample encounters in the

path from node Source to each of the other output nodes is

7

VernSpec

BndMrg

GramMrg

GramOut

BrgAngle

AliScale

BrgMrg

BrgOut

BinMrgBinOut

Source

VernDet

CRdetect

init(q) = 1

FlowCntl

DDAD MstrMCS

CRfilter VernFilter SlvMCS MnsMrg

GramData MnsOut

SAD

BBC

AliMrgAliOut

BDF

32

2,1

2,1
init(q)

0

init(q)
32,1

init(q) 0= 1

2

2

8

24
8

8

24

3

24

8

8

init(q)

CRspec

2,1

AutDeMrg

AutoDet

AutDeOut

= 31

= 2

= 1

3

8

Figure 2. The PGM DIFAR Graph. All back edges, including self-loop edges, are initialized so that
they are always over threshold.

8

Node (� G , � G , ��G , 	 G)
Source

��;�� � � =�� ms � — —
FlowCntl

��; � ; =�� � ms � ; =�� � ms � � 5 � � ms)
BDF

� ; � ; =�� � ms � ; =�� � ms � ��� 5 ; � ms)
MstrMCS

� ; � ; =�� � ms � ; =�� � ms � � 5 � � ms)
MnsMrg

�@� � ; =�� � ms � ; =�� � ms � � 5 � � ms)
MnsOut

�@� � ; =�� � ms � — —
SlvMCS

� ; � ; =�� � ms � ; =�� � ms � � 5 ; ms)
DDAD

� ; � ; =�� � ms � ; =�� � ms � � 5 � � ms)
CRfilter

� ; � ; =�� � ms � ; =�� � ms � � 5 � ms)
CRspec

��; � ; =�� � ms � ; =�� � ms � � 5 = ms)
CRdetect

��; � =�� � � ms � =�� � � ms � � 5 � � ms)
BndMrg

� =�� =�� � � ms � =�� � � ms � � 5 =�= ms)
SAD

� =�� =�� � � ms � =�� ��� ms � � 5 ��= ms)
GramData

� =�� =�� � � ms � =�� � � ms � � 5 � � ms)
GramMrg

� =�� =�� � � ms � =�� � � ms � � 5 ; � ms)
GramOut

� =�� =�� � � ms � — —

Node (� G , � G , ��G , 	 G)
AliScale

��; � ;���� ���
ms � ; � � ���

ms � � 5 ;�� ms)
AliMrg

��; � ;���� ���
ms � ; � � ���

ms � � 5�� ; ms)
AliOut

��; � ;���� ���
ms � — —

BBC
� =�� =�� � � ms � =�� ��� ms � ��5 ;�� ms)

BrgAngle
��; � ;���� � �

ms � ;���� ���
ms � �$5 ;�; ms)

BrgMrg
��; � ;���� � �

ms � ; � � ���
ms � � 5 � � ms)

BrgOut
��; � ;���� � �

ms � — —
AutDet

��; � � ��� � �
ms � ��� � ���

ms � =�5�� ms)
AutDetMrg

��; � � ��� � �
ms � � ��� ���

ms � � 5 ��� ms)
AutDetOut

��; � � ��� � �
ms � — —

BinMrg
��; � � ��� ���

ms � ��� � ���
ms � � 5 = ms)

BinOut
��; � � ��� � �

ms � — —
VernFilter

�@� � ; =�� � ms � ; =�� � ms � =$5 � = ms)
VernSpec

�@� � ; =�� � ms � ; =�� � ms � � 5 � �
ms)

VernDet
�@� � ; =�� � ms � ; =�� � ms � ; 5 ; �

ms)

Table 1. RBE parameters associated with each node in the DIFAR graph for the CR mode of operation.
For each node � in the graph, ��G � � G .

computed in the same manner. Using the RBE parameters
in Table 1, the maximum latency from node Source to node:

� GramOut is five seconds,
� BrgOut is 20 seconds,
� AutDetOut is 60 seconds, and
� BinOut is 60 seconds.

At first it is rather surprising that latency as high as 60
seconds is acceptable in an embedded application. Acoustic
signal processing applications require much higher latency
bounds than other real-time applications such as radar appli-
cations. The main reason for this is that sound waves travel
much slower than radar waves, and, thus, it takes longer to
accumulate acoustic samples than radar samples — at least
30 seconds must elapse before enough data is available to
execute some of the DIFAR signal processing functions.
Consequently, the high latency is due to the time it takes
for data to accumulate in a node’s input queues (where it is
buffered) until enough data exists for the node to execute.

6. Summary

We combined software engineering techniques with real-
time scheduling theory to develop a synthesis method for
transforming a processing graph into a predictable real-
time system in which latency can be managed. The syn-
thesis of real-time systems from PGM graphs involves four
steps:

1. Identification of the rates at which nodes in a PGM
graph must execute if they are to process data in real
time.

2. Construction of a mapping of each node to a task in
the RBE task model so that real-time processing can
be achieved.

3. Verification that the resulting task set is schedulable so
that we can guarantee real-time execution.

4. Analytical verification that latency requirements of the
application are met.

Latency has two components: inherent latency and im-
posed latency. We used real-time scheduling theory to
bound imposed latency and combined these results with our
prior results on inherent latency to provide an upper bound
on the total latency any sample or message will encounter
in the synthesized system. If this bound is less than or equal
to the latency requirement for each path in the graph, we
can guarantee that the application will always meet its la-
tency requirements. This is the first time imposed latency
has been computed for cyclic processing graphs. More-
over, our latency results are novel in that they assume nodes
are eligible for execution as soon as all required input data
is available and then scheduled with the dynamic on-line
RBE-EDF scheduler.

We demonstrated our synthesis method with DIFAR
acoustic signal processing graph from the ALFS subsystem
of the LAMPS MK III anti-submarine helicopter. For sim-
plicity and concreteness, we present our synthesis method
in terms of the U.S. Navy’s PGM [23] and signal process-
ing applications. However, our synthesis method applies to
any general processing graph paradigm and many applica-
tion domains.

9

References
[1] Baruah, S., Howell, R., Rosier, L., “Algorithms and Com-

plexity Concerning the Preemptively Scheduling of Peri-
odic, Real-Time Tasks on One Processor,” Real-Time Sys-
tems Journal, Vol. 2, 1990, pp. 301-324.

[2] Baruah, S., Goddard, S., Jeffay, K., “Feasibility Concerns in
PGM Graphs with Bounded Buffers,” Proc. of the Third Intl.
Conference on Engineering of Complex Computer Systems,
Sept., 1997, pp 130-139.

[3] Bhattacharyya, S.S., Murthy, P.K., Lee, E.A., Software Syn-
thesis from Dataflow Graphs, Kluwer Academic Publishers,
1996.

[4] Bondy, J.A., Murty, U.S.R., Graph Theory with Applica-
tions, North Holland, 1976.

[5] Buck, J., Ha, S., Lee, E.A., Messerschmitt, D.G., “Ptolemy:
A Framework For Simulating and Prototyping Heteroge-
neous Systems,” International Journal of computer Simu-
lation, special issue on Simulation Software Development,
Vol. 4, 1994.

[6] Chatterjee, S., Strosnider, J., “Distributed Pipeline Schedul-
ing: A Framework for Distributed, Heterogeneous Real-
Time System Design,” The Computer Journal (British Com-
puter Society), Vol. 38, No. 4, 1995.

[7] Dasdan, A., Ramanathan, D., Gupta, R.K., “A Timing-
Driven Design and Validation Methodology for Embeded
Real-Time Systems,” ACM Trans. Design Automaton of
Electronic Systems (HLDVT’97 Special Issue), 3(4), Oct.
1998.

[8] Berry, G., Cosserat, L., “The ESTEREL Synchronous Pro-
gramming Language and its Mathematical Semantics,” Lec-
ture Notes in Computer Science, Vol. 197 Seminar on Con-
currency, Springer Verlag, Berlin, 1985.

[9] Gerber, R., Seongsoo, H., Saksena, M., “Guaranteeing Real-
Time Requirements with Resource-Based Calibration of Pe-
riodic Processes,” IEEE Transactions on Software Engineer-
ing, 21(7), July 1995.

[10] Goddard, S., On the Management of Latency in the Synthe-
sis of Real-Time Signal Processing Systems from Processing
Graphs,” Ph.D. Dissertation, University of North Carolina
at Chapel Hill, 1998.
http://www.cse.unl.edu/˜goddard/Papers/Dissertation.ps

[11] Goddard, S., “Graph Performance Analysis Report on the
ALFS Worst-Case Concurrency Modes,” Technical Report
300832-980514-01, S.M. Goddard & Co., Inc., under con-
tract to General Dynamics, May 14 1998.

[12] Goddard, S., Jeffay, K. “Analyzing the Real-Time Properties
of a Dataflow Execution Paradigm using a Synthetic Aper-
ture Radar Application,” Proc. IEEE Real-Time Technology
and Applications Symposium, June 1997, pp. 60-71.

[13] Goddard, S., Jeffay, K. “Managing Memory Requirements
in the Synthesis of Real-Time Systems from Processing
Graphs,” Proc. of IEEE Real-Time Technology and Appli-
cations Symposium, June 1998, pp. 59-70.

[14] Goddard, S., Jeffay, K. “Analyzing the Real-Time Properties
of a U.S. Navy Signal Processing System,” Proceedings of

the Fourth IEEE International Symposium on High Assur-
ance Systems Engineering, Nov. 1999, pp. 141-150.

[15] Airborne Low Frequency Sonar Subsystem System Require-
ments Specifications, prepared by Hughes Aircraft Corpora-
tion, Version 1.0, Apr. 1991.

[16] System/Segment Specificaton for the Airborne Low Fre-
quency Sonar (ALFS) (Dipper & Integrated Sonobuoy), pre-
pared by Hughes Aircraft Corporation, Aeorspace & De-
fense Sector, Document Number SS12070, Revision D,
April 1994.

[17] Jeffay, K., “The Real-Time Producer/Consumer Paradigm:
A paradigm for the construction of efficient, predictable
real-time systems,” Proc. of ACM/SIGAPP Symp. on Appl.
Computing, Feb. 1993, pp. 796-804.

[18] Jeffay, K., Goddard, S., “A Theory of Rate-Based Execu-
tion,” Proceedings of the 20th IEEE Real-Time Systems Sym-
posium, Dec. 1999, pp. 304-314.

[19] Karp, R.M., Miller, R.E., “Properties of a model for parallel
computations: Determinacy, termination, queuing,” SIAM J.
Appl. Math, 14(6), 1966, pp 1390-1411.

[20] Liu, C., Layland, J., “Scheduling Algorithms for multipro-
gramming in a Hard-Real-Time Environment,” Journal of
the ACM, Vol 30., Jan. 1973, pp. 46-61.

[21] Lee, E.A., Messerschmitt, D.G., “Static Scheduling of Syn-
chronous Data Flow Programs for Digital Signal Process-
ing,” IEEE Transactions on Computers, C-36(1), Jan. 1987,
pp. 24-35.

[22] Mok, A.K., Sutanthavibul, S., “Modeling and Scheduling of
Dataflow Real-Time Systems,” Proc. of the IEEE Real-Time
Systems Symposium, Dec. 1985, pp. 178-187.

[23] Processing Graph Method Specification, prepared by NRL
for use by the Navy Standard Signal Processing Program
Office (PMS-412), Version 1.0, Dec. 1987.

[24] Ramamritham, K., “Allocation and Scheduling of
Precedence-Related Periodic Tasks,” IEEE Trans. on
Parallel and Dist. Syst., 6(4), April 1995, pp 412-420.

[25] Ritz, S., Meyer, H., “Exploring the design space of a DSP-
based mobile satellite receiver,” Proc. of ICSPAT 94, Dallas,
TX, Oct. 1994.

[26] Ritz, R., Willems, M., Meyer, H., “Scheduling for Opti-
mum Data Memory Compaction in Block Diagram Oriented
Software Synthesis,” Proc. of ICASSP 95, Detroit, MI, May
1995, pp. 133-143.

[27] Sun, J., Liu, J., “Synchronization Protocols in Distributed
Real-Time Systems,” Proc Intl. Conference on Dist. Com-
puting Syst., May, 1996.

[28] Sun, J., Liu, J., “Bounding Completion Times of Jobs with
Arbitrary Release Times and Variable Execution Times,”
Proc. of the IEEE Real-Time Systems Symposium, Dec.
1996, pp. 2-12.

[29] Spuri, M., Stankovic, J.A., “How to Integrate Precedence
Constraints and Shared Resources in Real-Time Schedul-
ing,” IEEE Transactions on Computers, Vol. 43, No. 12,
Dec. 1994, pp. 1407-1412.

[30] Živojnović, V., Ritz, S., Meyer, H., “High Performance DSP
Software Using Data-Flow Graph Transformations,” Proc.
of ASILOMAR 94, Nov. 1994.

10

