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Abstract*

We present a task model for the real-time execution of event-
driven tasks in which no a priori characterization of the ac-
tual arrival rates of events is known; only the expected arri-
val rates of events is known. The model, called rate-based
execution (RBE), is a generalization of Mok’s sporadic task
model [14]. The RBE model is motivated naturally by dis-
tributed multimedia and digital signal processing applica-
tions. We derive necessary and sufficient conditions for de-
termining the feasibility of an RBE task set and demonstrate
that earliest deadline first (EDF) scheduling is an optimal
scheduling algorithm for both preemptive and non-
preemptive execution environments, as well as hybrid envi-
ronments wherein RBE tasks access shared resources.

Our analysis of RBE tasks demonstrates a fundamental dis-
tinction between deadline based scheduling methods and
static priority based methods. We show that for deadline-
based scheduling methods, feasibility is solely a function of
the distribution of task deadlines in time. This is contrasted
with static priority schedulers where feasibility is a function
of the actual arrival rates of work for tasks. Thus whereas
the feasibility of static priority schedulers is a function of
the periodicity of tasks, the feasibility of deadline schedulers
is independent of task arrival processes and hence deadline
schedulers are more suitable for use in distributed, event-
driven, real-time systems.

1. Introduction
Real-time applications frequently interact with external de-
vices in an event-driven manner. The delivery of a message,
or the generation of a hardware interrupt is an event that
causes the operating system to schedule a task to respond to
the event. In real-time environments, one must provide
some form of guarantee that the processing corresponding to
an event will complete within d time units of the event’s
occurrence. Hard-real-time systems guarantee that every
event ei will be processed within di time units of its occur-
rence. Soft-real-time and firm-real-time systems provide
weaker guarantees of timeliness.

Most real-time models of execution are based on the Liu and
Layland periodic task model [12] or Mok’s sporadic task
model [14]. Periodic tasks are real-time programs that serv-
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ice events at precise, periodic intervals. Events serviced by
sporadic tasks have a lower bound on their inter-arrival time,
but no upper bound on inter-arrival time.

We have found in practice, especially in distributed real-time
systems, that the inter-arrival of events is neither periodic
nor sporadic. There is, however, usually an expected or aver-
age event arrival rate that can be specified. For example, in
an Internet video conferencing system, media samples are
typically generated precisely periodically. However, after
they are transmitted over the network, samples can arrive at
the receiver at nearly arbitrary rates. The transmission rate is
precise and the average reception rate is precise, but the in-
stantaneous reception rate is potentially unbounded (depend-
ing on the amount of buffering in the network).

Our goal here is to understand the complexity of directly
modeling the rate-based nature of systems such as distributed
multimedia systems. We have created a simple model of
real-time tasks that execute at well-defined average rates but
have no constraints on their instantaneous rate of invoca-
tion. Our model of rate-based execution, called RBE, is a
generalization of Mok’s sporadic task model in which tasks
are expected to execute with an average execution rate of x
times every y time units. Our experience designing distrib-
uted, event-driven, real-time systems, such as multimedia
systems and classes of military signal processing systems,
demonstrates that this task model more naturally models the
actual implementation and run-time behaviors of these sys-
tems [5, 6, 10].

In this work we present necessary and sufficient conditions
for determining the feasibility of scheduling an RBE task set
on a single processor such that no task misses its deadline.
The analysis holds for earliest deadline first (EDF) schedul-
ing which is also shown to be an optimal scheduling algo-
rithm for both preemptive and non-preemptive execution
environments, as well as hybrid environments wherein tasks
access shared memory resources.

The analysis of EDF scheduling demonstrates a fundamental
distinction between deadline based scheduling methods and
static priority based methods. We show that for deadline-
based scheduling methods, feasibility is solely a function of
the distribution of task deadlines in time and is independent



2

of the rate at which tasks are invoked. In contrast, the oppo-
site is true of static priority schedulers. For any static prior-
ity scheduler, feasibility is a function of the rate at which
tasks are invoked and is independent of the deadlines of the
tasks. Said more simply, the feasibility of static priority
schedulers is solely a function of the periodicity of tasks,
while the feasibility of deadline schedulers is solely a func-
tion of the periodicity of the occurrence of a task’s deadlines.
Given that it is often the operating system that assigns dead-
lines to tasks, this means that the feasibility of a static pri-
ority scheduler is a function of the behavior of the external
environment (i.e. arrival processes) while the feasibility of a
deadline driven scheduler is a function of the implementation
of the operating system. We believe this is a significant
observation as one typically has more control over the im-
plementation of the operating system than they do over the
processes external to the system that generate work for the
system. Therefore, we conclude that deadline based schedul-
ing methods have a significant and fundamental advantage
over priority based methods when there is uncertainty in the
rates at which work is generated for a real-time system, such
as is the case in virtually all distributed real-time systems.

The rest of this paper is organized as follows. Section 2
provides the motivation for considering the RBE task model
and describes related work. Section 3 formally presents the
RBE task model. Section 4 presents necessary and sufficient
conditions for preemptive scheduling, non-preemptive
scheduling, and preemptive scheduling with shared resources
and demonstrates the optimality of EDF scheduling in each
case. Section 5 discusses these results and demonstrates the
infeasibility of static priority scheduling. In addition, Sec-
tion 5 compares RBE to other models of rate-based execu-
tion and scheduling such as proportional share resource allo-
cation [2, 13, 15, 19, 21, 22] and server algorithms such as
the total bandwidth server [17, 18]. We conclude our presen-
tation of the RBE model with a summary in Section 6.

2. Motivation and Related Work
The starting point for this work is the model of sporadic
tasks developed by Mok [14], and later extended by Baruah et
al. [4], and Jeffay et al. [9]. A sporadic task is a simple vari-
ant of a periodic task. Whereas periodic tasks recur at con-
stant intervals, sporadic tasks (as defined by Mok) have a
lower bound on their inter-invocation time, which creates an
upper bound on their rate of occurrence. The fact that spo-
radic tasks may execute at a variable (but bounded) rate
makes them well-suited for supporting event-driven applica-
tions.

Baruah et al. developed the seminal complexity analysis for
determining the feasibility of a sporadic task set [4]. Today,
the theory of sporadic tasks is general enough to accommo-
date a model of computation wherein tasks may communi-
cate via shared memory (i.e., tasks may have critical sec-

tions) [8], and tasks may be preempted by interrupt handlers
(i.e., realistic device interactions can be modeled) [9]. A set
of relations on model parameters that are necessary and suffi-
cient for tasks to execute in real-time are known, and opti-
mal algorithms for scheduling tasks, based on EDF schedul-
ing, have been developed.

One practical complexity that arises in applying the existing
models of sporadic tasks to actual systems is the fact that
the real world does not always meet the assumptions of the
model. Consider a task’s minimum inter-invocation time
parameter. The formal model assumes that consecutive invo-
cations of a sporadic task are separated by at least p time
units for some constant p. Tasks that are invoked in re-
sponse to events generated by devices such as network inter-
faces may not satisfy this property. For example, for the
simple video conferencing application described in the intro-
duction, when video frames are periodically transmitted
across an internetwork, they may be delayed for arbitrary
intervals at intermediate nodes and arrive at a conference re-
ceiver at a highly irregular rate. One solution to this prob-
lem is to simply buffer video frames at the receiver and re-
lease them at regular intervals to the application (although
this begs the question of how one implements and models
the real-time tasks that perform this buffering process). This
approach is undesirable because it is difficult and tedious to
implement correctly and because buffering inherently in-
creases the acquisition-to-display latency of each video frame
(and latency is the primary measure of conference quality).

Our approach is to alter the formal model to account for the
fact that there may be significant “jitter” (deviation) in the
inter-invocation time of real-time tasks. We develop a char-
acterization of a task that is similar to that of a sporadic
task, however, we make no assumptions about the spacing
in time of invocations of an RBE task. Instead, we allow
one to specify an average execution rate that is desired for a
task. In the RBE model, if a task is invoked at time t, the
task is scheduled with a deadline for processing that is suffi-
cient to ensure that the task actually makes progress at its
specified rate.

Digital signal processing is another domain in which the
RBE task model naturally describes the execution of applica-
tions. Processing graphs are a standard design aid in the de-
velopment of complex digital signal processing systems.
We have found that, even on a single-CPU system with
periodic input devices, processing graph nodes naturally exe-
cute in highly aperiodic “spurts” [5, 6]. Moreover, source
data often arrives in bursts in distributed implementations of
processing graphs. As discussed in Section 5, this fact pre-
cludes the efficient modeling of node execution with either
periodic or sporadic task models.

With respect to previous attempts to explicitly specify a
task’s progress in terms of an execution rate, the RBE task
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model is most similar to the linear bounded arrival process
(LBAP) model as defined and used in the DASH system [1].
In the LBAP model, processes specify a desired execution
rate as the number of messages to be processed per second,
and the size of a buffer pool used to store bursts of messages
that arrive for the process. Our task model generalizes the
LBAP model to include a more generic specification of rate
and adds an independent response time (relative deadline)
parameter to enable more precise real-time control of task
executions. Moreover, we analyze the model in more com-
plex environments such as those wherein tasks communicate
via shared memory and thus have preemption constraints. A
more detailed comparison to other models of rate-based exe-
cution is deferred until Section 5.

3. RBE Task Model
Here we formally define the concept of rate-based execution
and present the RBE task model.

A task is a sequential program that is executed repeatedly in
response to the occurrence of events. Each instance of the
execution of the task is called a job or a task instance. Jobs
are made ready for execution, or released, by the occurrence
of an event. An event may be externally generated, e.g., a
device interrupt, or internally generated, e.g., a message arri-
val. In all cases, once released, a job must execute to com-
pletion before a well-defined deadline. We assume instances
of an event type are indistinguishable and occur infinitely
often. Thus over the life of a real-time system an infinite
number of jobs of each task will be released.

For a given real-time task, two commonly studied paradigms
of event occurrences are periodic, in which events are gener-
ated every p time units for some constant p, and sporadic, in
which events are generated no sooner than every p time units
for some constant p. We consider two fundamental exten-
sions to these models. First, we make no assumptions about
the relationships between the points in time at which events
occur for a task. We assume that events are generated at a
precise average rate (e.g., 30 events per second) but that the
actual distribution of events in time is arbitrary. Second, we
allow tasks to specify a desired rate of progress in terms of
the number of events to be processed in an interval of speci-
fied length.

Formally, we consider a real-time system to be composed of
a set of RBE tasks. An RBE task is uniquely characterized
by a four-tuple (x, y, d, c) of integer constants where:

•  y is an interval in time,

•  x is the maximum number of executions expected to be
requested in any interval of length y,

•  d is a response time parameter that specifies the maxi-
mum time that is desired to elapse between the release

of a task instance and the completion of its execution
(i.e., d is the relative deadline of the task), and

•  c is the maximum amount of processor time required for
any job of task T to execute to completion on a dedi-
cated processor.

The pair (x, y) is referred to as the rate specification of an
RBE task. A task with rate specification (x, y) expects to
receive and process, on average, x events in every interval of
length y. More precisely, jobs of a task are constrained to
execute as follows. Let tij be the release of Jij, the j th job of
the i th task. We assume throughout that the order of jobs of
a task corresponds to the order of event occurrences for the
task (i.e., for all i  and j , tij  ≤ ti,j+1). Once released, job Jij

must complete execution before a deadline Di(j) given by the
following recurrence relation:

D j
t d j x

t d D j x y j xi
ij i i

ij i i i i i
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=

+ ≤ ≤
+ +
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, if >       
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The deadline of a job is the larger of the release time of the
job plus its desired deadline or the deadline of the xth previ-
ous job plus the y parameter (the averaging interval) of the
task. This deadline assignment function confers two impor-
tant properties on RBE tasks. First, up to x consecutive
jobs of a task may contend for the processor with the same
deadline and second, for all j, deadlines of jobs Jij and Ji,j+x

i
 of

task Ti are separated by at least y time units. Without the
latter restriction, if a set of jobs of a task were released si-
multaneously it would be possible to saturate the processor.
However, with the restriction, the time at which a task must
complete its execution is not wholly dependent on its release
time. This is done to bound processor demand.

For example, Figure 1 shows the job release times and dead-
lines for a task T1 = (x=1, y=2, d=6, c). The downward ar-
rows in the figure indicate release times for jobs of T1. For
each job, the interval represented by the open box indicates
the interval of time in which the job must execute to com-
pletion. (The actual times at which jobs execute are not
shown.) Figure 1 shows that if jobs of T1 are released peri-
odically, once every 2 time units in this case, then T1 will
execute as a periodic task with a desired deadline that is dif-
ferent from its period. In particular, if jobs are released peri-
odically then the rate specification of T1 does not come into
play in the computation of deadlines.

Figures 2 and 3 show the effect of job releases that occur at
the same average rate as before, but where jobs are not re-
leased periodically. In these figures, three jobs are released
simultaneously at time 0, two jobs are released simultane-
ously at time 3, one job is released at time 6, etc. Figure 2
shows the job release times and deadlines for task T1 = (x=1,
y=2, d=6, c). For comparison, Figure 3 shows the effect of
the same pattern of job releases on a task T2 = (x=3, y=6,
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d=6, c) with the same desired deadline but a different rate
specification. Since job releases are not periodic, the actual
deadlines of jobs are a function of the rate specification of
the task. Note that tasks T1 and T2 will consume the same
fraction of the processor and both will complete, on average,
one job every two time units.

The effect of the different rate specification is two-fold.
First, when bursts of events occur, up to three jobs of task T2

may execute with the same deadline. Thus, for example, task
T2 might be used to implement the media play-out process in
a distributed multimedia system wherein (1) media samples
are generated at the precise rate of one sample every six time
units at a sender, and (2) each sample is too large to fit into a
single network packet and thus is fragmented at the sender
into three network packets, which are transmitted one im-
mediately following the other to the receiver. At the re-
ceiver, media samples arrive, on average, one sample every
two time-units. However, since the sender fragments media
samples and transmits the fragments one after the other, it is
likely that bursts of three simultaneous (or nearly simultane-
ous) packet arrivals at the receiver will be common. Moreo-
ver, at the receiver, while there is a deadline to complete the

processing of each complete media sample, there is no obvi-
ous deadline for processing individual fragments of the me-
dia sample (other than the deadline for the processing of the
complete media sample).

The fundamental problem here is that the arrival rate of in-
puts at the receiver (3 network packets received every 6 time
units), is not the same as the output rate at the receiver (1
media sample displayed every 6 time units). By giving a rate
specification of (x=3, y=6), the receiver can effectively pro-
cess groups of up to three network packets with the same
deadline — the deadline for completion of the processing of
a media sample. Thus by specifying an execution rate, we
avoid the artificial problem of having to assign deadlines to
intermediate processing steps.

Note that this example is overly simplistic as in practice
packet arrivals are discrete events, and hence fundamentally
cannot occur “at the same time.” Thus in practice, packets
arriving as described above will have deadlines that are
separated by at least the minimum inter-arrival time of a pair
of packets on the given network transmission medium (e.g.,
5 microseconds on a 100BaseT Ethernet). However, the fact
that the deadlines for packets arriving in a burst would have
slightly offset deadlines has the positive side-effect of en-
suring that the operating system will process the packets in
arrival order (assuming a deadline-driven scheduler).

A task with a rate specification such as T1 in Figure 2, might
be used to implement the play-out process in a different
multimedia system wherein media samples (such as audio
samples) are small enough to fit into a single network packet
and thus the packet arrival rate is the same as the sample
play-out rate. Here all network packets should have the same
relative deadline for completion of processing (e.g., the ex-
pected inter-arrival time of packets). The pattern of dead-
lines in Figure 2 ensures that the play-out application is
guaranteed (assuming the workload is feasible) that in the
worst case a media sample will be ready for play-out every y
time units starting at time 6.

The second effect of having different rate specifications for
tasks T1 and T2 is that if jobs are not released periodically,
jobs of T2 will have a lower guaranteed response time than
jobs of T1.

Note that there are times at which it is possible for both tasks
to have more than xi jobs active simultaneously (e.g., in the
interval [0,16] for task T1 and in the interval [3,16] for T2).
This is because the rate specification for a task only specifies
the rate at which jobs are expected to be released. The actual
release rate is completely determined by the environment in
which the tasks execute. (In fact, over the entire interval
shown in Figures 2 and 3, jobs are released at a slower rate
than expected.) Also note that the times when individual jobs
complete (and hence whether or not there ever are actually
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Figure 1: Release times and deadlines for jobs of
T1 = (x=1, y=2, d=6, c).
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Figure 2: Bursty release times and deadlines for jobs of
T1 = (x=1, y=2, d=6, c).
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Figure 3: Bursty release times and deadlines for jobs of
T2 = (x=3, y=6, d=6, c).
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multiple jobs of a task eligible for execution simultaneously)
will depend on the scheduling policy employed. Figures 1-3
should be interpreted as describing a realm of possible exe-
cution patterns of tasks.

For a final comparison, Figure 4 shows the effect of the job
release times illustrated in Figures 2 and 3 on the task T3 =
(x=1, y=2, d=2, c). Task T3 is identical to T1 except with a
smaller desired deadline. Figures 2 and 4 can be used to il-
lustrate one benefit of decoupling a task’s deadline from its
arrival rate and, in particular, the benefit of having a dead-
line that is greater than the expected inter-job release time.
Consider the case where task T1 is used to implement the
media play-out process in a distributed multimedia system
wherein media samples are generated at the precise rate of
one sample every two time units at the sender. Assume each
media sample fits into a network packet and media samples
are buffered for up to six time units at the receiver prior to
play-out to smooth delay-jitter in the network.

Since samples are expected to be buffered at the receiver,
there is little utility to the system in processing samples with
a deadline that is less than the expected buffer residence
time. That is, if a job of T3 completes the processing of a
media sample within two units of the sample’s arrival
(which is guaranteed to happen if the arrival of media sam-
ples is not bursty), then the media sample will reside in a
buffer for at least four time units after this processing com-
pletes. In contrast, since T1 has a larger desired deadline, one
would expect that samples processed by T1 would spend
more time waiting to be processed and less time being buff-
ered prior to play-out. Thus the distinction between jobs of
T1 and T3 is that the media samples processed by jobs of the
former task will likely spend more time waiting to be proc-
essed (i.e., “buffered in the run-queue”) and less time in
play-out buffers than when processed by jobs of T3. The time
between media arrival and play-out will be the same in both
cases, however. Thus the desired deadline for task T1 is more
appealing in practice as its use will improve the response
time for the processing of aperiodic and non-real-time
events.

4. Feasibility of RBE Tasks
Our goal is to determine relations on RBE task parameters
that are necessary and sufficient for a set of tasks to be fea-
sible. A set of RBE tasks is feasible if and only if for all job
release times tij, and for all Jij, it is possible to execute Jij

such that:

1. Jij commences execution at or after time tij, and

2. Jij completes execution at or before time Di(j).

Our analysis proceeds by analyzing the demand for the proc-
essor created by a set of RBE tasks in an interval of length L.
In general the demand for the processor created by any set of
real-time tasks is a function of the scheduling discipline in
use. Here we limit our consideration to earliest deadline first
(EDF) scheduling. We justify this restriction by showing that
EDF is an optimal scheduling discipline for RBE tasks. Op-
timality here means that an EDF scheduler can guarantee a
correct execution to any feasible RBE task set. In Section 5
we discuss alternate scheduling disciplines.

Under EDF scheduling, the demand for the processor in an
interval is a function of the number of jobs of tasks that have
deadlines in the interval. The deadline assignment function
Di(j) decouples the processor demand from the arrival rate of
events and bounds the number of jobs that can have a dead-
line in any given interval. This in turn bounds the processor
demand in any interval.

More precisely, the processor demand in an interval [a, b] is
the amount of processor time required to be available in [a,
b] to ensure that all tasks released prior to time b with dead-
lines in [a, b] complete in [a, b]. The maximum processor
demand in an interval [a, b] occurs when

1. a marks the end of an interval in which the processor
was idle (or 0 if the processor is never idle),

2. the processor is never idle in the interval [a, b], and

3. as many deadlines as possible occur in [a, b].

To ensure that no job misses a deadline, we must bound the
maximum cumulative processor demand of all tasks in all
intervals, and verify that the processor has sufficient capac-
ity to satisfy this demand. To begin, we bound the maximum
processor demand for an RBE task in the interval [0, L].

Lemma 4.1: For an RBE task T = (x, y, d, c),

∀L > 0,   f
L − d + y

y

 
 
 

 
 
 ⋅ xc (2)

is a least upper bound on the processor demand in the inter-
val [0, L], where

f (a) =
a  if a ≥  0

0 if a <  0
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Figure 4: Bursty release times and deadlines for jobs of
T3 = (x=1, y=2, d=2, c).
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Proof: To derive a least upper bound on the amount of
processor time required to be available in the interval [0, L],
it suffices to consider a set of release times of T that results
in the maximum demand for the processor in [0, L]. If tj is
the time of the j th release of task T, then clearly the set of
release times tj = 0, ∀ j > 0, is one such set. Under these
release times, x jobs of T have deadlines in [0, d]. After d
time units have elapsed, x jobs of T have deadlines every y
time units thereafter. Thus the number of jobs with dead-

lines in the interval [d, L] is 
L d

y
x

−





⋅ . Therefore, for all  

L > d, the number of jobs of T with deadlines in the interval
[0, L] is

x
L d

y x
L d

y x

L d
y x

L d y
y x

+ −





⋅ = + −











⋅

= − +





⋅

= − +





⋅

1

1

(3)

For all L < d, no jobs of T have deadlines in [0, L], hence
the right-hand side of (3) gives the maximum number of
jobs of T with deadlines in the interval [0, L], for all L > 0.
Finally, as each instance of T requires c units of processor
time to execute to completion, (2) is a least upper bound on
the number of units of processor time required to be avail-
able in the interval [0, L] to ensure that no job of T misses
a deadline in [0, L]. n

Note that there are an infinite number of sets of job release
times that maximize the processor demand of an RBE task
in the interval [0, L]. For example, it is straightforward to
show that the less pathological set of job release times      

tj = 
j

x
y

−





⋅1
, ∀ j > 0, also maximizes the processor demand

of task T in the interval [0, L].

4.1 Feasibility under preemptive scheduling
A task set is feasible if and only if there exists a schedule
such that no task instance misses its deadline. Thus, if LD

represents the total processor demand in an interval of length
L, a task set is feasible if and only if L ≥ LD for all L > 0.
The following gives a necessary and sufficient condition for
scheduling a set of RBE tasks when preemption is allowed
at arbitrary points.

Theorem 4.2: Let τ = {(x1, y1, d1, c1), …, (xn, yn, dn, cn)}
be a set of RBE tasks. τ will be feasible if and only if:

∀ > ≥ − +





⋅
=
∑L L f

L d y

y
x ci i

i
i i

i

n

0
1

, (4)

where f() is as defined in Lemma 4.1.

Proof: The necessity of (4) is shown by establishing the
contrapositive, i.e., a negative result from evaluating (4)
implies that τ is not feasible. To show that τ is not feasible
it suffices to demonstrate the existence of a set of task re-
lease times for which at least one job of a task in τ misses a
deadline.

Assume

∃ > < − +





⋅
=
∑l l f

l d y

y
x ci i

i
i i

i

n

0
1

: .

Let tij be the release time of the j th job of task Ti. Consider
the set of release times tij = 0, for all i, 1 ≤ i ≤ n, and j  > 0.
By Lemma 4.1, the least upper bound for the processor de-

mand created by task Ti is f
l d y

y

i i

i

− +





⋅xici units of proces-

sor time in the interval of [0, l]. Moreover, from the proof
of Lemma 4.1, the set of release times tij = 0, 1 ≤ i  ≤ n and
j  > 0, creates the maximum processor demand possible in
the interval [0, l]. Therefore, for τ  to be feasible, it is re-

quired that f
l d y

y
i i

i
i
n − +



 ⋅∑ =1  xici units of work be available

in [0, l]. However, since

l f
l d y

y x ci i

i
i i

i

n

< − +



 ⋅

=
∑

1

,

a job of a task in τ  must miss a deadline in [0, l]. Thus
there exists a set of release times such that a deadline is
missed when (4) does not hold. This proves the contraposi-
tive. Thus, if the task set τ is feasible, (4) must hold.

To show the sufficiency of (4), it is shown that the preemp-
tive EDF scheduling algorithm can schedule all jobs of tasks
in τ without any missing a deadline if the tasks satisfy (4).
This is shown by contradiction.

Assume that τ  satisfies (4) and yet there exists a job of a
task in τ that misses a deadline at some point in time when
τ  is scheduled by the EDF algorithm. Let td be the earliest
point in time at which a deadline is missed and let t0 be the
later of:

•  the end of the last interval prior to td in which the proc-
essor has been idle (or 0 if the processor has never been
idle), or

•  the latest time prior to td at which a job with deadline
after td stops executing prior to td (or time 0 if no such
job executes prior to td).

By the choice of t0, (i) only jobs with deadlines earlier than
time td execute in the interval [t0, td], (ii ) all jobs released
prior to time t0 will have completed executing by t0, and (iii )
the processor is fully used in [t0, td]. It is straightforward to
show that at most
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t t d y
y xd i i

ii
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i
− − +





⋅
=
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job of tasks in τ  can have deadlines in the interval [t0, td]
[3], and hence

t t d y
y x cd i i

ii

n

i i
− − +





⋅
=
∑ 0

1

is the least upper bound on the units of processor time re-
quired to be available in the interval [t0, td] to ensure that no
job misses a deadline in [t0, td] when τ is scheduled under the
EDF algorithm.

Let ε be the amount of processor time consumed by tasks in
τ  in the interval [t0, td] when scheduled by the EDF algo-
rithm. It follows that

t t d y
y x cd i i

ii

n

i i
− − +





⋅
=
∑ 0

1

 ≥ ε.

Since the processor is fully used in the interval [t0, td] and
since a deadline is missed at time td, it follows that the
amount of processor time consumed by τ  in [t0, td] when
scheduled by the EDF algorithm is greater than the processor
time available in [t0, td]. Since the processor time available
in [t0, td] is td – t0, we have

t t d y
y x cd i i

ii

n

i i
− − +





⋅
=
∑ 0

1

 ≥ ε > td – t0.

However this contradicts our assumption that τ  satisfies
equation (4). Hence if τ satisfies equation (4) then no release
of a task in τ  misses a deadline when τ  is scheduled by the
EDF algorithm. It follows that satisfying (4) is a sufficient
condition for feasibility. Thus, (4) is a necessary and suffi-
cient condition for the feasibility of an RBE task set. n

If the cumulative processor utilization for an RBE task set is
strictly less than one (i.e., x c

y
i i

i
i
n
=∑ 1  < 1) then condition (4)

can be evaluated efficiently (in pseudo-polynomial time)
using techniques developed by Baruah et al. [3]. Moreover,
for the special case of di = yi, for all Ti in τ , the evaluation
of (4) reduces to the polynomial-time feasibility condition
[9]

x c
y

i i

i
i

n ⋅ ≤
=
∑ 1

1

. (5)

Equation (5) computes processor utilization for the task set
τ and is a generalization of the EDF feasibility condition for
periodic tasks with deadlines equal to their period given by
Liu and Layland [12].

Finally, note that the proof of the necessity of (4) in Theo-
rem 4.2 is independent of the scheduling policy in use. This
allows us to conclude that EDF is an optimal scheduling
algorithm for RBE tasks.

Corollary 4.3: EDF is an optimal preemptive scheduling
algorithm for sets of RBE tasks.

Proof: Theorem 4.2 has established that independent of the
scheduling policy in use, condition (4) is necessary for fea-
sibility. Moreover, Theorem 4.2 also establishes that (4) is
sufficient for ensuring that no job will ever miss a deadline
when scheduled by the EDF algorithm. Since (4) is neces-
sary for feasibility and sufficient for a correct execution un-
der the EDF algorithm, the EDF algorithm EDF is an opti-
mal scheduling algorithm for sets of RBE tasks n

4.2 Feasibility under non-preemptive sched-
uling
We now present necessary and sufficient conditions for
evaluating the feasibility of RBE task sets under non-
preemptive, work-conserving scheduling algorithms (i.e.,
the class of scheduling algorithms that schedule non-
preemptively without inserting idle time in the schedule).
We leave open the problem of deciding feasibility under non-
work-conserving, non-preemptive scheduling.

Theorem 4.4: Let τ = {(x1, y1, d1, c1), …, (xn, yn, dn, cn)}
be a set of RBE tasks sorted in non-decreasing order by d
parameter (i.e., for any pair of tasks Ti and Tj, if i  > j , then
di ≥ dj). τ  will be feasible under non-preemptive scheduling
if and only if

∀ > ≥ − +



 ⋅

=
∑L L f

L d y
y x ci i

i
i i

i

n

0
1

, (6)

and
∀ < ≤ ∀ < <i i n L d L di,  1 ; ,  :1

L c f
L d y

y x ci
j j

j
j j

j
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≥ +
− − +





⋅
=

−

∑ 1

1

1

(7)

where f() is as defined in Lemma 4.1.

The proofs of this theorem and the following corollary are
contained in the full version of this paper [11]. However, it
should be noted that they are straightforward extensions of
the proofs of Theorems 3.2, 3.4 and Corollary 3.4 in [8] for
non-preemptive scheduling of sporadic tasks. In addition, the
optimality of non-preemptive EDF scheduling demonstrated
in [8] also holds for RBE tasks.

Corollary 4.5 : With respect to the class of non-
preemptive work-conserving schedulers, non-preemptive
EDF is an optimal scheduling algorithm for RBE tasks [11].

4.3 Feasibility under preemptive  Scheduling
with shared resources
We now consider the case when tasks perform operations on
shared memory resources. Shared memory resources are seri-
ally reusable but must be accessed in a mutually exclusive
manner. Our model of computation is based on that pre-
sented in [8].
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Access to a set of m shared resources {R1, R2, …, Rm}, is
modeled by specifying the computation requirement of task
Ti as a set of ni phases {(cij, Cij, rij) | 1 ≤ j ≤ ni} where:

•  cij is the minimum computational cost: the minimum
amount of processor time required to execute the j th

phase of Ti to completion on a dedicated processor.

•  Cij is the maximum computational cost: the maximum
amount of processor time required to execute the j th

phase of Ti to completion on a dedicated processor.

•  r ij is the resource requirement: the resource (if any) that
is required during the jth phase of Ti. If rij = k, 1 ≤ k ≤
m, then the j th phase of Ti requires exclusive access to
resource Rk. If rij = 0 then the jth phase of Ti requires no
shared resources.

The execution of each job of task Ti is partitioned into a
sequence of ni disjoint phases. A phase is a contiguous se-
quence of statements that together either require exclusive
access to a single shared resource, or require no shared re-
sources. In the latter case, the j th phase of Ti imposes no
mutual exclusion constraints on the execution of other
tasks. If a phase of a task requires a resource then the com-
putational cost of the phase represents only the cost of using
the required resource and not the cost (if any) of acquiring or
releasing the resource. Note that since different tasks may
perform different operations on a resource, it is reasonable to
assume that phases of tasks that access the same resource
have varying computational costs. A minimum cost of zero
indicates that a phase of a task is optional.

We assume that in principal tasks are preemptable at arbi-
trary points. The requirement of exclusive access to re-
sources places two restrictions on the preemption and execu-
tion of tasks. For all task i  and k, if rij = rkl and r ij, rkl ≠ 0,
then (i) the jth phase of a job of Ti may neither preempt the
l th phase of a job of Tk, nor (ii ) execute while the l th phase of
Tk is preempted.

Consider a set of RBE tasks τ = {T1, T2, …, Tn}, where Ti =
(xi, yi, di, {(cij, Cij, r ij) | 1 ≤ j  ≤ ni}), that share a set of re-
sources {R1, R2, …, Rm}. Let δi represent the deadline pa-
rameter of the “shortest” task that uses resource Ri. That is,
δi = min

1≤ ≤j n
(dj | rj = i). The following theorem establishes

necessary and sufficient conditions for feasibility.

Theorem 4.6: Let τ be a set of RBE tasks, sorted in non-
decreasing order by d parameter, that share a set of serially
reusable resources {R1, R2, …, Rm}. τ will be feasible under
work-conserving scheduling if and only if

∀ > ≥ − +



 ⋅ ⋅
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where:

•  f() is as defined in Lemma 4.1,

•  δ r
j n

j j jl ikik d l l n r r= ∃ ≤ ≤ =
≤ ≤
min

1
( ),  1 , ,

•  E Cj jll
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k

c k n
ik
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The feasibility conditions are similar to (and in fact a gener-
alization of) those for non-preemptive scheduling. The pa-
rameter Ei represents the maximum cost of a job of task Ti

and replaces the ci term in conditions (6) and (7) of Theorem
4.4. Condition (9) now applies to only a resource requesting
phase of a job of task Ti rather than to the job as a whole.
Because of this, the range of L in (9) is more restricted than
in the single phase case of non-preemptive scheduling. The
range is more restricted since the kth phase of a job of task Ti

cannot start until all previous phases of the job have termi-
nated, and thus the earliest time phase k can be scheduled is
Sik time units after the start the job. For the kth phase of a
job, the range of intervals of length L in which one must
compute the achievable processor demand will be shorter
than in the single phase case by the sum of the minimum
costs of phases 1 through k – 1. Moreover, no demand of
phases of Ti other than k appear in (9). Finally, note that for
the special case where each task in τ  consists of only a sin-
gle phase, the scheduling problem reduces to simple non-
preemptive scheduling and conditions (8) and (9) reduce to
the feasibility conditions of Theorem 4.4.

The proofs of Theorem 4.6 and the following corollary are
contained in the full version of this paper [11]. It is again
the case that they are straightforward extensions of the
proofs in the original paper ([8]) for scheduling sporadic
tasks that share a set of shared memory resources.

A generalized EDF scheduling algorithm was introduced in
[8] to schedule sporadic tasks that share a set of resources.
This algorithm was shown to be optimal for sporadic tasks.
It is also optimal for RBE tasks that share a set of shared
memory resources.

Corollary 4.7 : With respect to the class of work-
conserving schedulers, generalized EDF is an optimal sched-
uling algorithm for RBE task sets that share a set of serially
reusable resources [11].

5. Discussion
5.1 On modeling RBE tasks as sporadic tasks
The RBE task model specifies the real-time execution of
tasks such that no more than x deadlines expire in any inter-
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val of length y. Given the similarity of this model to Mok’s
sporadic task model it is natural to consider modeling RBE
tasks as a collection of sporadic tasks. For example, a com-
mon question is whether or not an RBE task T is equivalent
to a sporadic task with a minimum period of y/x. The an-
swer is that an RBE task cannot be so modeled because in
order for a sporadic task to be feasible it is required that there
exist a minimum separation time between releases of con-
secutive jobs of a task. There is no minimum inter-arrival
time that can be defined in the environments that motivated
the development of the RBE model. Returning to the mul-
timedia examples from Sections 1 and 2, the media samples
processed by an RBE task will arrive at an average rate of
one sample every y/x time units but in fact multiple instan-
taneous arrivals are possible (and indeed often likely).

The possibility of instantaneous arrivals (or more generally,
the lack of a guaranteed minimum, non-zero, inter-arrival
time) implies that an RBE task cannot be equivalent to any
single sporadic task. One might therefore consider modeling
an RBE task as a collection of x sporadic tasks, each with a
minimum period of y time units. This attempt also fails
because again, there is no guaranteed minimum inter-arrival
time that can be defined for any of the x sporadic tasks.
While a collection of x sporadic tasks can respond to x si-
multaneous events, they can not can respond to x+k simul-
taneous events for any k > 1. If x+k events occur simulta-
neously, then the processor demand of the sporadic tasks
would exceed the capacity of the processor. The only solu-
tion would be to defer the processing of work by extending
the deadlines of some tasks and this is exactly what the RBE
task model does.

5.2 On static priority scheduling of RBE
tasks
Throughout we have considered only EDF task scheduling.
This has been for good reason. As the following theorem
demonstrates, it is not possible to schedule any RBE task
set using any static priority scheduling algorithm. We show
this by proving that there does not exist a feasible static
priority assignment for RBE tasks. That is, for any static
priority assignment to a set of RBE tasks, one can never
guarantee that all deadlines of all RBE task jobs will be met.
It will always be possible for a job to miss a deadline.

Theorem 5.1: There exists no feasible static priority as-
signment scheme for RBE tasks.

Proof: Let τ = {(x1, y1, d1, c1), …, (xn, yn, dn, cn)} be a set
of RBE tasks sorted in non-decreasing order by priority (i.e.,
for any pair of tasks Ti and Tj, if i  < j , then jobs of Ti exe-
cutes with higher priority than those of Tj). Assume at time

0, N = d cj i   jobs of task Ti, i  < n, are released simulta-

neously along with a single job release of task Tj, i < j  ≤ n.
Since i  < j , jobs of task Ti have priority over jobs of Tj.

Therefore, starting at time 0, at least Nci ≥ dj units of proc-
essor time will be spent executing jobs with higher priority
than task Tj’s first job and hence the first job of Tj will miss
its deadline. Therefore, there does not exist a feasible static
priority assignment scheme for RBE tasks. n

The essence of Theorem 5.1 is that unless one bounds the
actual arrival rates of work, a static priority scheduler will
never be feasible. This is because processor demand under a
static priority scheduler is a function of the times at which
jobs are released. If the release process is not constrained
then, as illustrated in the proof of Theorem 5.1, high-
priority tasks can fully consume the processor and starve
lower priority tasks. (Note that Theorem 5.1 places no con-
straints on the execution of RBE tasks. Thus the result
holds independent of whether preemption is allowed or
whether resource sharing exists.)

In contrast, processor demand under an EDF scheduler is a
function of the times at which deadlines occur and is inde-
pendent of the rates at which jobs are actually released. This
can be observed by noting that in each execution environ-
ment considered in Section 4, RBE tasks had the same feasi-
bility conditions as sporadic tasks. Therefore, the feasibility
of the sporadic tasks did not depend on the fact that there
existed a minimum separation time between successive job
releases of a task. The RBE analysis shows that the feasibil-
ity of the sporadic tasks depended only on the fact that there
existed a minimum separation time between deadlines of
successive jobs of a task.

This demonstrates a fundamental distinction between dead-
line-based scheduling methods and static priority based
methods. Static priority scheduling methods require periodic
(or periodic in the worst case) job release times. Deadline-
based scheduling methods require periodic (or periodic in the
worst case) job deadlines. Given that it is often the operating
system or the application that assigns deadlines to tasks,
this means that the feasibility of a static priority scheduler is
a function of the behavior of processes in the external envi-
ronment, while the feasibility of a deadline driven scheduler
is a function of the implementation of the computer system.

Moreover, as one typically has more control over the im-
plementation of the system software than they do over the
operation of the environment external, from a theoretical
standpoint, we conclude that deadline-based scheduling
methods have a significant and fundamental advantage over
priority based methods when there is uncertainty in the rates
at which work is generated for a real-time system.

Although static priority scheduling methods cannot be used
to implement event-driven systems when the arrival rates of
events are unbounded, one can, of course, employ polling
methods and thereby smooth any arrival process to conform
to any rate specification. This can be a highly effective tech-
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nique and indeed, as we discuss next, has been the subject of
much research. From a practical standpoint, the issue there-
fore comes down to whether or not it is considered a more
efficient or parsimonious solution to poll for event arrivals
and use static priority scheduling or to defer deadlines and
use a deadline-based scheduler. There clearly can be no one
correct answer to this question.

5.3 Comparison with other models of rate-
based execution
Beyond the LBAP model discussed in Section 2, there are
additional models of rate-based execution that deserve a
closer examination and comparison with our RBE model.
Here we compare the RBE task model to proportional share
(PS) resource allocation [2, 13, 15, 19, 21, 22] and the total
bandwidth server (TBS) [17, 18].

Proportional share resource allocation is used to ensure fair-
ness in resource sharing. It can also be used to schedule real-
time tasks [19]. In PS resource allocation, a weight is asso-
ciated with each task that specifies the relative share of a
CPU (or any other resource) that the task should receive
with respect to other tasks. A share represents a fraction of
the resource’s capacity that is allocated to a task. The actual
fraction of the resource allocated to the task is dependent on
the number of tasks competing for the resource and their
relative weights. If w is the weight associated with task T
and W is the sum of all weights associated with tasks in the
task set τ, then the fraction of the CPU allocated to task T

is f = w
W . Thus, as competition for the CPU increases, the

fraction of the CPU allocated to any one task decreases. This
is in contrast to the RBE task model in which each task is

guaranteed a fixed share of the CPU equal to x c
y
⋅ , no matter

how much competition there is for the CPU (assuming the
task set is feasible). One can, of course, fix the share of the
CPU allocated to a task in PS resource allocation by varying
the task’s weight relative to the other task weights as tasks
are created and destroyed [20]. However, note that to schedule
an RBE task T with d < y using PS resource allocation, a

share of x c
d
⋅  must be allocated to the task, which reserves

more resource capacity than is actually needed by the task.

Thus, while RBE and PS resource allocation both support
task execution rates, the systems differ markedly in the
flexibility allowed in task scheduling. PS resource allocation
allows variable execution rates while RBE simply defines a
maximum execution rate. The relative deadline of a task
executed under PS resource allocation is dependent on the
resource share allocated to the task, which is dependent on
the task’s relative weight. The relative deadline of an RBE
task is independent of the task’s execution rate; it may be
larger or smaller than its y parameter.

The TBS server algorithm was first proposed by Spuri and
Buttazzo in [17], and later extended by Spuri, Buttazzo and
Sensini in [18]. The original TBS allocated a portion of the
processor’s capacity, denoted US, to process aperiodic re-
quests. The remaining processor capacity, UP, is allocated to
periodic tasks with hard deadlines. Aperiodic requests are
scheduled with periodic tasks using the EDF scheduling al-
gorithm. When the kth aperiodic request arrives at time rk, it
is assigned a deadline dk = max(rk, dk–1) + Ck/US where Ck is
the worst case execution time of the kth aperiodic request and
US is the processor capacity allocated to the TBS server.
Thus, deadlines are assigned to aperiodic requests based on
the rate at which the TBS server can serve them, not at the
rate which they are expected to arrive and not on any applica-
tion-specified requirements. Moreover, the aperiodic dead-
lines are assigned such that the kth request completes before
the k+1st request will begin executing when they are sched-
uled with the EDF algorithm. That is, aperiodic requests are
processed in a FCFS manner (relative to other aperiodic re-
quests) at the rate at which the TBS server is able to process
them.

The TBS server only serves aperiodic requests and deadlines
are derived rather than specified by applications. In contrast,
the RBE task model assumes tasks execute at an average rate
with arbitrary deadlines (modulo feasibility). The RBE task
model does not directly support aperiodic requests. However,
the TBS server can be combined with an RBE task set in the
same way it was combined with a periodic task set and
scheduled preemptively using a variation of EDF. It is not
immediately clear that the semantics of a TBS server can be
preserved if it is combined with an RBE task set that is
scheduled non-preemptively or that shares resources.

6. Summary & Conclusions
We have presented a generalization of the sporadic task
model developed by Mok [14] for the real-time execution of
event-driven tasks in which no a priori characterization of
the actual arrival rates of events is known; only the expected
arrival rates of events is known. We call this new task
model rate-based execution (RBE). In the RBE model, tasks
are expected to execute with an average execution rate of x
times every y time units. When deadlines of consecutive
RBE jobs of the same task are given by the deadline as-
signment function Di(j) defined in Section 3, EDF schedul-
ing has been shown to be an optimal discipline for preemp-
tive scheduling, non-preemptive scheduling, and scheduling
in the presence of shared resources. Moreover, one can decide
feasibility efficiently in all cases.

We believe the RBE task model more naturally models the
actual implementation of event-driven, real-time systems.
RBE has been used to model the execution of applications
ranging from multimedia computing to digital signal proc-
essing [5, 6, 10].
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This work highlights an important distinction between dead-
line-driven scheduling methods and scheduling based on a
static priority assignment to tasks. Under deadline-driven
scheduling feasibility is not a function of the arrival rates of
events; it is solely a function of the rates at which deadlines
occur. As applications can typically control deadlines this
gives deadline-driven scheduling an advantage in environ-
ments where the arrival rates of events cannot be bounded. In
such environments static priority scheduling is inherently
inferior as for any static priority assignment and any RBE
task set, it will always be possible or a job of a task to miss
a deadline.
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